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Two observables 3 and B of an n-level system (i.e., a quantum system with n-dimensional state
space) are called complementary, if knowledge of the measured value of 3 implies maximal uncer-
tainty of the measured value of B, and vice versa. Such observables exist for all n, but no classifica-
tion (up to equivalence) of all possible pairs of complementary observables is known except for
n (4. Complementary observables are conjectured to satisfy an "entropic" uncertainty relation of
the strongest possible form. This relation has been verified for n (4 by explicit calculations. A re-
cent attempt of substantiating the widespread interpretation of uncertainty relations in terms of mu-
tual disturbances between measurements is criticized.

I. INTRODUCTION

The position and momentum components Q =Q.e and
P =P.e of a particle along any common direction e are
"complementary" observables, as expressed by Heisen-
berg's uncertainty relation

b, QEP & —,'fi .

According to (1) there are no states with arbitrarily nar-
row statistical distributions of the measured values of
both Q and P If, in. particular, there were (normalized)
states with AQ=O, i.e., eigenstates of Q, then (1) would
imply that AP diverges, thus rendering any prediction of
the values measured for P in such states rather unreliable.
However, as both Q and P have purely continuous spec-
tra, and thus do not possess normalizable eigenstates, nei-
ther the limit bQ=O nor the opposite limit bP=O of (1)
can be realized physically.

Relation (1) and the complementarity of Q and P are
discussed in every textbook of quantum mechanics. It is
not widely known, however, that pairs of observables with
similar properties also exist for a quantum-mechanical n-
level system, i.e., a system with an n-dimensional state
space (with arbitrary finite n ) 2) (Refs. 1 and 2). These
observables are much simpler than Q and P, since
mathematical complications such as unboundedness or
continuous spectra cannot occur in finite-dimensional
state spaces. We hope to demonstrate here that, neverthe-
less, basic structures of quantum mechanics can be nicely
illustrated with such observables.

The general definition of complementary observables
for n-level systems is given in Sec. II, and the particular
examples discussed in Refs. 1 and 2 are reviewed.
Equivalence of two pairs [ A, B] and [A',B') of comple-
mentary observables is defined in Sec. III. By means of
examples (with n=4) it is shown that there exist pairs
which are inequivalent to the already known ones, ' and
some comments on the unsolved problem of classifying-
up to equivalence —all complementary pairs for arbitrarily
given n are added.

An analog of the uncertainty relation (1) for arbitrary
pairs of complementary observables of an n-level system,

involving information-theoretic entropies as appropriate
measures of uncertainty, is formulated in Sec. IV. This
relation has been verified by analytical calculations and
numerical tests for the particular cases n=2, 3, and 4,
and is therefore conjectured to hold true in general, al-
though a general proof is still lacking. Being stronger
than the "entropic" uncertainty relation following from
known estimates, ' our relation also shows that these esti-
mates are not optimal.

The mean-square deviations b, Q and bP entering (1)
refer to measurements of Q and P performed on different
ensembles of particles in the same state. Quite frequently,
however, uncertainty relations such as (1) are interpreted
heuristically as expressing mutual disturbances between
measurements on the same microsystem. A recent at-
tempt of substantiating this point of view with the help of
a new type of uncertainty relation is criticized, and
shown to miss its goal, in Sec. V.

II. DEFINITION AND KNOWN EXAMPLES
OF COMPLEMENTARY OBSERVABLES

Two observab1es 3 and B of a quantum-mechanical n-
level system are called complementary (to each other) if
their eigenvalues are nondegenerate, and any two normal-
ized eigenvectors e~ of A and fk of B satisfy

l«, fk)l = ~— .
1

(2)

In an eigenstate e& of 2, then, all eigenvalues b&, . . . , b„
of B are equally probable as measured values, and vice
versa; i.e., exact knowledge of the measured value of one
observable implies maximal uncertainty of the measured
value of the other. Apart from distinctness (nondegenera-
cy), the eigenvalues aj of A and bk of B are irrelevant in
this connection.

Such complementary observables exist for arbitrary di-
mensions n =2, 3,4, . . . , as the following "canonical" ex-
ample shows. ' Take a fixed orthonormal basis e~

(j =1, . . . , n), let a, , . . . , a„be all nth unit roots (in any
order), and set
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n

fk —— —g ak'ei (k =1, . . . , n) .v'n,

Equation (2) and the normalization of fk are obvious. In
order to prove orthonormality, note that

The present investigation starts from a more general no-
tion of complementary observables and deals with dif-
ferent aspects of the theory.

III. EQUIVALENCE OF COMPLEMENTARY PAIRS;
CLASSIFICATION PROBLEM

with (akaI)"=1 and aka)&1 if k&1, and use the follow-
ing simple fact, the proof of which is left to the reader.

Lemma. Every nth unit root a&1 satisfies

, a'=0.
The inverse of (3),

ek — CXj jv'n, (4)

is of the same "canonical" structure (3); e.g. , with
ak exp(——2aik/n) we get ai ——ak, and a), . . . , a„are
again all nth unit roots (N.ote that permutations of the
basis vectors e), . . . , e„and f), . . . ,f„are irrelevant for
complementarity. ) The term "canonical" is used here for
the following reason. With ak ——exp(2~ik/n), Eqs. (3)
and (4) become

1
fk = —g exp(2nik j /n )ej,v'n

UFJ. U* =E' (J), UFj U =F-„'(.
)

~ (12)

A useful equivalence criterion involves the unitary
"transition" matrix

Unitary equivalence is not a meaningful criterion for
deciding whether or not two pairs [ A,B} and [A',B'} of
complementary observables are "essentially identical, "
since the eigenvalues of the operators and their ordering
are irrelevant. The appropriate definition of equivalence
of [A,B} and [A', B'} is, instead, the following. There
exist two permutations m: [1, . . . , n }~ [m.(1), . . . , vr(n) }
and %., phase factors aj. and /3& (j = 1, . . . , n), and a uni-
tary operator U, such that

Uei ai e——~(i), Uf~ =Pif„'(J.)-
for all j =1, . . . , n (e~ and f~ being the eigenvectors of
A' and B', respectively). With E~ =

~
ej ) (ej ~, Ez

=
~ fj ) (f/ ~, and similarly for the "primed" quantities,

Eqs. (11) simplify to

1
ek = g exp( 2nikj /n)f—j . .

v'n

With the particular choices

(e, ,f„)

(e„,f„)
(13)

2~j 2~k
Aej = ei, Bfk = fk

n n

for their eigenvalues, the complementary observables
and B then satisfy the relations

exp(ilA) exp(imB) =exp( —2wilm /n)

)& exp(imB) exp(ilA)

(6)

(7)

for all integers l and m. This is a discrete analog of the
Weyl relation

exp(i kQ/A) exp(ipP/A') =exp( —i Ap/fi)

&& exp(ipP/R) exp(iA Q/A')

of the pair [ A, B} and the analogously defined T' of
[ A ', B'I. The pairs of complementary observables [ A, B}
and [A',B'} are equivalent if and only if the matrix T'
may be transformed into T by (i) a permutation rr of its
rows, (ii) a permutation %. of its columns, and (iii) the
multiplication of its rows and columns by phase factors
a~ and Pi, respectively. The necessity of this condition is
obvious from (11). Sufficiency follows since Ue~

—=aje„'(i)
defines a unitary operator U which also satisfies

Uf = g (ek f )Uek
k

J e 77(k) (j) +ke 'l7(k)
k

exp( iiA)fk f(k+I) (9)

for arbitrary real k and p, which holds true for the canon-
ical pair of complementary observables Q and P. Equa-
tion (7) is most easily verified by first using (5) and (6) to
prove

The application of this criterion in practice is much facili-
tated if T, and similarly T', is first brought into "stdn-
dard" form, with I/V n everywhere in its first row and
first column, i.e., with

or 1
(e, ,f~ ) = (e/, f, ) = for all j .

v'n (14)

exp(i mB) e&
——e(J (10)

where (r) stands for "r modulo n," and then applying
both sides of (7) to fk or ej.

The operators A and B defined by (5) and (6) and the
corresponding unitary operators U = exp(i A ) and
V =exp(iB) are discussed in great detail in Refs. 1 and 2.

This can be achieved by multiplying the eigenvectors eJ
and fk by suitable phase factors.

A pair of complementary observables [ A,B} is called
self dual, if it is equivalen-t to the "dual" pair
[ A', B'}= [B,A }. (The transition matrices to be com-
pared are T and T'=T* in this case. ) The canonical con-
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struction (3) yields a self-dual pair j A, B (, as already no-
ticed [Eq. (4)].

Straightforward calculation shows that for n=2 and
n =3 every pair of complementary observables is
equivalent to the canonical pair defined by (3). But this is
not true in general. If n is not prime, say n =n n, another

construction is possible. Let e&,fk and e~,f be the eigen-

vectors of complementary observables in n and n dimen-
sions, respectively; then the product vectors

eJ7 e~—e—i, fk~ =fkg f~
or, alternatively,

(15)

(16)

define complementary observables 3,8 or 2', 8' in n di-
mensions. (The two alternatives are equivalent if the pair

j A, B } is self-dual, and j A, B ) is self-dual if both j A, B j

and j A, B] are. ) When applied to canonical pairs j A, B j

and j A, Bj, this product construction (15) [or (16)] may,
but need not, lead to a pair j A, B] which is inequivalent
to the canonical pair. An example for inequivalence is

provided by n=4, n =n=2, whereas (15) for n=6, n=2,
n =3 is equivalent to (3). Inspection of the corresponding
matrices T reveals the crucial difference between these
two examples: whereas exp(2vri /6), and thus every sixth
unit root, is the product of a second and a third unit root,
the fourth unit roots +i cannot be represented as products
of the second unit roots + 1.

Besides the equivalence classes obtained from the
canonical construction (3) and via (15) or (16), there may
exist additional ones, as the example of n=4 shows. In
this case the most general transition matrix T may be cal-
culated explicitly. It is given in standard form (14) by

1 1 1 1

1T(a)=—
1

1 —1 o.

(17)

with an arbitrary phase factor a. Matrices T(a) and
T(a') belong to equivalent pairs of complementary ob-
servables if and only if a'=+0. or a'=+0. . For n=4,
therefore, we obtain a one-parameter family of
equivalence classes parametrized, e.g. , by a =e '~ with
0(P & vr/2. [The canonical case corresponds to a=i, the
2X2 product (15) to a= 1.] The resulting pair j A, B j is
self-dual for arbitrary o. .

The situation is expected to become even more compli-
cated with increasing n For instance, . the result (17) for
n=4 may be used to construct explicitly a transition ma-
trix T for n = 8 which contains 5 arbitrary phase factors.
The classification up to equivalence of all possible pairs of
complementary observables for arbitrary dimensions n

therefore appears to be a nontrivial problem. It is also not
known whether all such pairs, like the examples encoun-
tered so far, are self-dual ~

A more sophisticated method of constructing pairs of
complementary observables follows from group theory.

Let jg&, . . . , g„] be the elements and jX~, . . . , 7„) the
characters of an Abelian group G of order n. The or-
thogonality relations for characters imply that a pair of
complementary observables is obtained by setting (ei,fk)
=Yk(gi)lv'n. With C„, the cyclic group of order n, for
G one recovers the canonical construction (3). This
method does not solve the classification problem, howev-
er, since there exist only two nonisomorphic Abelian
groups C4 and Cz &Cz, corresponding to the particular
cases a=i and a= 1 of (17), for n=4. We therefore do
not go into any details here.

IV. ENTROPIC UNCERTAINTY RELATION FOR
COMPLEMENTARY OBSERVABLES

Perhaps the most interesting property of complementa-
ry observables is the existence of uncertainty relations.
Although very different formally, these relations are quite
similar in content to the famous Heisenberg relation (1).
The formal difference arises from the necessity of adopt-
ing a measure of uncertainty which, like the definition of
complementary observables and unlike the more familiar
mean square deviation, is independent of the eigenvalues
of the observables considered. Moreover, if 3 and 8 are
observables of an n-level system, then AA and 58 are
always finite and vanish in eigenstates of 2 and 8, respec-
tively; therefore no uncertainty relation of the form (1) ex-
cept the trivial one, AA AB )0, is possible at all.

In this situation, an appropriate measure of the uncer-
tainty of an observable 2 in a quantum state 8' is the
information theoretic e-ntropy. It is defined as

Sg (A) = —g p, lnp~ (18)

in terms of the probabilities pz ——pj(A, W') of measuring
the particular values al (j =1,2, . . . ) for the observable A

in the given state O'. This definition makes sense for any
observable A = g a~Ei with purely discrete spectrum.
For the quantum state described by the density matrix
W= W*) 0 (tr W= 1), the probabilities p~ are given by

pi =tr(E~ W) in terms of the spectral projections E& of A.
In the case considered here the j sum in (18) is finite,

j =1, . . . , n. It is easily shown then that (18) implies

0 &S~(A) & lnn, (19)

in a mixed state

c)0, pc=1 (20)

implies

Sg (A) ) g c„Ss (A) . (21)

in particular, S~(A) =0 if and only if all pj except one
are zero (maximal knowledge), and S~(A) =inn if and
only if pi = 1/n for all j (maximal uncertainty of the mea-
sured value of A).

If W describes a pure state, W = g ) (g with some
unit vector g, we denote S~(A) by S~(A). Since —x in+
is a convex function, the additivity of probabilities

pi(A, W) = pc pi(A, g„)
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Similarly to (18) we define S~(B) for another observ-
able B = g . b~F~ in terms of the probabilities

qj =tr(FJ W). For any two observables A and B of this
kind in an arbitrary state space M', then, the following un-
certainty relation holds true for arbitrary states W (Ref.
4):

S~(A)+S~(B)) 21n 2/sup
~

EJ. +Fk
~ ~

J, k
(22)

with vertical bars denoting the operator norm. [In view of
(21), it suffices to derive uncertainty relations such as (22)
for arbitrary pure states W.]

For the observables considered here, E~ =
~
ej ) (e~

~

and
Fk ——

~ fk ) (fk
~

are one dimensional. In this case we have

pj =
I
(e, ,g)

I

'
qk =

I (fk,g)
I

' (23)

for pure states W= ~g)(g ~, and (22) takes the simpler
form

S~(A)+S~(B))21n 2/ 1+sup
~
(ej,fk)

~

J, k
(24)

For complementary observables, in particular, we thus ob-
tain with (2) the uncertainty relation

S~(A)+S~(B)& 21 n[2/( I + I/&n )] . (25)

The estimates leading to (22) (Ref. 3) or (24) (Ref. 3) are
not optimal, however, and therefore (25) need not be op-
timal either. Explicit calculations for n =2, 3, and 4
indeed indicate that, most likely, the general uncertainty
relation for complementary observables is

S~(A )+S~(B)) inn, (26)

which is much stronger than (25) (in particular for large
n), and obviously cannot be further improved. In view of
(19), (26) is in fact the most stringent among all conceiv-
able uncertainty relations for observables of an n-level
system.

The explicit calculations supporting (26) have been per-
formed for pure states W =

~ g ) (g using Eq. (23), the
known representations (up to equivalence) of e~ and fk,
and a suitable parametrization of the arbitrary unit vector
g. For n=2 they can still be done analytically, whereas
for n = 3 and 4 the minimum of the left-hand side of (26)
has been determined numerically; in particular, different
values of the parameter a in (17) have been used for n =4.
It is left to the reader to judge whether or not these few
examples make the conjecture (26) sufficiently plausible.
In any case, she or he is invited to look for a general proof
or a counterexample.

relation has been introduced recently. These relations
connect the uncertainty S~(A) of A in an arbitrary initial
state W with the uncertainty S~ (B) of B in a new quan-
tum state W', which results from W if a measurement of
A is performed. The A measurement is expected to dis-
turb the subsequent measurement of B, and uncertainty
relations of this kind should thus be able to substantiate
the opinion mentioned above.

The basic assumption of Ref. 5 is the familiar "projec-
tion postulate, " which asserts that the measurement of an
observable A = g. a/E/ transforms W into the new stateJ J

W'= g EJ WE&
J

(27)

qk (g Fkg)

=(g, EJFkE/g) ( sup
~
IE/FkEt

~ ~

for all k,
J

S (B)= —g qklnqk ) —ln sup
~
~E FkE/

~ ~

k J, k

With (21) this implies the inequality

S~(B)&ln 1/sup ~EIFkE/~~
J, k

(28)

which expresses the randomizing effect of the A measure-
ment (27) upon the observable B. [This is exactly the esti-
mate (48) of Ref. 5, but it was not realized there that

I I Q, EJFkEI
I I

= sup)
I
IEJEkEI

I ]
The desired "uncertainty relation for successive mea-

surements, "

This state is a mixture g.pj WJ of the states
W~'=EJ WE/ Itr(E, W). The state Wj describes those par-
ticular systems for which the result of the A measurement
was at, and accordingly the weight pi

——tr(EJ W) of WJ in
the mixture W coincides with the probability of obtain-
ing the result aJ in the original state W.

The state W' given by (27) corresponds to an A mea-
surement "of the first kind;" i.e., a repetition of the A

measurements yields, for every single system, the same re-
sult as the first measurement. This follows since the
states W&' are (in general, mixed) eigenstates of A corre-
sponding to the particular eigenvalue aJ, and implies
S~(A)=S~(A). Therefore a lower bound for
S~(A )+S~(B)=S~ (A )+S~ (B) already follows from
(22). Because of the particular form (27) of W', however,
this lower bound may be improved. Since W' is mixture
of eigenstates of A, it suffices to derive a lower bound for
pure eigenstates, W'= ~g)(g

~

with Ejg =g for some j,
in virtue of (21). In this case we have Ss(A) =0 and, since

V. UNCERTAINTY RELATIONS FOR SUCCESSIVE
MEASUREMENTS S~(A)+S~(B)&ln 1/sup

~ E,FkE,
~ ~

J, k
(29)

The uncertainty relations discussed so far refer to in-
dependent measurements of A and B on different mi-
crosystems in the same state 8'. They therefore do not
support the widespread opinion that uncertainty relations
have something to do with unavoidable mutual distur-
bances between measurements of A and B on the same
microsystem. For this reason another type of uncertainty

follows trivially from (28) and S~(A) )0. The right-hand
side of (29) is easily shown to be at least as large as the
right-hand side of (22). The estimate (29) is thus inter-
preted in Ref. 5 as supporting the mutual disturbance in-
terpretation of uncertainty relations mentioned above.
Since
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(34)

for any two projection operators E and F, the lower
bounds in (28) and (29) remain unchanged if the roles of
2 and B are interchanged on the left-hand sides.

For complementary observables, Eqs. (2) imply

The state Wz' describes the subensemble of those mi-
crosystems for which the apparatus reading was rz, and
accordingly its weight in the mixture W' is

With (19), therefore, (28) becomes an equality,
=tr g T*T W =tr(E~ W),

vE I.
(35)

S„"(B)=Inn,

while (29) becomes formally similar to (26):

(30)

S~(A)+S~(B)& inn . (31)

According to (30), the randomization of B due to the A

measurement (27) is complete, independently of the initial
state H.

The projection postulate (27) is not suitable to substan-
tiate general statements about quantum measurements,
however. In order to be universally valid, such statements
have to be based on the most general description of mea-
surements which is compatible with the principles of
quantum mechanics. Contrary to what is still asserted in
some textbooks, Eq. (27) does not belong to these princi-
ples. It rather describes a very idealized kind of measure-
ment only, which need not be—and in most cases indeed
is not —realized in actual measurements. The only in-
dispensable requirement for the measurement of an ob-
servable A = g. ajEJ is that the alternative readings rjJ
(j =1,2, . . . ) of the measuring apparatus, which corre-
spond to the possible measured values aj of 2, occur with
relative frequencies p~ =tr(E~ W) when the apparatus is
successively applied to many microsystems in an arbitrari-
ly given state O'. If, as in the situation discussed here,
one wants to admit the subsequent measurement of anoth-
er observable B on the same ensemble of microsystems,
one has to assume in addition that the 3 measurement is
nondestructive —i.e., that every single microsystem is still
present after its interaction with the measuring apparatus.

The state change ("operation") induced by an A mea-
surement of this general type may be represented in the
following form. ' The (arbitrary) initial state W of the
microsystems is transformed into

W'= g T WT„*,
vEI

(32)

for all j. Conversely every finite or countably infinite set
of operators T (v&I = U I~) satisfying Eqs. (33) may
be conceived as describing, via (32), the state change in-
duced by some nondestructive measurement of the observ-
able A. The state W' as given by (32) is a mixture

g,.p~ WJ' of the states

with a finite or countably infinite index set I consisting of
disjoint subsets IJ (j =1,2, . . . ), and operators T, (v&I)
satisfying

(33)
vGI-

by (33).
If one chooses the IJ to be one-index sets I&

——{jI and
takes TJ EJ fo—r—all j, one recovers Eq. (27), but obviously
this is a very particular case of (32) only.

It is easily seen now that no uncertainty relations such
as (29) or (31) can be derived from (32). In order to give a
counterexample, consider two arbitrary observables with
nondegenerate spectra,

A =pa& ~e~)(ez
~

and B=gb ~f )(f
in a finite- or countably infinite-dimensional state space

Let again the IJ be one-index sets IJ =
IjI but take

now, instead of TJ ——
~

e~ ) (e~
~

as in (27), T~ =
~ f~ ) (ej ~,

which also satisfy Eqs. (33). In this case (34) becomes

WJ = Tz WT~* Itr( Tj WTJ* ) =
~ fz ) (f& I

and therefore (32) leads to

w'= gp, lf, )(f, (36)

with pz ——tr(EJ W) = (e~, We& ). The state W' after this
measurement of 3 is thus a mixture of eigenstates of the
observable B, and the probability p~ of measuring the
value bz for B in this state coincides with the probability
of measuring the value az for 3 in the initial state W.
With (36), therefore, S~(B) and S~(A) become equal,
and vanish simultaneously —thus violating any conceiv-
able uncertainty relation —if W is an eigenstate of A.

The example (36) also illustrates that no counterparts of
(28) or (30) can be derived from (32) either. [This is al-
ready obvious since (28) would imply (29).] For instance,
let A and B be complementary, and take W =

~
fk ) (fl, ~,

such that S~(B)=0. Since p~ = lln in this case, (36) im-
plies S~ (B)=inn; i.e. , the A measurement has indeed led
to a total randomization of B. The same 3 measurement
has exactly the opposite effect, however, for
W=

~
ek)(ek ~, since (36) then yields W'=

~
fk)(fk ~,

and thus S~(B)=0, while S~(B)=inn. Even for com-
plementary observables, therefore, a measurement of 2
does not necessarily lead to a randomization of B.

In view of such apparently counterintuitive results, one
might be tempted to regard an 3 measurement leading to
(36) as a mere theoretical possibility which, in contrast to
the "ideal" measurement (27), is hardly realizable in the
laboratory. In order to refute this objection, consider the
example of spin measurements on a beam of spin- —,

' parti-
cles with a Stern-Gerlach apparatus. Any two spin com-
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ponents, e.g. , S„and S~, are complementary observables
for n=2. On a particle beam moving in the z direction,
S may be measured with a Stern-Gerlach apparatus
whose inhomogeneous magnetic field is parallel to the x
axis. This field splits the beam into two branches with
S =+A/2 and S = —A/2, respectively, the relative in-
tensities of which are given by the probabilities of finding
either S„=+A/2 or S„=—A/2 in the initial spin state
8, and thus the apparatus produces a new spin state 8 '

of the form (27).
(Strictly speaking, the splitting of the beam alone is not

yet a measurement of S, since the measured values
remain undetermined unless one detects, in addition, into
which branch of the beam every single particle is deflect-
ed. As this detection involves a localization of the parti-
cle, one may imagine that it leaves its spin —and thus the
spin state of the split beam —unchanged. If subsequent
measurements are performed on both branches of the split
beam, the detection in question is not even necessary,
since every subsequent measurement also involves the
detection of single particles, thereby leading to a "post-
poned" completion of the S„measurement as well. )

The observable S„may also be measured, however, by

first rotating the spin S by m /2 around the z axis, e.g., by
letting the beam pass through a suitable magnetic field in
z direction, and then applying a Stern-Gerlach apparatus
oriented parallel to the y axis. Since now the particle
beam is split into two branches with S~=+A/2 and
S~ = —A/2, respectively, this measurement leads to a final
spin state 8" of the form (36). The latter is thus almost
as easily realizable as the final state (27) of an "ideal"
measurement of S .

As other heuristic arguments, the "mutual disturbance"
interpretation of uncertainty relations has had its merits
in the history of quantum mechanics. As they stand,
however, the presently known uncertainty relations such
as (1) or (26) do not refer to mutual disturbances between
measurements. They deal instead with limitations for the
preparation of microsystems by expressing, e.g., the im-
possibility of preparing ensembles with arbitrarily narrow
statistical distributions of both position and momentum.
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