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We discuss various properties of cosmic strings formed by symmetry breaking of the form
G~K &Z2. The unbroken Z2 can be embedded in different U(1) subgroups of G, giving topologi-
cally equivalent but dynamically different strings. We obtain the string mass in terms of the Higgs-
field vacuum expectation value for various values of the gauge and quartic Higgs-field coupling con-
stants by numerical calculation. We find that in a wide range of realistic cases, unless there is an in-

termediate K & U(1) phase, the lowest-mass embedding gives strings which are gauge equivalent to
antistrings, in which case the beadlike solitons of Hindmarsh and Kibble do not occur.

I. INTRODUCTION

Recently there has been a good deal of interest in
theories in which stringlike vacuum structures' (hence-
forth, strings) arise in phase transitions in the early
Universe. Strings may arise in phase transitions associat-
ed with the spontaneous breaking of either a (local) gauge
symmetry or a global symmetry. In this paper we shall be
concerned with gauge strings. Of particular interest are
strings which arise in some versions of grand unified
theories of the strong, electromagnetic, and weak interac-
tions, since strings formed in a phase transition occurring
at a temperature of the order of 10' GeV, the tempera-
ture scale expected to be associated with the breaking of
grand unification, are possible sources of the density fluc-
tuations needed to explain galaxy formation.

Many realistic models leading to cosmologically in-

teresting gauge strings which have been proposed involve
the spontaneous breaking of a simple group G, leaving an
unbroken subgroup which includes a discrete symmetry.
In models considered to date the discrete subgroup of the
broken-symmetry group has been the group Z2, so that
the symmetry-breaking pattern producing strings is of the
form

G KXU(1) KxZ2=H . (2)

We shall refer to the symmetry-breaking patterns (1) and
(2) henceforth as types 1 and 2.

The purpose of the present paper is to consider some of
the properties of Z2 strings, and to compare these for
symmetry-breaking patterns 1 and 2. We shall consider
the kind of generalized magnetic flux carried by the
strings, as well as the structure of the Higgs field within
the string. In case 2 we shall find that these are deter-
mined essentially entirely by topology. However, in case 1

G~~=EXZ, .

Strings produced in this way will be called Z2 strings. Z2
strings may also arise in a symmetry-breaking pattern
differing from that of (1) by the existence of an intermedi-
ate phase having an additional unbroken U(1) symmetry,
so that the symmetry-breaking pattern is of the form

there are a number of possible string structures which are
topologically equivalent, but differ dynamically; in case 1,
physically occurring strings will presumably have the
structure leading to the lowest mass per unit length p.

All of this is discussed in Sec. II below. In Sec. III we
study the dependence of p on the string structure by solv-
ing the coupled differential equations for the radial depen-
dence of the Higgs and gauge fields, and finding the con-
figuration giving the lowest value of p. As a by-product
we obtain, for a range of parameters, the relation between

p and g, the asymptotic value of the Higgs-field vacuum
expectation value. As expected, ' one finds p of the order
of a few times g . Finally, in Sec. IV, we discuss the rela-
tion between the internal structure of Zz strings and some
of their physical properties; in particular, we consider
whether Z2 strings can be distinguished from antistrings
or whether the strings are self-conjugate, and the connec-
tion between the nature of the magnetic Aux carried by
the strings and the way in which they radiate photons.
We conclude briefly in Sec. V.

II. STRUCTURE OF Z2 STRINGS

For the sake of concreteness we will consider a specific
example of a symmetry-breaking scheme of type 1 which
is of some physical interest: namely,

SO(10)~SU(5)XZp . (3)

In (3), or other processes of type 1, the group manifold of
G is simply connected, while that of H is disconnected,
containing two disjoint pieces because of the discrete sym-
metry. Strings arise in the following way. Suppose that
after the phase transition there is a closed circle C in
coordinate space along which the vacuum state at angle 8
is obtained from that at angle 0 by acting with the ele-
ment g(g) HG. Letting H now represent the invariance
group of the vacuum at 8=0, we must have g(0) and
g(2tr) EH. If the curve g(0) runs from one of the two
disconnected pieces of H to the other as I9 goes from 0 to
2m. , as with curve 1 in Fig. 1, then the curve cannot be
smoothly contracted to the identity and a string will be
present passing someplace through the interior of C.
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L = —F„' F" '/4+ (D„Q; )*D"P; /2 —V(P; ),
Dp ———i Bp —eA'p~' .

(6)

(7)

FIG. 1. Schematic representations of the group manifold of
the group G and unbroken subgroup H of Eq. (1). Along a
closed curve in coordinate space enclosing a string, the group
element g(0) relating the vacuum state at 0 to that at 0=0
varies along closed paths, such as curves 1 or 2, between the two
disconnected pieces of the manifold of H.

One can also find a specific model, related to that of
(3), giving a symmetry-breaking pattern of type 2: name-
ly,

SO(10) SU(5) XU(1)r+ SU(5) XZ, ,

where U(1) r is the group whose generator is the operator
Y whose matrix in the 16-dimensional spinor representa-
tion of SO(10) is the matrix

Y =diag[(1))o, ( —3)q, (5))],
where the notation means that the eigenvalues of Y are 1,
—3, and 5 in the 10-, 5-, and 1-dimensional representa-
tions of SU(5), respectively. The discrete symmetry Zq is
a rotation of m. /5 generated by Y, which is not an element
of SU(S), since the determinant of its submatrix within
the 5-dimensional SU(5) subspace is —1. The first stage
of symmetry breaking in (4) can be accomplished by giv-
ing a vacuum expectation value (VEV) to the member of a
Higgs multiplet belonging to the 45-dimensional adjoint
representation of SO(10) which transforms like Y. The fi-
nal stage of symmetry breaking in both (3) and (4) in-
volves a multiplet of Higgs fields P; belonging to the com-
plex 126-dimensional representation of SO(10). The 126
is contained in the direct product of 16X 16, and so the p;
transform like appropriate linear combinations of the
Cartesian products uz X Uj, (j, k = 1—16) of two 16-
dimensional spinors. We order the components of the 16
so that u &6 is the SU(5)-singlet member of the 16-
dimensional representation. Then the unbroken symmetry
will be SU(5) X Z2 if the component of the 126-piet
transforming as u&6&(v~6 acquires a VEV. We label this
component as /~6. We shall adopt the notation P = (P,6),
the VEV of P, 6.

The Lagrangian density for the system is given by

where j'~ is the ath component of the SO(10) current due
to the fields P, , and is given by

(10)

where P is a vector whose components are the fields P;.
Let us consider first the symmetry-breaking pattern (4).

We suppose we have a string lying along the z axis, and
adopt a cylindrical coordinate system centered on the
string with radial and azimuthal coordinates r, 0. We
choose the set of generators H to be mutually orthogonal,
and to include the 24 generators of SU(5), as well as a
generator which we label r given by

2'=NY=Q ',
where N is a normalization constant. We normalize the
matrices of P in the 16-dimensional representation to
which the fermions belong by

Tr(r' )=2 (12)

which means that the eigenvalues of the SU(5) operator
corresponding to, e.g. , the weak isospin, have the conven-
tional values + —,'. Equations (5) and (12) then imply that
N=(40) ' . This in turn means that the eigenvalue of
the charge Q carried by the field /~6 with VEV P is

q = 10/(40)'~ (13)

Then for a string arising from the symmetry-breaking
model (4) we have the solution

P=P(r)e'

A 'g=A (r),

A'& ——0, p&0 or a&25,

(14a)

(14b)

(14c)

In Eqs. (6) and (7), F& are the components of the usual
Yang-Mills gauge field tensor, the ~ are the matrices
representing the generators of SO(10) in the 126-
dimensional representation, a and i are indices running
from 1 to 45 and 1 to 126, respectively, e is the gauge
coupling constant; and V the Higgs potential. [We omit
the dependence of L on the Higgs 45-piet responsible for
the first stage of symmetry breaking in (4) if present. ] We
have, of course, adopted the usual conventions of using
units where A=c =1, and summing over repeated indices.
Equation (6) leads to the usual field equation

D„D"p —a v/ap =0,
where, in Eq. (8) and from now on A'& is to be interpreted
as a classical field (A'„). In the cases we shall consider
A'& will be nonvanishing for only one value of p and as a
result the terms in F'& which involve products A „A'
for p&o. all vanish. Taking this into account, the field
equations for A '& become simply
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where P(r) and A (r) are subject to the boundary condi-
tions

P(r), A (r)~0 for r~O (15)

and

P(r)~q, r &&q

A (r)~1/(eq r), r &&ri

(16a)

(16b)

The conditions (15) are required in order that there not be
an infinite contribution to the string energy at r =0.
Equations (16) guarantee that P and A ' satisfy the field
Eqs. (8) and (9) in the asymptotic region, since they imply
that, for r »g ', D„Q=O, and, using Eqs. (10),j 'z ——0.
In the vicinity of the string, r (q ', P(r), and A (r) must
be determined by solving the appropriate differential
equations, obtained from Eqs. (8), (9), and (10), which we
shall write down in detail in the next section. Equations
(14b), (14c), and (16b), together with Stokes's theorem im-

ply that the flux W' of the generalized magnetic field 8'
carried by the string is given by

4'=0, a&25,
+25 =2w f B ( r) r dr =2a/eq

(17a)

(17b)

Equation (14c) is consistent with Eq. (9) since it follows
from Eqs. (10), (14a), and (14b) that j '& ——0 if a&25 or
p&9. Equation (14a) implies that g(9), the operator re-
lating the vacuum state at 0 to that at 0=0 is

g(9) =exp(ir 9) . (19)

To see the structure of the resulting string, we write P as a
linear combination of fields carrying definite charge q
under rotations generated by r; thus, we write

4=4++0 —+4p (20)

where P+, Pp, and P have qq6 ——+ 1, 0, and —1, respec-
tively. [Thus, e.g. , P+ transforms as the Cartesian prod-
uct (u»+u&6)X(v~5+U~6)/2. ] Then if g(9) is given by
Eq. (19), Eqs. (14) are replaced by Eq. (20) together with

specificity, we order the elements of the spinor representa-
tion of SO(10) so that the 15th element, u &5, is the left-
handed positron. Let r be the generator of the right-
handed weak-isospin group SU(2)~ [which, as is well
known, is a subgroup of SO(10)] whose two-dimensional
submatrix in the subspace spanned by u» and u &6 is
o &/2, where o t is the first Pauli matrix; i.e., r is the "x
component" of the right-handed weak isospin. For future
reference, we order the SO(10) generators so that r and

are the y and z components of the right-handed weak
isospin, with two-dimensional submatrices given by o.2/2
and o3/2. Note that r is already normalized in accor-
dance with Eq. (12), so that an analog of the normalizing
factor N in Eq. (11) is required. Under a rotation of 2~
generated by r, u &6~ —u&6, so that P is left unchanged.
Hence, the discrete symmetry can be embedded in U(1)z6,
the U(1) subgroup generated by r, with Eq. (18) replaced
by

g (9)=exp(iY9/10) =exp(ir 9/10N) . (18) (21a)

Thus, the direction in group space of the magnetic flux
carried by the string is that of the generator which rotates
the vacuum as one goes around the string. In fact, g (9) is
not uniquely determined to have the value given by Eq.
(18), since one can add to the generator r an arbitrary
linear combination of generators of SU(5), which leaves
the vacuum invariant. We shall discuss the consequences
of this ambiguity later. In the present situation, where
only /~6 has a nonzero VEV, the magnetic flux carried by
the string is given, without ambiguity, by Eqs. (17), since
the currents j'&, and therefore the gauge fields 3'z, cou-
pled to the SU(5) generators vanish.

Let us now compare the situation we have been discuss-
ing, which holds for the symmetry-breaking pattern (4),
with that which obtains in the case of (3). There are an
infinite number of different U(1) subgroups of SO(10) in
which the discrete Z2 symmetry can be embedded beside
that generated by K This corresponds to the fact that, in
passing around a curve C encircling the string, the group
element g(9) could follow, e.g. , curve 2 in Fig. 1, rather
than curve 1, in going from one of the disconnected pieces
of H to the other. In the case of the symmetry-breaking
pattern (4) which we have been discussing, g (9) was
forced to follow the path given by Eq. (18), apart from the
previously mentioned ambiguity, because g(9) must leave
the VEV of the Higgs 45-piet responsible for the first
stage of the symmetry breaking invariant. No such re-
striction is present in the case of (3).

Let us exhibit explicitly an alternative subgroup to
U(1)r in which Zz can be embedded. For the sake of

g ——A+(r),
3'„=0, p&0 or a&26 .

(22b)

(21c)

(21d)

Since u ~6 X U ~6
——(

~

1)+
~

—1 ) ) /2+
~

0)v'2, where
~ q )

is an eigenstate of q with eigenvalue q, the boundary
conditions on P+(r) [there is no significance in the choice
of + rather than —to label P+(r) and A+(r)] and Pp(r)
at large r, corresponding to Eq. (16a) are

$+(r)~ri/2, r ))g

Pp(r)~ri/~2, r ))q
while the boundary condition on A+(r) at large r is

A+(r)~1/(er), r &&g

(22a)

(22b)

(22c)

The boundary conditions for P+ and A+ at the origin are
given by Eq. (15). Since Pp(r) is invariant under rotations
generated by r, it is not forced to vanish at r =0, so that
it satisfies the boundary condition

Pp(r)~cp, r~O . (23)

As in the case of Eq. (14c), one can verify that Eq. (21d) is
consistent in that the corresponding currents j „given by
Eq. (10) vanish.

Thus, in the case of the model in (3), two different
kinds of strings are possible. In one of them the rotations
of the vacuum state in going around the string are gen-
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crated by r ', i.e., g (0) is given by Eq. (18), and the mag-
netic flux is in what we have called the 25-direction, while
in the second the rotations are generated by ~, and the
magnetic flux is in the 26-direction. We shall henceforth
refer to these as w and ~ strings. There are other possi-
ble choices besides ~ for the generator of the second kind
of strings. However, we shall see that the structure of the
lowest-mass strings can be determined by studying w and
r " strings, which we proceed to do. Note that r ' and r
are not gauge equivalent, as is clear from the fact that
they have different sets of eigenvalues in the 16-
dimensional representation, and hence cannot be
transformed into one another by any unitary transforma-
tion. [The group containing all transformations taking
one generator of SO(10) into another is the much larger
group SO(45).] Thus, there is no reason to expect r '
strings to have the same energy as those due to m rota-
tions; it is, in fact, clear from the differences between Eqs.
(14)—(16) and Eqs. (21)—(23) that they will not have the
same energy. Strings generated by r and r are topolog-
ically equivalent. This follows from the fact that the
group manifold of SO(10) is simply connected, so that any
two paths, such as 1 and 2 in Fig. 1, connecting the two
disconnected pieces of H, can be deformed into one
another smoothly. However, the paths corresponding to

and r " strings are dynamically different; the string en-
ergy changes as the path followed by g(0) in the group
manifold as 0 varies from 0 to 2~ is deformed from that
given by Eq. (18) to that of Eq. (19), since the gauge
transformation connecting the two paths depends on 0
and is thus singular as r~0; the string energy corre-
sponding to different paths will be the same only if they
can be deformed into one another by a global, and thus
nonsingular, gauge transformation.

The masses of r 'and r stri-ngs will differ for two
reasons. For W strings one sees from Eqs. (20) and (21b)
that, since Po has no 0 dependence, one has, loosely speak-
ing, only half a string. The string mass/unit length
p. — (b) =~l, half of which comes from (Po)
The f3 independence of Po means that is does not contri-
bute to the part of the kinetic energy of the string coming
from the nonvanishing 0 component of the covariant
derivative of P within the string, while the fact that Po is
not constrained to vanish at r =0 lowers the string poten-
tial energy coming from the departure of (It ) from its
equilibrium value at small r. Thus, roughly one expects
Eqs. (21)—(23) to describe a string with
@=2

~
((I)+ )

~

=g /2. A second difference between the
two kinds of strings may be seen by comparing Eqs. (14b)
and (21c), from which one sees that the effective value of
the coupling constant in the case of strings generated by~' rotations is e,f~, where

e,f~ ——eq =—1.58e,

where we have used Eq. (13). Thus, we must consider
how the string mass is expected to vary with the coupling
constant. One can argue that, at least for small values of
e, the string mass decreases as the coupling constant in-
creases. To see this, note that the gauge-boson mass m&
is of order eg. The gauge field of the string vanishes on
the axis, and will approach its asymptotic value at

r =mII '. For r appreciably less than (eg) ', DIIQ&0,
and the string will have a nonzero energy density which
falls off as 1/r . For r «mq ', a gauge string is similar
to a global string. The energy of such a string diverges as
log(Ag), where A is a cutoff length. For a gauge string
with small coupling, the role of the cutoff will be played
by rnid ', and hence one expects the energy of a gauge
string to increase at fixed I) with log(1/e). We shall actu-
ally be interested in values of e of order 1 where it is
doubtful that this argument is quantitatively reliable, but
it does suggest that, in comparing r and r strings, the
difference in the coupling constant will affect the relative
mass in the opposite sense from the effect of the 0 in-
dependence of Qo. Thus, a reliable determination of which
is the lighter, and thus presumably stable, structure for
strings arising in the symmetry-breaking pattern (3) re-
quires a numerical evaluation of the masses associated
with the two string configurations, and we turn to this
task in the next section. We shall find that the invariance
of bo dominates the coupling-constant effect, and hence
that r strings are lighter than those generated by r ~ ro-
tations.

V=c4( P
~

—g )'=—c4 ~
$ —c, b +t) (2S)

with q =(c2/2c4)' -. Then the equations are

—B„(rd„p)/r+ [(1/r —e,ffA) —2c2+4c4$ ]/ =0, (26)

—B„[B,(rA)/r]+(e, ff A e ff/r)p =0 . (27)

Once these equations are solved, the string mass/unit
length p is obtained from

p= H r 2wrdr, (28)

where H(r), the Hamiltonian density, is given by
H(r) = L(r) since the time —derivatives of all fields van-
ish. Taking L from Eqs. (6) and (25), one obtains explicit-
ly

H =(B„A +3 /r) /2

+ [(B„(t) +p /r 2e,ffAQ /r +e,ff—3 p ]/2

+( —c2(f +c4(t' ) =HI +HII+HIII
where H&, H», and H»& stand for the three terms in
brackets, respectively. Physically, HI ——(B ) /2 is the
energy density in the magnetic field, H» the "kinetic en-
ergy" associated with the covariant derivative of the
Higgs field, and including the interaction between the
Higgs and gauge fields, and H»& the potential energy. In
our calculations we take the dimensionless coupling con-
stant c4 to have the value 0.1, unless otherwise specified.

Equations (26) and (27) were solved by numerical in-

(29)

III. NUMERICAL CALCULATIONS

In the case of ~' strings, we must obtain the functions
$(r) and A (r) of Eqs. (14) by solving Eqs. (8) and (9) sub-
ject to the boundary conditions of Eqs. (15) and (16). The
resulting pair of coupled equations are exactly those of
Nielsen and Olesen" for an Abelian gauge string, with the
Abelian group in question being that generated by ~, and
with the coupling constant replaced by e,.f~ ——eq '. We
write the potential V as
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tegration using the Runga-Kutta method. Using Eqs. (26)
and (27), and requiring d and A to be finite at the origin,
one can write the boundary conditions at the origin, Eqs.
(15), as

P(r) —kr, 3 (r) —kr, r ~0 . (15')

We impose (15') at some very small value of r =r, , typi-
cally r~ ——0.03' ', and vary the constants k& and k& un-
til the solutions obtained by numerical integration satisfy
the asymptotic boundary conditions (16). Equations (15')
are, of course, exact only at r =0. While they provided a
useful starting point, the asymptotic behavior was often
extremely sensitive to the behavior at r~, and in order to
get good asymptotic behavior we frequently had to allow
ourselves the freedom to relax Eqs. (15') and vary dP/dr
and dA/dr independently of P and 3 at r =r, . Since one
does not have exactly the right solution at r =r~, the
asymptotic conditions are never satisfied exactly and the
solutions begin to diverge at some point. However, we ob-
tain solutions for which Eqs. (16) are well satisfied, and
consequently H(r) =0, over a range of r of order a few
times g

' before the divergent part of the solution be-
comes important. If we choose the upper cutoff r2 on the
integral in Eq. (28) to lie in this region, we expect our
solutions to give a good approximation to the correct
H(r) for r & r„while the error from setting H(r)=0 at
r & r„where the exact H(r) vanishes exponentially, will

be negligible. The range of variation in the values of p
coming from varying the starting values at r =r& over the
ranges which yield reasonable solutions, as well as from
varying r, over the range of r for which the asymptotic
conditions, Eqs. (16), are well satisfied indicate that our
values of p should be correct to an accuracy of about
+2%.

The renormalization-group equations give a value for
the gauge coupling e /4~= —„, which, from Eq. (24),
yields e,~f =0.85 with an uncertainty of perhaps 10%%u&, re-
flecting the experimental uncertainty in the low-energy
values of the Weinberg angle and the color coupling con-
stant, either of which may be used to determine e. We
have obtained values of p for a range of values
0.5 (e,ff (1.05, both because we wish to include the case
e,ff =0.55 in making a comparison with r strings, and
also for possible applications to other models with dif-
ferent values of e,ff. Figure 2 shows typical solutions ob-
tained for P(r) and 3 (r), in this case for e,ff —1.0. Solu-
tions of comparable quality were obtained for other values
of e,ff within the range studied. Outside of this range of
e,ff it became very difficult to obtain solutions, as very
small variations, often in the eighth significant figure, in
the input parameters at r =r) tended to have drastic ef-
fects on the asymptotic form of the solution. To get a
solution, such as that of Fig. 2, for an initial value of e,ff
is quite time consuming, and requires a lengthy trial and
error process in adjusting the input values. Once a solu-
tion has been obtained for one value of e,f~, it is relatively
easy to find a solution for a nearby value, at least within
the range of e„ff being considered.

In Fig. 3 we show the values of 2~rH(r) obtained from
the solution of Fig. 2, together with the values of the indi-
vidual terms 2~rH&, 2~rHI&, and 2~rIII&&. The value of p
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0
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Q A
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O.I-
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0,0 (,0 2.0 3.0 4.0

I

5 0 6.0 7,0 8.0 9.0 (0.0
R

FIG. 2. The functions (a) P and (b) A, defined in Eqs. (14a)
and (14b), as functions of r, for the case e =1.0, with P and 2
in units with g= 1 and r in units with g '=0.633.

obtained from the H (r) in Fig. 3, and taking the cutoff
value r, =6.3g ', is p, =3.0g . The value of p changes
by only about three parts in 10 when r, varies from
3.3q ' to 9.3 '. The insensitivity of the result to r, es-
tablishes the fact that H(r) calculated from our solution
vanishes rapidly as r becomes greater than g '. This is a

(.50-

I, 2 5-

LU

0.75—

'uJ

~ 0.50-

0.25-

0
O.O i.O 2 0 3 Q Q, O 5.0

R
7.0 8.0 9.0

FIG. 3. The curve labeled H gives the radial Hamiltonian
density 2~rH (r), with H(r) given by Eq. (29), as a function of
r, in units with g '=0.633, as computed from the solutions in
Fig. 2. The curves I, II, and III give the separate contributions
from the three terms H~, H~q, and H&q~.
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strong test of the validity of our solution, since the largest
contribution to p comes from the piece p, && arising from
the integral of H», the kinetic energy density, and H»
contains individual pieces which vanish only as 1/r, and
which individually give contributions to the integral in

Eq. (28) increasing logarithmically with r, ; the fact that
the result is insensitive to the choice of r, means that the
required cancellation among these terms is taking place.

In Table I we present the values of p, as well as the in-
dividual pieces p&, p», and p&» coming from the integrals
of the corresponding terms in H in Eq. (29), for the com-
plete set of values of e,ff for which calculations were
done. Taking the value from Table I for e,ff —0.85 we
obtain, for p, the mass/unit length of a r string:
p =3.2g . As expected, the string mass increases as the
coupling constant is decreased. Note, however, that the
value of p for e,ff ——0.55 is much less than a factor of 2
greater than that for e,ff ——0.85. The qualitative argu-
ment made earlier suggests, therefore, that the effect of
the change in e,ff will not dominate that due to the differ-
ence in structure of r and r strings, and thus that r'
strings are likely to be the energetically stable configura-
tion. We confirm this below.

In Table II we give the values of p&, p», p&», and p for
c4 ——0.2 and a range of values of e,ff and also for
c4 ——0.05 and e,ff ——0.75 Also shown is the ratio of these
values of p to the values of p with the same e,ff and our
standard value of c4 ——0. 1. One sees that the string mass
increases with c4, but that the dependence is rather slow,
with p changing by only about 25% for a factor of 4
change in c4. Thus, the expected order-of-magnitude re-
lation p-g should hold for a wide range of c4.

We turn now to the calculation of p, the mass of 1

strings. Since the fields on the right-hand side of Eq. (20)
are orthogonal, we have, recalling Eq. (21a),

TABLE II. The same as Table I, but for the case c& ——0.2,
and for the last set of entries c4 ——0.05.

eeff

0.55
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.94
0.90
0.84
0.82
0.80
0.78
0.75
0.73
0.72

2.56
2.39
2.35
2.22
2. 14
2.09
2.07
2.06
1.95

0.93
0.90
0.90
0.82
0.77
0.76
0.78
0.78
0.69

4.43
4.19
4.09
3.86
3.72
3.63
3.60
3.57
3.36

0.75 0.59 1.79 0.61 2.99

(31)

V'=c~(P, +go —9')'+c4($& —(to )' (25')

with c~ as well as c4 &0. Making use of Eqs. (6) and
(25'), we find that the Lagrangian and Hamiltonian densi-
ties in the case of r strings are given by

L~~= H~6=L„+—D„P,D"P, /2+ V'+(B„P ) l2, (32)

We must also consider the appropriate form of potential
to use for r strings. The full SO(10)-invariant potential
is of course quite complicated. However, we are con-
cerned with the case when only P, and go&0. Since we
are assuming that the minimum occurs when

I P I
=g and

when the Higgs field is in the u&6&(U&6 direction, i.e.,
when Po=P~, the part of the full potential involving $o
and P, can be written as

0+- I

'+ 0 — '+
I @o I

=P, (r)'+ go(r)',

where we have defined

(30)

where Z, ~ is the free gauge-boson field contribution and
the appearance of the field P, is due to the summation of
identical P+ and P terms. Equation (32) leads to the
field equations

—r)„(rr)„p, )lr + [ (1 lr —
eA+ ) —2c2+4(c4+c4)P,

TABLE I. Values in units of g of the mass//unit length p
and of the individual contributions p~, p&&, and p»l coming from
the integrals of the corresponding terms in the Hamiltonian den-

sity of Eq. (29j, for ~ strings as a function of the coupling con-
stants e,ff for c4 ——0. 1.

+4(c4 —c q )Po ](5 )
——0,

d„(rr)„po)l—r + [ —2c2+4(c4+c~)Po'

+4(c4 —c4)$& ]go ——0,
—d„(rr)„A+ )/r +A/r +(e A+ —elr)$) ——0 .

(33)

(34)

(35)

eeff

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.9
0.95
1.00
1.05

0.86
0.82
0.79
0.76
0.73
0.72
0.69
0.67
0.64
0.62
0.63
0.59

2.30
2.21
2.14
2.07
2.00
1.97
1.91
1.88
1.84
1.81
1.78
1.78

0.86
0.82
0.77
0.76
0.73
0.69
0.67
0.64
0.66
0.64
0.61
0.62

4.02
3.85
3.70
3.59
3.46
3.38
3.27
3.19
3.14
3.07
3.02
2.99

Po~k3+ k 3r, r ~0
with

(15")

k 3 = —c~k3/2+ (c4+c4 )k3

There are two interesting special cases where the prob-
lem of solving the full set of Eqs. (33)—(35) can be re-
duced to the problem of solving only a pair of equations,

Equations (33)—(35) can be integrated numerically, using
procedures similar to those for Eqs. (26) and (27). The
starting conditions near the origin for P~ and A+ are the
same as in Eq. (15'); for Po it follows from (34) that Eq.
(23) can be cast in the form
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essentially identical to (26) and (27), for tt ~
and 3+, with

Po being obtained by inspection. First consider the case
c4 ——c4. In this case $0 decouples, and in fact Po is simply
a constant, given by its asymptotic value, Po=t)/V2; one
easily finds that the Lagrangian of Eq. (32) for a r " string
reduces to that of a r string with equivalent parameters
c4,&

——2c4, g,z
——tI/v 2 and the same value of e,fr. Note

that c2 ——2c4g is unchanged by the replacement c4~c4,q,
YJ~x/pq Since the stri ng m ass is proportional to g, we
conclude that

0o'=At'+O (1«4) (37)

so that the c4 term in V' vanishes for c4~co. Making
use of (35) and (32), one finds that

L (c,g)=L (2c,t)/t/2)+(t)„P ) /2 . (38)

where L is the Lagrangian density for a r string with
the indicated values of the parameters. The result in Eq.
(38) for large cq differs from that discussed previously for
the case c4 ——c4 by the addition of the last term represent-
ing the energy coming from the fact that now tt o=P& and
varies with r (but not 9). The exact value of p for large
c4 can only be obtained by solving the field equations for
the Lagrangian of Eq. (38) numerically. However, we can
get a useful upper bound on p for this case from the re-
sults already at hand. Since in our static problem with
H = —L the field equations simply represent the condi-
tion that p be a minimum, an upper bound for p is ob-
tained by evaluating H using arbitrary trial functions for

and 3+ which satisfy the boundary conditions. In
particular, we can get p for large c4 by using the results
for P~ and A+ from the case c4 ——cq, for which the mass
corresponds to the first term on the right-hand side of Eq.
(38). Thus, an upper bound on the value of p for large
c4 is given by taking the value of p for c4 ——c4 and add-
ing to it the contribution of the last term in Eq. (38)
evaluated for c4 ——c4. The latter contribution, obtained
from the results used in obtaining Table II, is =0.5g,
giving p & 2.7g for c4~~.

In the opposite limit c4 ——0, we obtained p by solving
the full set of Eqs. (33)—(35) for the three fields P~, Po,
and A+. As expected, we found that in this case tto in-

p (e,c4 ——c4) =p (e, 2c4)/2 . (36)
Note that the factor of 2 on the right-hand side of Eq.
(35), i.e., the replacement of g by t) /2 for 2 strings, is
just the expression of the factor of 2 mentioned in our
previous qualitative discussion of r strings; it just re-
flects the fact that only half of the Higgs field P varies
with 8 and couples to the gauge field. Taking the value of
p for c4 ——0.2 and e,~f ——0.55 from Table II and multi-
plying by —,

'
gives p =-2.2g for c4 ——c4 ——0. 1.

A similar trick can be used to obtain p in the limit
c4 »c~. The two terms in the potential of Eq. (31) have
opposite effects on the behavior of Po for r~0. The first
term causes Po to increase to compensate for the decrease
in tt

&
and maintain

I P I

close to t), thus reducing the
string potential energy; the second term in V' tends to
cause Po to follow P, and decrease. The string mass thus
increases as c4 increases. For c4 very large, the second
term in V' forces Po ——tt &, from Eq. (34) one has

V, = a
I P, I

—2c4t)'
I P,

+14, I'(c5 @i I'+co
I @o I') (39)

In order for the potential minimum to occur at
$, =0, one must have a &c~. It becomes energetically
favorable for P, to develop a nonzero VEV when

2C4 I & C5$1 +C5$0 (40)

In order for the asymptotic vacuum, with
I P I

=g, to be
energetically stable, it follows from (40) that c5+c5 & 2c4.
Since P~ vanishes at small r, if cs & 2cqg /Po(0), where
Po(0) is the value of Po at r =0, P, will never become
nonzero. If the parameter c~ in Eq. (25') is relatively
small, Po(0) may be appreciable, as we recall, and thus in
this case one may well find it energetically unfavorable to
have any $,~0. Even if some $, =0, the effect on p
will be relatively small for small cq, since then Po already
varies in such a way that the potential energy density is
small, so that little further reduction in energy is possible.

TABLE III. Values of p ", the mass/unit length of
strings, for various values of the potential parameter c4 defined
in Eq. (25').

C4 ——0 C4 =C4

2 2~'

c4 ))C4

(2.7'g

creased within the string, and in fact, po -0.95tI at
r =0, so that the potential energy density was very small
at all r. The quality of the numerical solutions obtained
was not as good as those obtained for r strings. Because
of the small potential energy, the scalar fields vary slowly
with r and do not begin to reach their constant asymptot-
ic values until r =9g '. On the other hand, even with the
most delicate possible adjustment of the initial values,
divergent behavior of the fields sets in around 11 or
12' ', and thus there is only a small range of r for which
the fields are reasonable approximated by their asymptotic
forms. However, the energy density is small over about
twice this range of r and hence the value of p is again in-
sensitive to reasonable variations in the upper cutoff in
the integral of H(r). We obtained a value p =1.0g for
c4 ——0. Our three results for p are collected in Table III.
We see that, for c4 varying over its physical range c4 & 0„
1.0&p /g &2.7. Thus, for all values of c4, p &p
for large c4 the mass difference is relatively small, but ap-
pears still to be outside the uncertainty in our calculations.

We next note that the value of p given by our analysis
may be, in fact, to some extent too high for the following
reason. Consider an SU(2)R -singlet member P, of the
multiplet of Higgs fields. Since @, is invariant under rota-
tions generated by r, if g (6) is given by Eq. (19) there is
no need for P, to vanish on the string axis, and like tto it
may take on a nonzero value there in order to minimize
the potential energy. Because of its invariance under ~

will have no angular, but only a radial dependence.
Outside the string it will vanish exponentially at the same
rate at which Po and P~ approach their asymptotic values.
A nonzero P, will result in the addition of a tertn V, to
the potential, where
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However, for large cq, Pp becomes small along with P~
r~0, and we will in general expect that condition (40)
will be satisfied and P, &0 for some range of r near the
axis; that range, and hence the effect on p, will be small,
however, if c~+c~ &&2c4. Finally, the effect of P, &0 on

p will be small if a &~c4, since the effective scale associ-
ated with the potential energy V, is q(cq/a)' . In sum-
mary, then, we expect that taking account of a nonzero P,
might appreciably reduce our value of p for the general
range of parameters c4 ~ c4, a (c4, c5+c& (2c4.

A similar phenomenon occurs in the case of r strings.
For a 2 string all members of the Higgs multiplet have

q &0, and hence are forced to vanish on the string axis.
However, consider a closely related possibility, raised by
Hindmarsh and Kibble, in which r is replaced by r
the third component of the right-handed weak isospin.
The generator r can be written as

r "=r 'cosP+ r' sinP, (41)

where ~' is one of the diagonal generators of the unbroken
SU(5). Consider now a string in which g (0) is given by

g (0) =exp(ipse e) (42a)

rather than by Eq. (18). Since the vacuum is invariant
under r', only the r piece of r is effective in transform-
ing the vacuum, and the single valuedness of the vacuum
along spatial curves enclosing the string requires that the
coefficients of r in the exponents of Eqs. (18) and (42a)
be equal, i.e., that

p = I/(10K cosP) . (42b)

Ag&0 . (43)

Likewise Eq. (14a) continues to hold, since r' does not af-
fect the angular dependence of P. However, having r
rather than r in g(0) does mean that SU(2)~ singlets are
now invariant under g(0), and hence again it is possible
for an SU(2)z-invariant component P, to acquire a VEV
which is angle independent and nonvanishing on the
string axis and vanish exponentially outside the string.
The situation in this case is somewhat more complicated
when it comes to discussing the gauge fields. Outside the
string, where P, =0, the requirement D&/=0 asymptoti-
cally implies that A& must satisfy Eq. (16b). However,
since SU(5) generators, such as r', give 0 acting on PI6, the
only asymptotically nonvanishing Higgs component, the
corresponding gauge fields, are not determined by the
condition D„/ =0, and are instead determined dynamical-
ly through the field equations (9) and (10). For the case of
a r string, this implies A'z ——0, a =25, as we have al-
ready remarked, because the corresponding currents van-
ish. However, with g(0) given by Eq. (42a) so that P, can
be nonzero within the string, this is no longer true. Since
the charge q carried by P, is zero as a result of cancella-
tion between the two terms on the right-hand side of Eq.
(41), it follows that the charge q,', associated with r', car-
ried by P, is nonvanishing. From this it follows that the
last term on the right-hand side of the current j& given by
Eq. (10), proportional to the matrix element of Ae (rr)'
is also nonvanishing, and hence

H, =H', g+e (q,'A'+q, A ) (45)

where H',
g

is the energy stored in the H' component of
the magnetic field and q, is the value of q for the field

Since both terms in H, are positive definite, the extra
energy associated with a nonzero P, in the case of r
strings contains a positive gauge field contribution which
is not present in the case of r strings. Since
A'-j'-P, , and A vanishes at small r, for small P,
and small r there will always be a negative contribution to
the energy density from V, which will dominate the posi-
tive contribution from H, . Thus, it will always be ener-
getically favorable for some P, to develop a nonzero VEV
at small r, meaning that r strings will always have a
mass p (p . We have seen that p (p before ac-
count is taken of effects due to P, . Since we expect the
lowering of the potential energy in going from p to p

The current j ~ will vanish exponentially outside the
string, since P, vanishes and P has q =0. This implies
that A6) —1/r; locally this is a pure gauge artifact, and
hence A ~ does not contribute any energy density outside
the string.

[Note that it is not true in the case of r strings, with

g (8) given by Eq. (42a), that A'& ——0, a&28, as might
have been expected by analogy with Eq. (14c). Let r" be
the linear combination of r and r' orthogonal to r, and
A„" the gauge field coupled to ~". The only constraint on
A ~8 and A" is that

c os/3A „'+sin PA „"=A „ (44)

with Az being given asymptotically by Eqs. (14b) and
(14c). All of the SO(10) generators which commute with

and are linearly independent of it are generators of the
unbroken SU(5) symmetry and leave the asymptotic Higgs
field invariant; ~ does not share this property because of
the existence of r".]

We now argue that the inclusion of the effects due to
P, &0 is unlikely to alter the conclusion that r strings
have smaller mass than r (actually r ) strings. The
contribution of P, to the potential is given by V„Eq. (39),
with P~=Pp=P/&2 since the Higgs field is in the
uI6&vI6 direction for all r in the case of a ~ string.
Thus, the form of the P, contribution to the potential of a

string is the same as for a r string in the case of large
c4 for which p has its largest value. We would thus ex-
pect the reductions in the mass of r strings and of r
strings with large c4 to be roughly of the same magnitude.
There is some uncertainty in this statement, because the
radial functions P(r) for which V, is evaluated in the two
cases differ somewhat, since they are calculated with dif-
ferent values of the parameters g, c4, and e,ff, as dis-
cussed previously, but it seems unlikely that the V, contri-
butions in the r case and in the r case with large c&
differ greatly. We have not attempted to study this ques-
tion numerically, since the difficulty of getting good nu-
merical solutions increases markedly as the number of un-
known functions and coupled equations increases.

In addition to the contribution of V„ in the r case
there is another extra term in the Hamiltonian density
when P, &0 which involves the gauge fields; we denote
this term by II„and it is given by
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should be comparable to the corresponding lowering of
p in the case of large cz, and since p receives a positive
contribution from H, which is not present for r strings,
it seems very likely that p &p for large c4 where p
has its maximum value, and therefore for all values of c4.
The result is not totally rigorous, because we do not know
precisely the relative contributions of V, to p and p or
the relative contributions of V, and H, to p . We cannot
totally exclude the possibility that for some range of po=
tential parameters the magnitude of the contribution of
V, to p is large enough compared to the magnitude of
its contribution to p that it overcomes the H, contribu-
tion as well as the difference between p and p before
P, effects are taken into account, but this seems to us un-
likely. In any event it appears clear that for a wide range
of potential parameters r strings have the lower mass,
even for large c4. Since p decreases with c4, this result
will hold a fortiori for smaller c4.

Now let us examine possible choices of the SO(10) gen-
erator appearing in g (0) besides r and r (i.e., r ).
Clearly, in place of r one could choose any linear com-
bination of r and r and the resulting strings would be
gauge equivalent to ~ strings. We obtain 12 other
SO(10) generators by commuting r and r with the 6
baryon-nonconserving generators of SU(5). These genera-
tors are similar to r and r in having 8 nonzero eigen-
values of equal magnitude in the spinor representation;
they have the effect of rotating the left-handed antineutri-
no into left-handed u or d quarks, and they give rise to
strings which are physically equivalent to r strings.
There are an additional six generators which are the
baryon-nonconserving generators of the Pati-Salam SU(4)
group. These matrices have 16 nonzero eigenvalues of
equal magnitude in the spinor representation, and thus
after normalization, the SU(4) charges are smaller by a
factor of v'2 then the SU(2) charges. Since we have seen
that the string mass increases as the charge decreases,
SU(4) strings will have a larger mass than r strings and
thus will be unstable. Finally, one might consider the pos-
sibility of generators which are linear combinations of ~
and r . The lower mass of r strings is due, as we have
seen, to the presence of the $0 component, which is left in-
variant by g (8). It is easy to show that the amplitude of
the component of the Higgs field, analogous to Po, which
is invariant decreases monotonically as the admixture of

in the generator appearing in g(0) increases while
there is no compensating advantage, in terms of energy,
gained by such an admixture. Thus, the string mass will
increase monotonically as one varies the string smoothly
from a r to a r configuration. We conclude that the
lowest-mass, and therefore stable, strings are ~ strings,
and strings which are physically equivalent to them. This
statement is certainly true for a wide range, and we be-
lieve is probably true for all, values of the potential pa-
rameters.

IV. STRING PROPERTIES

We now examine two ways in which some properties of
Z2 strings, besides the mass, depend on the type of gen-
eralized magnetic flux carried by the string. This illus-

trates further the physical significance of the question as
to which is the stable configuration for such strings.

We first consider the question of the equivalence of
strings and antistrings, where, in an appropriate gauge, an
antistring is a configuration having the same vacuum
state at L9=0, but in which the Higgs field rotates in the
opposite sense along a path enclosing the string; the direc-
tion of the magnetic flux carried by an antistring is also
opposite to that carried by a string. Since strings and an-
tistrings differ only in the path followed by g (9) between
the two disconnected pieces of H in Fig. 1, they are topo-
logically equivalent, and may be smoothly deformed into
one another. Put another way, if one imagines bringing
two strings together, the path followed by g(0) along a
closed curve in coordinate space enclosing the resulting
double string will be the closed curve in the manifold of G
formed by one path from H~ to H2 in Fig. 1 followed by
a second path from Hz to H &, the latter corresponding to
the inverse of the path from H~ to H2 followed by g(0)
around an antistring. The resulting closed path can be
smoothly contracted to a point in the manifold of G; thus
two strings can annihilate into the vacuum, and are topo-
logically equivalent to it, showing again that strings and
antistrings are topologically equivalent.

In general, however, the set of configurations through
which one passes in deforming a string into an antistring
are not gauge equivalent (by a nonsingular transforma-
tion) to the string and so are not degenerate with it in en-

ergy. This will, e g. , clearly be true in the case of
symmetry-breaking pattern (4), where the efective symme-
try group at the time of the formation of strings is the
multiply connected group SU(5) X U(1) with respect to
which strings and antistrings are not even topologically
equivalent. It is this situation of gauge nonequivalent
strings and antistrings which was discussed by Hindmarsh
and Kibble in Ref. 8. They point out that in this situation
segments of a string may have magnetic flux pointing in
opposite directions; these will be separated by beadlike sol-
itons with nonzero mass. In the case (4), U(1) magnetic
monopoles, whose flux becomes confined in flux tubes
when the U(1) symmetry is broken, act as such solitons.

Now consider the symmetry-breaking pattern (3).
Strings and antistrings will be gauge equivalent if there
exists a gauge transformation which leaves the vacuum
state at 0=0, invariant and thus belongs to the unbroken
subgroup H, but which takes ~~ —~, where r is the
group generator appearing in g(g), thus reversing the
magnetic flux and the sense of rotation of P. No such
transformation exists for r=r or r, since they com-
mute with all generators of the unbroken SU(5). Howev-
er, r ~—r under a 180' gauge rotation generated by
the electric charge operator Q; this follows straightfor-
wardly from the fact that the two members of each of the
four right-handed isospin doublets in the spinor represen-
tation of SO(10) differ by one unit of electric charge.
Hence, no gauge-invariant distinction exists between r
strings and antistrings. Thus, we expect that stable
strings formed in the symmetry-breaking pattern (3) are
self-conjugate.

However, even for r strings one can, in principle, dis-
tinguish between the relative direction of the magnetic
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flux at two different points along a string, or on two dif-
ferent strings. One can imagine deforming the string(s)
adiabatically in space so as to bring the two points into
coincidence, and measuring the gauge-invariant magni-
tude of the total magnetic flux at the coincident point. At
separated points the fiux can always be brought into the
same direction by a local gauge transformation, but when
this is done the gauge field configuration in the region be-
tween the points will depend, although in general only
weakly, on the relative direction of the flux at the two
points as defined by bringing them into coincidence. In
the case of r strings, and similar strings in other models
where the direction of the flux is not gauge invariant, lo-
calized beads of the type discussed in Ref. 7 will not exist
between string segments having directions of the flux
which differ in the sense just discussed. The point is that
since such segments can be connected smoothly through
field configurations which are gauge equivalent and hence
degenerate in energy, the energy of the transition region
involves only the "kinetic energy" associated with the spa-
tial variation of the fields; the energy is thus minimized
by making the transition occur as smoothly, over as large
a distance, as possible. Eventually, either by soliton-
antisoliton annihilation in the case that beads exist, or by
gradual smoothing where they do not, a single string will
dissipate its excess energy and evolve to a configuration
where the flux direction is the same throughout.

A second area in which the properties of r and r
strings differ is in the processes by which they emit pho-
tons. Photon emission by strings has been discussed by
Vachaspati, Everett, and Vilenkin. ' They find that the
dominant mechanism is two-photon emission resulting
from the quartic coupling of the electromagnetic field to
the gauge field of the string. (The analysis of Ref. 10 does
not apply in the case of superconducting strings. '') This
quartic diagram is nonzero only if the group generator
coupled to the gauge field fails to commute with the gen-
erator coupled to the electromagnetic field. This condi-
tion is satisfied by r . However, r commutes with the
electric charge operator so that the dominant radiation
mechanism of Ref. 9, electromagnetic radiation, occurs
through radiative corrections and is much suppressed.

V. CONCLUSIONS

We have seen that for many, and very plausibly for all,
of the possible values of the parameters in the effective
potential, stable Z2 strings, which arise in the symmetry-
breaking pattern (3), will be r -like. As we have seen,
this means that they will be self-conjugate, so that the
beadlike solitons of Hindmarsh and Kibble will not occur.
Also there will be a quartic coupling between the gauge
field within the string and the electromagnetic field, so
that the string can emit photons through the mechanism
of Ref. 10. These conclusions are changed if there is an
intermediate phase with an unbroken U(1), as in (4). In
that case the Z2 strings formed will be ~ strings. Such
strings are not self-conjugate. Magnetic monopoles will
play the role of beads connecting regions of string with
opposite directionality, as in Ref. 8. Also the dominant

photon radiation mechanism suggested in Ref. 9 will not
occur.

While our detailed calculations apply specifically to the
model in (3), it would appear that this model has a num-
ber of general features which are likely to be true of, and
to lead to the same general conclusions in, a wide class of
models in which Z2 strings occur. Namely, in the specif-
ic model we have studied, the Higgs field transformed as
a direct product, with the discrete symmetry correspond-
ing to the multiplication of each factor in the direct prod-
uct by —1. This will be true of many models giving Z2
strings, so let us consider a model in which the Higgs field
transforms as u

~ XU~ where Iu; I and IU; I are two sets of
objects transforming according to the same representation
of the unbroken-symmetry group G. We suppose there is
an operator Y in G for which u~ and v& carry nonzero
charge y. Then strings will arise in the theory for which
g (0)=exp(iT p0), with T = Y/N, N a normalizing
constant, and p =N/2y; T is thus the analog of r in
our specific model. T strings will be non-self-conjugate;
since the Higgs field is an eigenstate of T, T cannot
be reversed by a transformation which leaves the vacuum
at 9=0 invariant. (Moreover, if Y is chosen to give the
largest value of y, then in general the set of eigenvalues
Iy; ] of Y will not be invariant under Y~ —Y, showing
that there is no unitary transformation of any kind which
will reverse T .)

Now let us suppose that u
&

(and U
~ ) are members of a

doublet under a subgroup SU(2), of G. Let T be the
operator with submatrix o.

&
within a doublet. Then T

strings, analogous to ~ strings in our specific model, will
also exist. Moreover, in exact analogy with our previous
discussion, the Higgs field u& &v& will contain a piece
which is invariant under T rotations. Since that was the
basic reason for the relatively lower energy of ~ strings
in the model in (3), we expect that T strings will in gen-
eral have the lower mass, and thus be the stable string
configuration, in the general case. Finally we assume that
G contains at least one subgroup SU(2)&XU(1)z, where
u~ and v, have nonzero charges for the U(1) generator X.
(It can well be that X = Y.) Then one can define an opera-
tor Q =X/N'+ T, where T is the SU(2) ~ generator
with submatrix o 3/2 and N' is defined so that u

&
and v

&

have charge q =0 for the operator Q. Since the eigen-
values of Q for the two members of a doublet differ by 1

(X is proportional to the unit matrix within a doublet),
the transformation T ~exp(iQm. ) T exp( iQm)tak—es.
T ~—T, while leaving the vacuum invariant because
q =0. Thus, under these quite weak assumptions, T
strings, which we expect to be stable, are self-conjugate by
the same argument as for ~ strings. Also, if Q
represents the electromagnetic charge operator (so that
q =0 arises from the condition that electromagnetic gauge
invariance is not spontaneously broken) then T and Q
fail to commute, so that the dominant photon radiation
mechanism found in Ref. 9 is allowed.

As a simple example of the preceding argument, we ob-
serve that one can break SU(N)~SU(N —1) &&Zq for
any N & 2 with a Higgs field belonging to the symmetric
part of the direct product of two fundamental N-
dimensional representations. The resulting strings can
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have either a T or T configuration, with the self-
conjugate T configuration expected to be the stable one.
Note that the assumptions above fail for SU(2); for 1V =2,
no operator q can be constructed for which u

&
and v&

have q =0, and thus the symmetry-breaking pattern
SU(2)~Zz leads to non-self-conjugate strings, a point
which has been made in Ref. 8. However, for a wide class
of symmetry-breaking patterns of type 1, with no inter-
mediate U(1) phase, we expect that the lowest-mass
strings which result will be T -like and self-conjugate.

Note added. Following the completion and submission
of this work, we learned that Jacobs and Rebbi' had cal-
culated the mass of an Abelian gauge string for a range of

gauge and Higgs coupling constants using a variational
technique. Their results allow one to obtain values for p
for a range of parameters having substantial overlap with
those we have considered. Our numerical results for p
given in Tables I and II agree with those obtained from
the results of Jacobs and Rebbi where the parameter
ranges overlap. Jacobs and Rebbi also prove, by a rescal-
ing argument, the interesting result that the mass of an
Abelian gauge string depends on c4 and e,~f only through
the combination (~c4)/e, rr. We are indebted to Neil
Turok and Paul Shellard for drawing our attention to Ref.
12.
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