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Analytical approach to string-induced phase transition
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In an earlier work it was shown that gauge-theory strings present in the early Universe could have

converted a potentially first-order phase transition into a second-order one. This demonstration was

based on numerical integration of the relevant equations. In this paper we discuss the model em-

ployed there in a self-contained fashion and present analytical arguments to show that the previous
results are of a more general validity, applicable to "seeding" in any supercooled medium. It is

shown that in the presence of an appropriate seed, the supercooled state does not minimize the free

energy (even locally) below a critical temperature. This contrasts with the phase transition in the ab-

sence of seeds, which is accompanied by extensive supercooling and which can be completed only by

quantum tunneling.

I. INTRODUCTION

First-order phase transitions, involving supercooling,
are expected to occur in the early Universe at tempera-
tures comparable to mass scales of spontaneous symmetry
breaking in grand unified theories (GUT's). Many GUT
models also predict the existence of "strings, " which are
non-Abelian generalizations of the Nielsen-Olesen' mag-
netic flux tubes. (These are analogous to the Abrikosov
strings in superconductors. ) It is therefore interesting to
investigate the effects of such strings on the occurrence
and dynamics of the GUT phase transition.

This equation was analyzed by one of us in a recent pa-
per. It was shown that if a GUT phase transition in the
early Universe is ostensibly first order (i.e., involving su-
percooling) and if strings are present at that time, then
they can act like seeds and precipitate the new phase
without any supercooling. If T„.„ is the temperature at
which the onset of supercooling occurs, then at a definite
temperature T~ & T,.„, the supercooled state ceases to be a
local minimum of the free energy. If strings were absent,
the supercooled state could persist for temperatures much
less than T,.„, whereas T& turns out to be comparable to

Cf

In Ref. 3, this result was established by numerical cal-
culations supported by plausibility arguments. We shall
now present analytic arguments to explain these results.
Our motivation is twofold. (i) The analytic arguments ex-
plain some salient features of the numerical analysis in a
more transparent manner. (ii) The mathematical model of
an induced phase transition presented here and in Ref. 3
should have a wider applicability, such as in ordinary
matter. It therefore seems appropriate to verify the gen-
eral validity of the numerical results using analytic argu-
ments. We shall keep this paper self-contained as far as
the description of the model is concerned.

Symmetry-breaking patterns in GUT's that can lead to
the strings considered here are proposed, for instance, in
Ref. 4. The role of strings (as well as monopoles) in in-
ducing a phase transition has been considered earlier.
The scenario considered there is different. The strings (or

monopoles) arise in a phase transition signaled by a par-
ticular scalar field. The same field then signals the subse-
quent, potentially first-order, phase transition. Our prob-
lem is formulated differently, as will be clear in the fol-
lowing.

The rest of this paper is organized as follows. In Sec. II
we set up the formalism, state the results obtained previ-
ously, and point out the features which need explanation
by analytic methods. In Sec. III we present the analytic
arguments. Section IV contains the concluding remarks.

II. THE STATEMENT OF THE PROBLEM

Consider a particle-physics model based on some gauge
group G. Let G be broken by the vacuum expectation
value (VEV) of a scalar field $ at a mass scale m. Corre-
spondingly, we expect a phase transition to occur ' in the
early Universe at a temperature T—m. Such a phase
transition can be described by using the temperature-
dependence effective potential for the scalar field. The
minima of the effective potential correspond to different
phases. We shall be interested in the case in which the
phase transition is first order, i.e., the change in the VEV
of P is discontinuous. As the temperature drops below
some critical temperature T„, a new VEV becomes ener-
getically favorable, but remains separated from the exist-
ing VEV by a potential barrier. In such a case, small re-
gions of the new phase originate by quantum tunneling,
grow in size and fill the entire medium, thereby complet-
ing the phase transition. This process has been extensive-
ly investigated. ' A typical effective potential that leads
to such a behavior is

V (P) =—P +—P'+ —,
'

(m +AT )P

2

+ Vo — N(T)T
90

The scalar field is meant to be in a nontrivial representa-
tion of the gauge group but it is possible to reduce the
problem to that of a single degree of freedom, represented
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(2)

mcr

we can rewrite V as

2

V (f)= f (f —1)'+—ef + V—o — N(T)T
41 4I 90

(3)

We next turn to the effect of strings on this phase tran-
sition. We shall be interested in strings formed in the
course of an earlier phase transition at a temperature
T'=p »T„=m,„(where p denotes another mass). They
are expected to occur as defect lines due to the mismatch
between equivalent but distinct vacua in different
domains. ' Such vortices are expected to have a diameter
of the order of p

' and energy per unit length of the or-
der of p . They are topologically stable nontrivial field
configurations involving the gauge fields and some
charged scalar fields. For our purpose, strings are some
background-field configurations confined to filamental re-
gions of radius p ' «mc„'. We shall further assume
that a nontrivial coupling exists between P and these back-
ground fields. The details of the nature of this coupling
are explained in Refs. 3 and ll. As a result of such cou-
pling, P is expected to have an expectation value of the or-

by P. The parameters 0 and m are positive and y nega-
tive with

I y —m. For perturbative renormalizability, o.

is assumed to be less that unity. The constant A is be-
tween 1 and 10 in a typical grand unified theory, N ( T)
accounts for the number of particle species present at tem-
perature T and Vo( & 0) is to be chosen so as to make the
value of VT zero at its absolute minimum at T=O. The
potential is shown in Fig. 1, where we have also defined
f&, f2, and T„. (En order to emphasize more important
features, the effect of the T term has been ignored in this
diagram. ) Defining m „,e, and f by

r

2
2

4) cf 3! o.

4!AT„AT6=
2m cr

der of p in the core of the strings at temperature T &p,
whereas in a region with no strings nearby, (P) should
vanish. Outside the core region of radius p ', P decou-
ples from the string and its configuration is then deter-
mined by its self-coupling.

Consider the vicinity of a single long straight string.
We set up cylindrical coordinates r, O, z. We do not re-
quire any detailed knowledge about the form of the string
field configuration. We shall merely assume that at some
radius rp, p

' &&ro «m„', f has a value fo with
p/m, „»fo »1. Physically the radius ro characterizes a
length scale outside of which P has decoupled from the
string field. As r~ oo, we expect f to reach its constant
equilibrium value, which around T = T,„should .be f ~

or
f2 depending on which phase is favorable. We are in-
terested in determining the transition from f, to f2.

This behavior off is governed by the action

S (f)= f [ ,
' 'dgd"f —V(f)]d—r dz dt . (4)

For the lowest-energy configuration we expect
df/dt = df ling= of/r)z=0, so that we get the field equa-
tion

d2
+ — f + , o—f (1—+&)f—=0

dp rdr 6 ' 12

(Here we have rescaled r in units of m„'. ) We are look-
ing for solutions with f =fo at r =ro. At r = oo, two
boundary possibilities exist. Either f =f(r = oo ) =f, or
f2. Figure 2, to be explained below, shows such func-
tions. At temperatures T & T,„, f should be f~. How-
ever, even for T & T,„,f is likely to persist at f, because
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FIG. 1. Temperature-dependent effective potential for a sca-
lar field signaling a first-order phase transition. FIG. 2. Numerical solutions to Eq. (5).
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of the potential barrier existing between f, and f2 H. ow-
ever, in the nontrivial configuration we have for f, there
must be some value r ] of r, presumably close to ~ = ra, at
which f (v, ) =f~. We expect that as e becomes negative
and f2 becomes a favorable minimum of energy, it be-
comes increasingly unfavorable for f (v) to pass through
this value and then to cross over the energy hump (such as
in Fig. 1) to asymptotically reach f ~. Numerical calcula-
tions showed that this is indeed the case. Below a certain
negative value of e, no solution to (5) can be found with

f =f1.
We shall summarize the numerical results in the rest of

this section. Equation (5) was solved by discretizing the v

axis into points v; and converting (5) into a set of simul-
taneous cubic equations for the variables f; =f(v; ). The
solution to this set was then found using the IMSL' rou-
tine zspow, which implements a generalization of
Newton's method for finding roots of polynomials. Since
the latter method leads to a solution accessible from a
given trial, it can be used to obtain the two different solu-
tions with f =0 or f =f2. To obtain the solution with

f =0, we give a trial solution with all f; =0 for v greater
than a value such as 3 or 4 (in units of m,„'). It is then
found that even for e&0, a solution to (5) exists with

f =0. However, this is not true below some critical
value of e, which we shall denote as e. For e & e, no solu-
tion exists close to the given trial. If on the other hand,
we supply a trial solution with all f; =fq for large v, a
solution is always found. We thus use zspow as an ex-
istence prover (or disprover) of solutions to (5) with
desired boundary conditions. In Fig. 2, taken from Ref. 3
we have presented typical examples. [The boundary con-
dition f ( v p ) =fp is arbitrarily taken to be f ( v =0. 1)= 10.
Showing that the phenomenon we are interested in is real-
ly insensitive to this choice at I"o is one of the aims of this
paper. ] For e & e, zspow declares that no solution exists,
but nevertheless produces a configuration which satisfies
the equation as closely as possible, and which is close in
values to the "stable" solutions that exist for e ~ e. This is
also given in Fig. 2.

As reported in Ref. 3, the most interesting feature to
emerge from these numerical calculations is the fact that

e
~

=
~

b, T
~
/T, „is small, and is. independent of o. as well

as the arbitrarily chosen vp and fp ewas found to be in.

the range —0.07 to —0.09. This has the important impli-
cation that due to the presence of the nontrivial configu-
ration, the supercooled state ceases to be even a local
minimum at a temperature comparable to T,„. That the
result is independent of v„and fp also means that the de-
tails of the localized background solution (the vortex con-
figuration) are irrelevant, as long as f becomes large
enough to cross through the value fq at some value of v

In the following section we show that these numerically
obtained results are of general validity.

In Ref. 3 it was also shown that as the temperature con-
tinues to drop, so that e & e, the function f (v) really be-
comes time dependent. The subsequent evolution can be
determined by considering the time-dependent equation
for f From the configuration w. ith f„=0, the function
evolves into one with f =fz. This aspect of the problem
will not be discussed here.

III, ANALYTICAL APPROACH

As long as there are two local minima of V(f), it is in
principle possible that two solutions exist to (5), both with

f ( t'p ):fp but one with f =0 and another with f =fz.
This means that these two configurations are position-
dependent local minima of V(f). The numerical calcula-
tions then show that for e(e, the f =0 configuration
ceases to be a local minimum. In order to estimate this e,
we analyze the linear stability of the solution with f =0.
If small oscillations around the solution have only real
frequencies the configuration should be stable, and a local
minimum. We shall therefore look for the value of e that
makes at least one of the modes of oscillation possess an
imaginary frequency.

Let us restore time dependence in Eq. (5), so that we
have a term —d f Idt on the left-hand side (with t
rescaled to m„t). If f(v) is a time-independent solution
of (5), we write f(v, t)=f(v)+p(v, t) where P is assumed
to be everywhere small compared to unity. Decomposing
the time dependence as p(v, t) =p(v)e' ' and linearizing
the equation in p (v), we get

m q=— 1

, + u(v) —,q.
dI 4r

This is the one-dimensional Schrodinger equation with
potential u(v)=u (v) —,'v for v &0 and i—nfinite for v &0.
We are looking for the condition under which a negative-
energy bound state is possible for this potential.

Our first observation is that since u (v;o) is of the form
oy(v), o. can be scaled away by rescaling v~cr'~ v This.
only rescales the energy ~ ~~ /o. , and if co &0, so is
~ /o. . Thus, the occurrence of a negative-energy bound
state (equivalently the critical value e) is independent of
O.

In order to decide whether the problem of Eq. (8) ad-
mits a negative-energy bound state, we shall use a simple
but physically transparent criterion. ' Let the minimum
value of u(v) be —up (so that up would be the maximum
kinetic energy of a zero-energy particle), and let an ap-
propriately defined width of the well be m. A particle of
mass m = —, confined within a region w will have a
momentum p —A/m —m and hence a zero-point energy

—1

p —tu . For the particle to be confined (i.e., for a bound
state to exist) we must have p & vo, or in other words,
m vo & 1. This is only a sufficient condition and not a
necessary one, but it will provide an estimate of the mag-
nitude of e. We only need now to estimate the width and
depth of u (r).

The u (v) is determined by the time-independent solu-
tion f(v). We therefore build a function that approxi-

d p 1 dp 6 V( )
tp p+ z + — =

z p=u(v)p,
dv v dv $f~ f=f

where

6'V
/f2 2

[f' f+ —,
'

( I—+e)]—

or, on substituting p(v)=v'~ q(v), we see that q satisfies
the equation
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that r
mates (r). We have constrained f(r) b hr y t e condition

at f rp =fp. We also expect the solution for r ( rp

y e vortex interac-near the origin) to be dominated b th
tion. Therefore, we shall approximate f(r) b the as
totic forms

ae r yt easymp-

assumes the values of f where 6 U/5f =0. These two

f &f+. These can be easily determined from Eq 7 .

f =0.789 — +O(e ),
1/2

f(r)= (as r rI, r &rI) (9) f+ =0.211+ +O(E ) .
3

(13)

=Bexp

1/2
(1+e)o.

r (as rheo) . (10)

Here 8 and rr are constants. Th 1 f
ro and and we e

e va ue o rI is related to
fp we expect rI &&1. The solution (9) is valid

only when the terme erms 3f, etc. , are small compared to 2f .
This translates into the constraint

(r rr )—8

30

We shall take this to be the domain of validity of the solu-
tion (9). We shall now determine B b d
(9) with (10) at (r —rI) =i/8/3o'. As we sh 1

ine y irectly matching

is not so important as its order of magnitude.
Performing this matching, we find

vZ—
~ exp rI (1+e) (12)

12

Since o. & 1 and rr &&1, we find that when @=0, a good
estimate for B is B=2.40.

In Fig. 3, we have sketched u(r) for the f =0
tion and also, the dashed line for the u (r) that woul

e J~„= solu-

sult from the,~e,~ =&~2 solution. These general forms can
be deduced uite sim 1q ply because u is the curvature of the
graphs in Fi . 1 ang. , and we know the general form of f (r)
from the above analysis or directly from Fi . 2. Wig. . e note

e,~ =&~2 solution is monotonic and bounded below

b a. 1

by 2, so t at u (r) remains monotonic a d b d d b

y o( +e)/12. On the other hand, the f =0 solution

We now proceed to determine the width and the d h f
[ e u potential is U(r). As we shall soon see the

values of r for which = +f(r)=f are —large enough that
1/4r can be ignored. ] The width (see Fi . 3
mine y r+ and r, the points at which f=f+ and f
respectively. Looking at the solutions (9) and (10) d, an

g = . , we conclude that the values in (13) fall
within the domain of validity of (10). We then find

' 1/2
(1+e)o.

12
(r+ r) =l—n

f+
so that the constant B disappears from the analysis giv-

crtp=2v 3[1.317—4. 12 8e +O(e )] (15)

The depth of u (r) is given by the value of 5 V/5f at the
—2.

6 (—0.02 (17)

which is the result we wanted.
Note that the disappearance of B from our fina resu ts

implies that e is ifa e is, i at all, only weakly dependent on the
parameters r and This also justifies our —rather

~ ~ ~

cavalier —attitutude towards the exact meaning and value of
ro, rz, etc. As long as the broad inequalities used before
are satisfied th
matter.

he exact values of these paramet dh eers o not

0
up ——— (1—2e) .

24
~ ~

Now requiring that tp
~

up
~

& 1 for a bound state to be
possible, we find

IV. CONCLUSION

o-(I+a)
l2

"o

FIG. 3. The e uivalenq alent Schrodinger potential of Eq. (6) de-
rived from the,~ =0 anand the f„=fz solutions of Eq. (5).

We havave shown that a small, negative value of e satu-
rates t e uncertainty principle bound and a bound state
becomes ossible ther
we have established the existence and the smallness of the

an esee-

sult. Also we o
g at er quick phase transition folio f hows rom t is re-

so, we found that e has to be negative. The above
analysis repeated for e )0 shows that a bound state is not
possible for e) 0.
plausible, we are reassured about the credibility of our cri-
terion.

The mainmain weakness of our analysis is that ths a e exponen-
orm ( 0) may have been extrapolated too far back.

This may seem especially unjustified for m&0 as can be
seen in Fig. 2. We would offer the following arguments
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to convince the reader that our result is not an accident.
A detailed inspection of our analysis reveals that the

two important ingredients which have gone into our result
are the following: (i) For e=O, w o/12 should be less
than 2 and (ii) to leading order in e, tc is a decreasing
function of e. For e=O, (9) and (10) are indeed a good ap-
proximation of f. So we believe the e-independent part of
our value of u to be close to the correct one. Further-
more, the reader can convince herself or himself that on
making e negative, r+ increases but r does not alter
greatly, so that tc increases (with decreasing e). Thus,
both these features of our analysis reflect what we believe
to be really the case and the result they lead to is not ac-
cidental. The width of the potential well seems to be de-
cided essentially by the behavior of f for large r and not
by the conditions near the origin. We believe this feature
of our analysis to be also of general validity.

In conclusion, we would like to emphasize the impor-
tance of this phenomenon to gauge field theory models of
the early Universe. The most striking implication of

spontaneously broken gauge theories to the early Universe
is the occurrence of phase transitions. Investigations into
these phase transitions, ' ' including the original infla-
tionary model of Guth, have shown that first-order phase
transitions involving extensive supercooling are a disaster
to cosmology because the true vacuum bubbles do not per-
colate, leading to a very inhomogeneous Universe. Also,
first-order phase transitions are predicted by many GUT's
for large ranges of natural parameter values. We are thus
faced with the problem of searching for a mechanism to
prevent extensive supercooling. The phenomenon dis-
cussed here shows that strings provide a possible solution.
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