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We derive an inequality, violated by quantum mechanics, that in a three-body system can detect
three-body correlations that cannot be reduced to mixtures of two-body ones related locally to the

third body.

Physicists generally agree that quantum mechanics
gives accurate and at times remarkably accurate numeri-
cal predictions. The existing body of experimental evi-
dence, however, is not qualitatively diverse enough to war-
rant the attitude that deems the present quantum-
mechanical formalism universally valid. Now certain
qualitative features of this formalism, such as the ex-
istence of state superposition, and the existence of a cal-
culus of transition probabilities, are common to practical-
ly all the formalisms that can be grouped under the gener-
ic label of “quantum logic.”' Such features are formal
and do not reflect any philosophical attitudes; their ex-
istence is immune to controversies regarding interpreta-
tions, being in fact part of the ground of these controver-
sies. We must therefore in proposing tests of quantum
mechanics consider it as a very particular mathematical
framework (such as the study of very particular self-
adjoint differential operators in a complex Hilbert space)
and not as a set of general principles prior to some
mathematical expression. It is in the quantitative tests of
some of its predictions that we must seek any clue as to its
possible universality. Seen as a theory that describes sys-
tems of particles, we can consider the question of the ap-
plicability of the formalism under various grossly defined
conditions: (1) the number of particles; (2) the spaciotem-
poral configuration of the system; (3) the predominant in-
teraction type; and (4) the particle type. A comprehensive
test program should try to sample in some uniform way
all the possibilities that are created by independently vary-
ing each of the above features in the experimentally acces-
sible range.

Existing convincing support of the quantum-
mechanical formalism should certainly include various
successes of atomic spectroscopy, various precise
quantum-electrodynamical predictions, such as the values
of the Lamb shifts and the anomalous magnetic mo-
ments,? and a series of experiments directly relevant to
foundation questions, such as neutron scattering in perfect
crystals (Ref. 3), K%K oscillations,* low-intensity pho-
ton interference,’ and separated two-body systems used to
explore Bell’s inequalities.® Of these the neutron and
kaon experiments are both significant in that several in-
teraction types enter, and the kaon system involves
strange particles. The two-photon experiments are signifi-
cant in that they deal with spacelike separations. There is
certainly a very large body of other favorable evidence,
but which cannot be judged to be conclusive because of
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the approximations or the phenomenological input that
must be used in the theoretical treatment. Nuclear, con-
densed matter, and the bulk of elementary-partice physics
fall into this category.

We are thus very far from having seen a reasonable por-
tion of the sample space presented above. What is partic-
ularly lacking is evidence on many-body systems. Such
evidence would be particularly valuable since we live in a
many-body world. The gross features of the macroscopic
world directly accessible to the senses are apparently well
described in classical terms. In spite of many ingenious
attempts, there seems to be no way to reconcile this with
quantum universality, maintaining any sort of philosophi-
cal conservatism. The most natural attitude would then
seem to be to propose that certain quantitative features of
the present quantum-mechanical formalism become modi-
fied as the number of particles increases. We do not want
to speculate here on the possible mechanisms of this
modification. With presently known dynamical schemes,
their description could be either dynamical or extra-
dynamical. Extradynamical features of many-body sys-
tems are already known. The necessity of symmetrizing
or antisymmetrizing many-body wave functions of identi-
cal particles does not at present have any dynamical ex-
planation. Other many-body restrictions may exist and
may not become apparent even with experimental evi-
dence for extremely accurate two-body dynamics.

It is therefore important to devise direct tests of quan-
tum mechanics in many-body situations that are immune
to any explanation in terms of mechanisms involving
fewer bodies, for which a quantum-mechanical descrip-
tion is presumably accurate.

This is the main conceptual point of this paper. We
shall now argue that experimentally feasible tests of quan-
tum mechanics of this nature can probably be devised.
We do this by deriving an inequality of a Bell type but
with a completely different aim.

In separated two-body systems, the experimental situa-
tion in relation to Bell’s inequalities® seems to rule out any
local microrealistic explanation of quantum-mechanical
correlations. We must admit either superluminal influ-
ences or extended physical entities that do not possess
well-defined local properties.” Thus there seems to be no
conservative alternative to the Copenhagen philosophy.
Having a firm experimental ground for this thesis for cer-
tain two-particle systems, it becomes pertinent to ask how
many particles can participate in such situations. Quan-
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tum mechanics allows for an arbitrary number. This is
because a state vector belonging to a tensor product of N
Hilbert spaces is in general not an eigenstate of any opera-
tor, other than a multiple of the identity, acting on any
smaller subproduct. If such a state vector represents a
quantum-mechanical state of N particles, then no sub-
group of fewer particles has well-defined properties. Na-
ture, on the other hand, may impose her own restrictions
and limit this possibility. We can imagine a multiparticle
system as consisting of a collection of extended entities,
each one comprising a certain limited number of particles,
with no subclass of these particles having well-defined
properties. The extended entities themselves, however,
can posess well-defined global properties that behave lo-
cally in relation to other such entities. We shall give the
name of “limited entanglement” to this situation. This
notion has some resemblance to the notion of “disconnec-
tivity” of Leggett® who expresses concerns similar to ours.

It is this situation that we claim to give rise to a Bell-
type inequality. Since our aim here is to establish this
point of principle, rather than give a general and exhaus-
tive treatment, we proceed under various simplifying as-
sumptions. We explicitly derive our inequality in the sim-
plest hypothetical case that the extended entity cannot
consist of more than two bodies and see what restrictions
this imposes on the three-body observations. Similar ar-
guments can be brought forth for extended entities of no
more than some given number N of bodies with observa-
tion of N + 1 bodies. It is important to discuss the use we
envisage for such inequalities. If limited entanglement is
in fact true, we expect it to come in gradually as the num-
ber of bodies increases. Thus we should not expect a sud-
den breakdown of quantum mechanics at a certain num-
ber of bodies. Such an inequality is thus considered as a
convenient and probably effective way to detect incipient
breakdowns of quantum mechanics due to limited entan-
glement. In such situations, though the inequality contin-
ues to be violated, the results would first be seen to differ
slightly but significantly from the quantum-mechanical
prediction. If limited entanglement is true, it possibly
only becomes operant for a very large number of bodies.
We thus do not concern ourselves with proving a recipro-
cal version of the inequalities, that is, finding criteria
under which observed data imply limited entanglement in
its pure form, since this is not expected to be readily seen.

Imagine thus a system decaying into three subsystems
which then separate in three different directions. At some
later time we perform dichotomous measurements on each
of the three parts, represented by observables 4, B, and C,
respectively, with possible results 1. Let us now make
the following hypothesis of limited entanglement: An en-
semble of such decaying systems consists of three suben-
sembles in each one of which two given parts form an ex-
tended system which however behaves locally with respect
to the third part. Let us for the time being focus our at-
tention on one of these subensembles, the one in which the
third part behaves locally with respect to the system
formed by the other two. We express our locality hy-
pothesis by assuming a factorizable expression for the
probability p (abc) for observing the results a, b, and ¢ for
the observables A, B, and C, respectively:

plabe)= [ q(abMr(cMdp(ir), (1)

where g and r are probabilities conditioned to the hidden
variable A with probability measure dp. Factorizability is
another one of our simplifying assumptions which we
adopt for its mathematical simplicity. We believe that
our inequalities, just as Bell’s should hold under various
ways of postulating local realism among the extended en-
tities. Formulas similar to (1) with the role of the third
part taken up by the first and the second of course
describe the other two ensembles. Our assumption is to be
contrasted with that of absolute local realism which
would be expressed by complete factorizability in which ¢
would also be a product:

qg(abA)=s(aMl)t(bA) .

This would lead to Bell’s inequalities in the two-particle
subsystems and thus to no new insight. In view of the ex-
perimental two-photon evidence we discard this possibili-
ty.

Computing the expected value

E(ABC)=(A4BC)
=p(+++)+p(+——)+p(—+—)
+p(——+)—P(—++)—p(+—+)
—p(++—)—p(———)
of the product of the three observables, we find
E(ABC)= [ (ABAw(CAdp(A) )

where —1<u(ABA)<1 and —1<v(CA)<1. We can
now derive inequalities satisfied by the numbers E (ABC)
when we introduce alternative dichotomous observables

Ay,Ay,..; Bi,By,...,; Cy,C;, ... for each of the parts.
We seek inequalities of the form
ECU-kE(A,-BjCk)gM. (3)
ijk

The simplest case is given by choosing two alternative
observables for each subsystem and we derive the inequal-
ity that results from thus assuming that i, j, and k run
from 1 to 2. The derivation follows closely the arguments
used in Garuccio and Selleri’® but is self-sufficient.

Looking at (3) we see that we must put a bound on

[ S Cypu(4;B;10(CrM)dp(M) .

Now since f dp=1 the above integral is a weighted aver-
age of the set of numbers

E C,'jku (A,Bj)\t)v (Ck}\v) 5

where A runs over all possible values of the hidden vari-
ables. Thus any A independent bound on this expression
is also a bound on the integral. Furthermore, from
—1<u(A4;BjA)<1 and —1<v(CiA) <1 we see that the
expression will be bounded by the maximum of

> Cik&ijnk »

where the £; run over the four-cube [ —1,1]* and the 7,
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over the square [ —1,1]°. By convexity arguments, the ex-
pression must assume its maximum on some vertex of
[—1,1]**[—1,1]? and so we can take our bound to be

M :maxz CikEij Mk >
where now the maximum is taken over §;;=+1, n,=+1.
Let us now for simplicity take Cj =0, as a sign. Set

n,=nmn; for some sign n. Taking into account that
oijk-=1 we have

M =max ¥, 0;;m&;(1+0410;m) -
The maximum being over &;;, 7, and 7,. Being now free
to choose §;; and n; we can arrange that for all ij, and a
given 7:

o1& =sgn(l+40;,0;,m) .

This now immediately leads to the conclusion that M is
the maximum of

[140mon2m | + | 1402110217 |
+ | 140100 | + | 14+022100m | . 4)

The smallest possible M is thus 4, in which case we must
choose two of the signs among ¢,10112, 02110212, T 12171225
and 0,,,032,, to be equal and the other two to be opposite
to that one.

At this point we must consider the other two subensem-
bles. We do not know in any particular instance of decay
to which of the subensemles the event belongs. It is pre-
cisely in this lack of knowledge of how to separate each
instance of the three-part system into its two subsystems
by which probabilities factorize, that our analysis cannot
be reduced to the usual one involving locality between two
subsystems. Our inequality must be such that the same
one holds up to an overall sign of the left-hand part, if we
were to treat either the first or the second part as the one
having well-defined properties. This is just a question of
straightforward relabeling and comparing, and under this
additional condition we obtain two possible solutions, up
to overall sign:

(0111,0112:0211,0212:0121,0122:0221,0222) = (+ + + — + — — —)

and

(011150112,0211:0212:0121,0122,0221,0222) = (+ — — — — —

Abbreviating E (4,;B;Cy) to E (ijk) our inequalities that follow from the limited entanglement hypothesis are thus
[E(11D+E(112)+E(211)—E(212)4+E(121)—E(122)—E(221)—E(222)| <4, (5)
|[E(111)4+E(112)—E(211)—E(212)—E(121)—E(122)—E(221)+ E(222) | <4 . (6)

To show that quantum mechanics contradicts these,
consider that each subsystem is described by a two-
dimensional Hilbert space with basis

-l - 2]

Assume that on each subsystem we can perform a dicho-
tomous observation labeled by an angle a and given by the
transition amplitudes:

(+|u)=cosla/2)={—|d),
—(— |u)y=sin(a/2)=(+|d),

where A (a)| )=+ +), and similarly for B and C, la-
beled by angles 8 and y. These are formally identical to
rotated Stern-Gerlach apparatus for s :% measurements,
where u and d are eigenstates of o,. For the quantum-
mechanical  state  (udd +dud +ddu —uuu)/2  we
find after a straightforward computation that

E(A(a)B(B)C(y))=cos(a+B+v). For this expression
inequality (6) is obtained from (5) by summing 180° to
each of a,, 35, and ¥, so the two are equivalent. A nu-
merical search reveals, for example, that for

a, =218, B,=81°, y,=15",
a,=309°, B,=171°, y,=105°,

the value in the expression under the modulus sign in (5)
is 5.66 in evident contradiction with the inequality.

We do not have at the moment any detailed suggestion
for a specific experimental arrangement. The triplet de-
cay of positronium comes to mind as a possibility and has
already been proposed for possible new tests of quantum
mechanics. 1°
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