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In this paper we develop the complete theory of the relativistic motion of a singular layer of
matter under the influence of surface tension and volume tension. In order to account for vacuum

tension effects we suggest a formalism of universal applicability: the single degree of freedom of a

relativistic "bubble" is coupled in a gauge-invariant manner to a potential three-form A in the pres-

ence of gravity The ma. thematical and physical consequences of this coupling can be summarized as

follows. (i) The action functional of the theory, when written in geometric form, is formally quite

similar to the Einstein-Maxwell action for the dynamics of a point charge on a Riemannian mani-

fold. However, in comparison with electrodynamics, bubble dynamics is a highly constrained theory

with a vastly different physical content: the gauge field F =dA propagates no degrees of freedom

and when it is coupled to gravity alone, it gives rise to a cosmological constant of arbitrary magni

tude. (ii) We exploit this peculiar property of the gauge field to solve exactly some of the equations

of motion of bubble dynamics. The net physical result is the nucleation of bubbles in different "vac-

uum phases" of the de Sitter type characterized by two effective and distinct cosmological constants,

one inside and one outside the domain wall. (iii) Because of the generality of the above mechanism,

the theory is applicable to a variety of different physical situations; in the ease of a spherical bubble

we derive the radial equation of motion and solve it explicitly in a number of cases of physical in-

terest ranging from cosmology to particle physics. Thus, in curved spacetime we find that our ac-

tion functional provides a natural basis for the so-called inflationary cosmology; in flat spacetime we

find that our action functional generates the same vacuum tension advocated in the so-called "bag

model" of strong interactions in order to confine quarks and gluons.

I. INTRODUCTION

In the last ten years the study of the properties of rela-
tivistic objects with finite spatial extension (strings, mem-
branes, bags) has been an important topic of investigation
among theoretical physicists, with applications ranging
from particle physics to cosmology.

In particle physics the established experimental evi-
dence, primarily the onset of scaling relations for the in-
elastic lepton-nucleon structure functions, led to a picture
of the observed hadrons as domains of space to the interi-
or of which the pointlike constituents are permanently
confined. This observation, and quite independently the
early recognition that the energy spectrum of the dual res-
onance model could be interpreted in terms of the vibra-
tion modes of a relativistic string, created a new trend in
strong interactions which has inspired a number of
phenomenological bound-state models for the "hadroniza-
tion" of quarks, that is, the basic process of quark binding
into the observed colorless hadrons. With the notion of

spatial extension and quark confinement as an input, such
models reproduce, with a varying degree of success, some
of the observed features of the hadronic energy spectrum.
It is hoped that this phenomenological approach will be
substantiated by a deeper understanding of the hadroniza-
tion phase in nonperturbative quantum chromodynamics,
the loca/ quantum field theory of colored quarks and
gluons. '

In astrophysics, the analysis of the dynamics of a thin
shell of dust under the influence of gravitational forces
has long been a theoretical laboratory to study the end
products of the gravitational collapse of massive bodies.
On a larger scale and in more recent times, the recognition
that galaxies are distributed in a network of thick, fila-
mentary structures (superclusters) separated by vast voids
has reproposed the problem of studying the evolution of
domains, domain walls, and strings on a cosmic scale.
Finally, bridging the gap between particle physics and
cosmology, the idea of cosmic inflation" suggests that
the large-scale structure of the Universe is determined by
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microphysics through the primordial density fluctuations
of the early Universe. The "inflationary' universe
scenarios, both original and new, assume an early epoch
of exponential expansion driven by a finite vacuum ener-

gy. Guth has pointed out how precisely such a large vac-
uum energy density would arise naturally in the SU(5)
model of grand unification of the strong and electroweak
interactions. In order to place our work in the right per-
spective, it seems appropriate to recall the basic mecha-
nism of cosmic inflation: the energy density of the
Universe is usually represented as a potential function of
the Higgs field P postulated in grand unified theories to
account for spontaneous symmetry breaking. Below a
certain critical temperature T„;„ the Higgs potential
V(P) is assumed to have a local minimum at /=0. This
is the symmetric vacuum phase, often called the false vac-
uum, characterized by an energy density p, = V(0), and by
a negative pressure P = —p, ~ Thus, the primordial false
vacuum is a sort of "massive" vacuum which can be
represented geometrically by a portion of the de Sitter
space, the maximally symmetric solution to the Einstein
equations with a cosmological constant. The asymmetric
vacuum phase, often called the "true" vacuum, is charac-
terized by a certain value of the Higgs field go&0 for
which the potential attains its true minimum value
V($0) =0 with a corresponding energy d'nsity and pres-
sure p„=P=O. Evidently, an energy barrier exists be-
tween the two vacua which, in classical physics, would
give stability to the false vacuum.

The next stage in the original inflationary scenario is to
assume a kind of first-order phase transition according to
which the symmetric vacuum state decays through the
formation of low-density bubbles of the broken-symmetry
phase (p„=0). Coleman has pointed out that bubble for-
mation would occur by quantum tunneling of the Higgs
field from /=0 through the energy barrier between the
two vacua directly to P =go. For our purposes, it is worth
emphasizing that in this new configuration the geometric
boundary of the bubble is regarded as a dynamical surface
carrying most of the energy originally stored in the high-
density symmetric vacuum. Mathematically, this is re-
flected by the existence of a kinetic term for the bubble
surface in the action functional of bubble dynamics [cf.
Eq. (2.3)] as well as by the equation of motion to be dis-
cussed later [cf. Eq. (5.18)].

In an updated version of the inflationary model (new
inflationary cosmology) there is no energy barrier between
the two vacua. Rather, the Higgs potential is shaped in
such a way that the transition from the false vacuum to
the broken-symmetry phase occurs by means of a slow-
rollover mechanism: because of thermal or quantum fluc-
tuation, the Higgs field is pushed away from its initial
value of zero proceeding toward its true-vacuum value at

Whatever mechanism is invoked for the nu-
cleation of bubbles of the broken-symmetry phase, the
wall of the newly formed low-density bubbles will be ac-
celerated outward since the pressure inside the bubble
P=O is greater than the pressure in the surrounding false
vacuum P = —p, . In the new inflationary model the ac-
celerated expansion of the Universe occurs during the ear-
ly stages of the "rollover" of the Higgs field, while the en-

ergy density remains roughly constant. In this picture, a
single bubble could grow large enough to encompass the
entire observable Universe.

Regardless of the shape of the Higgs potential, the
above discussion shows that the ground state of the early
Universe is envisaged as a two-phase medium consisting
of vacuum bubbles of the low-density evolving in the de
Sitter phase of the ambient spacetime. To our mind this
description is reminiscent of the hadronic vacuum pic-
tured in the quark-bag model with surface tension. ' In
that model the hadronic vacuum is also regarded as a
medium consisting of two phases separated by a closed
surface. The region interior to the bag represents the ha-
dronic phase (where quarks and gluons interact according
to the fundamental laws of QCD) while the exterior re-
gion represents a different vacuum phase inaccessible to
the hadronic constituents. As holes embedded in a kind
of "superconducting" medium associated with the am-
bient spacetime, such domains of hadronic vacuum con-
stitute very suitable traps for quarks and gluons. As long
as the basic mechanisms of nonperturbative QCD remain
poorly understood, the bag model provides an effective
approach to hadron spectroscopy. In much the same spir-
it, in view of our ignorance about the quantum properties
of the ground state of the Universe, it seems desirable to
us to investigate the bubble nucleation process of the early
Universe from an effective viewpoint based on the exist-
ing theories of relativistic extended objects and on general
relativity. This brings us to the mathematical side of the
problem: bubble dynamics has been approached so far
with different techniques depending on the physical appli-
cation that one has in mind. The relevant mathematical
formalism for this type of problem in general relativity
was developed some time ago by Israel and later on by
Chase. ' Recent applications of this formalism to bubble
dynamics and inflation can be found in Ref. 11. Dirac,
on the other hand, used his formalism of constrained
Hamiltonian systems to discuss an electrodynamic model
of a conducting bubble in an attempt to resolve the
electron-muon puzzle in particle physics. '

With this background in mind, the objective of this pa-
per is to consider the physics of two distinct vacuum
phases in a curved spacetime in terms of an action func-
tional which is inspired by the bag model (with surface
tension) of strong interactions. In particular, we discuss
the cosmological evolution of a vacuum bubble in the con-
text of such a variational approach. This approach is an
extension of a geometric theory of relativistic extended
objects formulated previously in Minkowski space, ' and
we will demonstrate that it is equivalent to Israel's formu-
lation of shell dynamics.

We require our action functional to be consistent with
the basic postulates of general relativity; furthermore, it
must also lead to a new cosmologi, cal equation that allows
for the same exponential expansion rate of the Universe
postulated in the new inflationary scenario on the basis of
grand unified models of particle physics. In this connec-
tion, the genesis of an appreciable cosmological constant
is a crucial issue in the problem of cosmic infIation.
Indeed, since its birth in 1980, the theory of the inflation-
ary universe has inspired a large number of papers with
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specific cosmological scenarios differing from one another
essentially in the mechanism advocated for the creation of
the cosmological term (or, equivalently, constant vacuum
energy density). One can invoke quantum gravitational
effects or exploit the arbitrariness of the Higgs potential.
On our part, we seek an effective theory given by an ac-
tion functional that will model the existence of two dis-
tinct vacuum phases characterized by two constant but ar-
bitrary energy densities. The existence of this two-phase
medium will be seen to be a consequence of our variation-
al formulation with no ad hoc assumptions concerning ei-
ther the geometry of spacetime or the shape of the Higgs
potential.

Remarkably, the action functional that meets all of
these requirements is a straightforward generalization of
the Einstein-Maxwell action: instead of a point charge
coupled to the usual electromagnetic vector potential, the
new action involves the timelike world hypersurface of the
bubble coupled to a three-index antisymmetric potential.
The corresponding "Maxwell-Einstein" equations are ex-
actly solvable and result in the formation of two distinct
vacuum phases each endowed with an effective cosmolog-
ical constant of arbitrary magnitude. We will show the
analogy of this mechanism with the "vacuum pressure" of
quarks and gluons. For a spherical bubble, the "Lorentz-
force" equation of bubble dynamics may be regarded as a
new cosmological equation. It is a differential equation
for which, to our knowledge, there is no general analytical
solution. Fortunately a simple analysis based on the anal-
ogy with one-dimensional motion of a point particle in an
effective potential allows us to classify solutions of the ra-
dial equation. We find (i) bubbles which initially increase
in radius and either (a) reach a maximum and recontract
to zero radius, (b) asymptotically approach a finite radius,
or (c) expand indefinitely, (ii) bubbles which initially de-
crease in radius and either (a) contract to a minimum and
reexpand indefinitely (de Sitter-type bubbles), (b) asymp-
totically contract to a finite radius, or (c) contract to zero
radius, and (iii) bubbles which remain static at a fixed ra-
dius for a particular choice of initial data.

We discuss the implications of some of these solutions
in astrophysics and in cosmology. In the limit of zero
curvature, our radial equation correctly reproduces the
Lorentz-force equation previously formulated in Min-
kowski spacetime. ' Explicit solutions are exhibited in
this special case and they are shown to reproduce the con-
finement mechanism postulated in the bag model of
strong interactions. We will also comment briefly on a
procedure for solving this "Lorentz-force" equation in
general.

The outline of this paper is as follows. In Sec. II we
give both the geometric and the coordinate-dependent def-
initions of our action functional, discussing the coupling
between curvature, the bubble's degree of freedom, and
the generalized Maxwell potential. We comment on the
gauge principle associated with dynamics of the bubble.
Far from being a triviality, it is necessary to enforce both
locality and positivity of energy. In Sec. III we derive the
field equations and the equations of motion of the bubble.
In Sec. IV we deduce some exact consequences of the field
equations, and in Sec. V we establish the radial equation

governing the motion of a spherical bubble. In Sec. VI we
discuss some special analytical solutions which may be of
either cosmological or astrophysical interest. In Sec. VII
we study the limiting case of flat spacetime and its con-
nection with the bag model of strong interactions. We
close with a few concluding remarks and two appendixes
which discuss some technical details of our equations and
compare our results with those of other authors.

II. THE ACTION FUNCTIONAL

We begin by extending the geometric definition of the
action functional, previously given in Minkowski
space, ' ' to a spacetime manifold M endowed with a
Lorentzian metric g (and a measure ps). Thus, the object
that we consider (a closed membrane) is a connected
orientable manifold E of dimension 3 plus an embedding
x of K as a timelike submanifold in M. Therefore, the
metric y induced on x(K) is also Lorentzian and a well-
defined measure pr exists on K. If t' (a =0, 1,2) are lo-
cal coordinates on K then the induced metric is explicitly
given by y =y,bdt'g dt where

a~~ ax
a' atb

(2.1)

In addition, we introduce a field F =dA which is a four-
form on M invariant under the group of generalized
gauge transformations A~A+dA where A is a two-
form gauge function.

The action functional that we propose is then a
straightforward generalization of the Einstein-Maxwell
action

S= Rpg —p p —c 2 21 F 2p

(2.2)

——f d xv' gJ" t'(x)A„„~(x)—

1
d x& gF" ~ (x)F (x—) .

X4' M
(2.3)

Here g and y stand as usual for detg„and dety, b, respec-
tively. The surface tension p( &0) and the coupling con-
stant c are given real constants with dimensions L ' in
geometric units (speed of light and gravitational constant
are set to unity). Moreover, just as in ordinary electro-
dynamics, the meaning of the interaction term in Eq. (2.3)
follows from our geometric definitions:

which is obviously invariant under a general coordinate
transformation preserving the orientation of the manifold
K as well as under the group of generalized gauge
transformations A ~A +d A mentioned previously. In
view of our subsequent calculations it is useful to exhibit
the explicit, coordinate-dependent form of the action S.
In terms of local coordinates x" (@=0,1,2, 3) on M and
t (a =0, 1,2) on K our geometric definition of S gives

S= ' f d'x& g~ —p f d'« —y
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Ap pdx" Adx R, dxP1 ated with the interior of the closed membrane. The
current satisfies the basic relation'

x" Pd t
1

3t
dJU ——JgU (2.10)

J~Py Ap y —gd y, (2.4)

where

1 ax~ ax axP .„,x
3t at at at'

ax~ ax.
gt0 gtl gt2

(2.5)

x" pI"~(y) = f 6(y —x (t) )d t
K Q g

(2.6)

and acts as a source of the F field. For our purposes it is
also convenient to consider the dual current to J" t'(x),
i.e., the one-form distribution

(2.7)

which is, by construction, perpendicular to the timelike
tangent element x" P at each point on the embedded man-
ifold x(K). The requirement that the current (2.6) be co-
variantly conserved is consistent with the invariance of
the action functional under general reparametrization of
the coordinates on the spacetime manifold as well as on
the embedded submanifold x(E). Manifest covariance
and the gauge invariance of the action functional demand
in turn that the current density J""t'(x) be coupled to a to-
tally antisymmetric, rank-three tensor potential A& p with
the associated field-strength tensor

represents the timelike tangent three-vector to the world
tube of the object. ' Accordingly, the three-vector current
density of bubble dynamics which is a generalization of
the usual current in electrodynamics is explicitly given by
the distribution

which holds true for any submanifold UCM. Equation
(2.10) is the key relation we shall use in Sec. IV to solve
the generalized Maxwell equations in our theory.

At this point it is worth remarking that the gauge prin-
ciple A~A +dA (under which our action is invariant) is
not merely a triviality that will permit us to solve the field
equation in Sec. IV but in fact is necessarily connected
with the dynamics of the bubble. One way of seeing this
is to consider the interaction of several bubbles by means
of action-at-a-distance forces. It has previously been
shown by Kalb and Ramond' in the case of charged
point particles and strings (either open or closed) that
such interactions necessarily imply gauge-invariant cou-
plings of the form F& ——B„A —0 A„ for particles and
F„ t, ——B(„p„ql for strings, where A„(p(& l) are the "po-
tentials" due to the particles (strings) in the theory.

Elevating A„(P(„„))to the status of dynamical fields
restores locality and implies the gauge principles
(&„Az+B„A,) (P„Pz +B(„g„)). A straightforward
extension in the case of bubbles (using the free action
p pr) yields analogous results: interactions between

K
bubbles necessarily imply gauge-invariant couplings of the
form F& ~

——B[&A ~ ~
where A[ ~ ~

is the "potential" due
to the bubbles. Restoring locality by considering A[ ~ ~

as an independent dynamical field then gives the gauge
PrinciPle A„x ~A„~ +B(,Ax l

on which our action (2.2)
is based. A consideration of the dynamics of bubbles
necessarily leads us to the gauge-invariant action (2.2).

This gauge principle is also necessary to preserve posi-
tivity of energy. Indeed, it is possible to show that an ar-
bitrary kinetic energy functional of A& ~ will excite ghost
degrees of freedom in the flat-space limit. The gauge
principle removes these unphysical degrees of freedom,
leaving us (as we shall see) with a positive- (static-) energy
functional in the flat-space limit.

III. THE LORENTZ-MAXWELL-EINSTEIN
EQUATIONS

Fpvpo =~[@Avpo] (2.8)

The new "Maxwell field" F& p is manifestly invariant
under the generalized gauge transformation

pvp~A pvp+ V [pAvp] (2.9)

Therefore, summing up our previous discussion, the
promised generalization of the Einstein-Maxwell action to
the case of relativistic bubble dynamics is given by Eq.
(2.3) in coordinate-dependent form or by Eq. (2.2), in
geometrical form. Finally, we close this section with a
mathematical note in connection with the geometric as-
pects of bubble dynamics. Equations (2.4)—(2.6) define a
de Rham current' of dimension 3 and degree 1 corre-
sponding to the boundary 0 U of the open subset U associ-

The objective of this section is to derive the field equa-
tions and the equation of motion governing the time evo-
lution of a relativistic bubble and its effect on the space-
time geometry.

It is instructive to outline the main steps in the varia-
tion of the action functional with respect to the embed-
ding x, as it leads to an interesting generalization of the
Lorentz-force equation of classical electrodynamics to the
case of relativistic bubble dynamics. First the kinetic
term of the membrane: the variation with respect to the
embedding x is given by

&r.b5„S, = —p f —,'y' V —y ox"d't .
K QxP

Using the explicit expression (2.1) for y, t„we find
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Bx 06x" ) Bxp (3x
5xSmem p f + rr" gyv b &

+ Tgpcr, pc}t at' at' at

r 1 a e .b ax—Pg ~ a, —rr
guava b

a pa
gtb

a pa
=p fg„x +(I g)" r' „V r5x"—d t,at' at'

where
&

stands for the Laplace-Beltrami operator with metric y and I g stands for the connection of the metric g on M.
Next, the interaction term in S: using the defining equations (2.4) and (2.5) one finds

't—3BA x P6x"d t= — F x P6x"d t.
31 p vpo v ppo. ~ t p vpcr
aJ ~

Thus, the net effect of the requirement 6 S =0 is the "Lorentz-force" equation for the bubble:

pv rg—„. ,x +(r, ),.r'., exp ax
at' at'

c VP(7

3T
Fpvpax (3.1)

Geometrically, the term in large parentheses represents the "mean curvature vector" of the submanifold x (K) and we
note that the Lorentz force is perpendicular to x (K), as it should be.

The variation of the action with respect to the three-form 3 is given by

5,S=—,f(F&& & ga5A —+c& gJ ~ 5A —)d x

B„F"P —g —cJ P 6A —gd"x
g

P

and the requirement 6z S =0 leads to the covariant
Maxwell equation for F"P:

a„(& gF~' ) =cV—'

Note that the above equation can be written in the usual
geometric form of Maxwell's equations, i.e.,

Tpv FI attzFv t vFaprpF
3I aPA, 2 4~

g aPyp

gP (*F)2—

In order to evaluate TM' we first observe that

(3.5)

(3.6)

d*F=c*J, (3.2)
SM ———P dt —y

as long as one keeps track of the fact that presently *F
stands for the zero form dual to F, i.e.-, according to our
conventions'

= —pfd t ——x" ~x
PVP

1/2

Fpvpo ~vpcr F (3.3)

while the dual current *J is the one form explicitly-de-
fined by Eq. (2.7). Note, in addition, that in the present
case the Bianchi identities dF =0 are trivially satisfied
and impose no constraint on the form of F.

Finally, the requirement 6gS =0 leads to the usual Ein-
stein equations

= —p d t x

so that

x" ~x—25gSM ——f —,p f 5(y —x(t))d't 5g„d y .

G" =8rrT" =8~(TM"+ TtF"), (3.4) Therefore,

2 6S
v' —g 5g„

= TC'+ TP"

The field contribution TP" is calculated as

where the symmetric energy-momentum tensor is defined
by

6SM
v' —g 6g„

p f x x ap 5(y —x(t))
(3.7)
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in complete analogy with the electrodynamic case. This
analogy is further reflected by the conservation laws: if
V'& stands for the covariant derivative defined by the con-
nection j. g, then we have verified that

V TI' =0P (3.8)

d*J =0 (3.10)

which reflects the gauge invariance of the action and in
our geometric formulation corresponds to the fact that the
membrane is spatially closed.

IV. SOME EXACT CONSEQUENCES
OF THE FIELD EQUATIONS

The formal analogy between the theory formulated in
the previous sections and the theory of classical electro-
dynamics in a curved-spacetime background is transpar-
ent from the form of the equations of motion, i.e., the
"Lorentz-force" equation (3.1), "Maxwell's equations"
(3.2), and the usual Einstein equations (3.4). Of course,
the physical content of the two theories is vastly different.
Elsewhere we have analyzed the Lorentz-force equation in
the limiting case of "flat" Minkowski spacetime in which
the generalized Maxwell field F is a given external field. '

Unli ke the usual theory of electrodynamics, the
Einstein-Maxwell equations of bubble dynamics can be
solved exactly. To begin with, in the present theory there
is no radiation field: Maxwell s equation in vacuo,
d *F=0, implies that *F, a zero-form, is constant every-
where. However, the field F =dA is a gauge field; it is
endowed with an energy-momentum tensor [cf. Eq. (3.6)]
and couples to Einstein's tensor. Thus, even though there
is no propagating field, there is a static effect: in the ab-
sence of matter (p=c =0), the action

S = Rpg ——, F pg (4. 1)

as a consequence of the equations of motion. Further-
more, if the spacetirne manifold admits a timelike Killing
vector g&, a conserved energy is defined which we record
here in view of our subsequent discussion:

F = T" „dS (3.9)

where we choose S to be an orthogonal surface to g&. Fi-
nally, we note that Maxwell's equation (3.2) implies the
conservation law

have advocated the use of the potential three-form 2 in
an attempt to settle the long-standing puzzle of the van-
ishingly small value of the cosmological constant at the
present epoch. However, this is not our concern here.
From our vantage point, what is significant is the fact
that the new Maxwell field F is associated with a vacuum
energy density of arbitrary magnitude: it represents a
property of the ground state of the Universe whose effects
should manifest themselves, directly or indirectly, at all
scales of length in the physical world, from rnicrophysics
to astrophysics and cosmology. To emphasize this point
we recall that even in the presence of coupling, the
Maxwell equations are exactly solvable. ' The solution is

F = —cOU+Q (4.3)

JP~ =e" ~ 9

and the equivalent zero-form is

JU ~U

(4.5)

(4.6)

where I9U is the characteristic function of UCM.
Therefore, Maxwell's equation (3.2) becomes

d *F=c *
JgU ——cd *JU, (4.7)

the last equality following from Eq. (2.10). This result
leads to the general solution, Eq. (4.3).

We define the value of the field on the membrane as the
arithmetical mean of the values inside and outside

where OU is the volume step function defined to be 1 in-
side the bubble and 0 outside the bubble; in the terminolo-
gy of set theory OU, is the characteristic function of the
open subset U of the spacetime manifold associated with
the interior of the membrane. Finally, a' is the constant
solution of the homogeneous equation corresponding to
the cosmological constant previously mentioned in Eq.
(4.2). The proof is a simple consequence of Eq. (2.10)
combined with the following observations: if U is the
open subset of M associated with the interior of the closed
membrane, the corresponding de Rahm current JP~ has
dimension 4 and degree zero. Moreover, if ~ represents
an arbitrary four-form in M with compact support, the
defining equation of JP ~ is the linear map which sends
co into [cf. Eq. (2.4)]

(Jz, co) = f co—:f JP~ co& z d x . (4.4)

Therefore, the current JP~ is necessarily of the form

leads to Einstein's equations with a cosmological term *F
I au —= ——,

' c +a'=a . (4.8)

G +4rr(*F)'=0 . (4.2)

This is the simple and fundamental property of the F field
which has generated a number of interesting applica-
tions' especially in the framework of the Kaluza-Klein
theory of supergravity. ' Conceivably, one could use the
basic property (4.2) of the F field to balance out the
cosmological term appearing in the Hilbert-Einstein ac-
tion of general relativity. Even though, by general con-
sensus, such a fine-tuning between the two parameters is
highly improbable on the basis of our current understand-
ing of particle physics and cosmology, some authors

TP= ——,g" [e(c —2a'')8&+(a') ] . (4.9)

Therefore, it seems natural to introduce a global cosmo-
logical constant

A+ =4~(a') (4.10)

Thus, the net effect of the F field in the interacting case is
to create two distinct vacuum domains in spacetime. The
corresponding geometries are easily deduced by substitut-
ing the general solution (4.3) of the Maxwell equations
into the expression (3.6) for TP We obtain.
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as well as a constant vacuum energy density for the interi-
or of the membrane

line elements corresponding to a "vacuum" bubble are,
respectively, of the form

A =4'(c —a') (4.11) dS+ —— f—+dt+ +f+ 'dr +r dQ2, (5.3)

the relative magnitudes of A+ and A depending on the
relative signs of c and a'. Accordingly, since the matter
contribution to the energy-momentum tensor has support
only on the membrane itself, Einstein's equation reduces
to two sets of vacuum equations with different cosmologi-
cal constants:

where

A+ 2Ef+—:1 — r —(outside),+ 3 r

Af —= 1 — r (inside) .
3

(5.4)

(5.5)

G +A+g =0
outside the bubble, and

G+A g =0

(4.12)

(4.13)

inside the bubble.
We emphasize that all of the above is an exact conse-

quence of our action functional. The geometry of the
spacetime manifold is completely determined once the in-
terior and exterior line elements are matched on the mem-
brane itself. Precisely such junction conditions were for-
mulated long ago by Israel. However, in our formulation,
the motion of the bubble is determined by the Lorentz-
force equation (3.1). In addition we have at our disposal a
first integral of motion in the form of the conserved total
mass-energy integral expression (3.9).

In the next sections we will show that for a spherical
membrane our approach is consistent with Israel's method
of determining the evolution equation for the bubble. In
addition we shall exhibit some explicit solutions which are
of interest in cosmology or astrophysics as well as in par-
ticle physics.

V. THE RADIAL EQUATION OF MOTION

In the current literature the vacuum state of the early
Universe is pictured in terms of the de Sitter solution of
Einstein's equation with an apparent cosmological term
arising from the negative pressure of the "vacuum. "

The properties of the F field established in the previous
sections are ideally suited to account for the origin of
cosmic domains in the early Universe.

Once formed, the evolution of the domain wall is
governed by the volume and surface tension alone. In or-
der to progress with our discussion of bubble dynamics we
shall make the simplifying but natural assumption of
spherical symmetry. Thus, the intrinsic metric of the
membrane is taken to be

Following Israel and Chase, ' we choose t(r) in such a
way that the exterior and interior line elements join
smoothly on the surface of the bubble where they match
the intrinsic metric (5.1). It is straightforward to see that
this procedure leads to the junction condition

f —1 R 2 f t 2

where the overdot stands for d/d~.
Therefore the induced metric y, b is represented by

(5.6)

—1 0 0

y~b —— 0 R 0

0 0 R 2sin2g

(5.7)

Next, the connection coefficients ( I g )& are explicitly
given by

r22 —— «f, r33 ——r —sin'Of,

r14= 2f 'f', r33 ——SinO COSH,
(5.8)

[R (f +R )' ]= *FR-
R ~& p

Define now, according to Chase'

(f +R 2)1/2

(5.9)

(5.10)

The value of the field strength on the bubble is given by
Eq. (4.8), so taking averages of Eq. (5.9) we find

1 3 1r =— r =—
12 ~ 13r' r

where the prime indicates d/dr and the subscripts + have
been omitted. With these data we are in a position to
evalute explicitly both sides of the Lorentz-force equation.
The result is

dSM ———dr +R (r)dII (5.1) [R (F++F )]=—R( ——,c+a')+
p

(5.11)

x~+ ——(R (t), o, g, t ) (5.2)

from which the explicit form of the embedding equations
is known. Note that the coordinate times t+ are functions
of the proper time ~. Moreover, it follows from the re-
sults of the previous section that the exterior and interior

where R (r) is the scale factor expressed as a function of
the proper time r and dA =dg +sin20dg .

Next, we parametrize the bubble in terms of spherical
coordinates

from which, by integration and using the definitions (4.10)
and (4.11), we obtain

—,(A —A+)R +2rrpR (F++F )=4~pX, (5.12)

E~= —,
' (A —A+)R (5.13)

where X is a constant of integration. In order to identify
this constant of integration we note that the two terms on
the left-hand side of this equation represent, respectively,
the volume energy
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and the surface energy of the bubble

Es =2rrpR (F+ +F )=—2 (Es +Es ) (5.14)

and the explicit expression for E is

E = —,(A —A+)Ro

This can be verified explicitly, as we show in Appendix A,
by computing the total energy of the bubble defined by
the first integral of motion, Eq. (3.9). The volume contri-
bution E~ originates from the expression (4.9) for TF
while the surface contribution Ez originates from the ex-
pression (3.7) for TM and is defined as the arithmetical
mean of the surface energy contributions E~+ and E~ cal-
culated from the exterior and interior metric, respectively.
Therefore, summing up our discussion so far, with the
identification

+2~pRO'[2(1 ——,
' A Ro +Ro-)' 4rrp—RO j, (6.2b)

A —A+
Veff= ——H R +—

2 R 48 p2

E2

16~2p2R 4

where RO=R (ro) and Ro ——R(ro).
The advantage of this reformulation is that the radial

motion of the bubble is simulated by the one-dimensional
motion of a fictitious, classical, unit-mass point particle
with total energy e = ——,

' in the classical potential:

X =E/4~p, (5.15) (6.3)

F F+ =4m.p—R(F +F+) . (5.16)

Again taking into account our definitions (5.10), Eq.
(5.16) implies

(f +R ')'"—(f +R ')'"=4~pR (5.17)

which is Israel's equation of motion and is best under-
stood, in our notation, as the energy balance equation
mentioned in the Introduction:

Es Es =(4~p) R— (5.18)

As a consistency check on our results, in Appendix B we
derive Eq. (5.17) by a direct application of Israel's
method.

VI. SOME SPECIAL SOLUTIONS
OF THE RADIAL EQUATION

The radial equation of motion (5.17) is the master equa-
tion of motion of bubble dynamics in the case of spherical
symmetry. It can be conveniently written in the form of a
cosmological equation:

2
dR
d~ 48~ p

E2
+

16~pR

where we have set

H =(24np) '[(A +A++48vr p ) 4A A+j'—
(6.1)

(6.2a)

Eq. (5.12) constitutes the first integral of motion of bubble
dynamics and represents, in implicit form, the evolution
equation for the spherical membrane which is consistent
with the given spacetime geometries (5.3) smoothly joined
together on the surface of the bubble. As a matter of fact,
a direct consequence of the conservation of the total
mass-energy of the system is Israel's "matching equation"
(5.17) involving the coefficients of the interior and exteri-
or line elements: indeed, in view of our definitions (5.10),
an equivalent expression for the first integral of motion
(5.12)—(5.15) is

Note, incidentally, that with the exception of the last
term, Eq. (6.1) is similar to the equation for a matter
dominated, spatially closed, Friedmann universe

2
dR A

(6.4)
dw 3 3R

with an effective cosmological constant

A—=3H )0 (6.5)

and a matter density

A+ —Ap—:3E +1
48m p

8~R o (6.6)

It seems to us that this property of the radial equation is
consistent with the overall requirement that, after the
period of cosmic inflation, the new cosmology must agree
with the standard Friedman cosmology.

The effective potential given by Eq. (6.3) possess a sin-

gle maximum and, at most, two roots. From this proper-
ty we can deduce the classes of behavior for the bubble
mentioned in the Introduction. In what follows, the bub-
ble is assumed to be initially expanding from R =0 or a
turning point at time ~=0 unless otherwise stated.

(a) A & A+. In this case the equation of motion ad-
mits a solution with E =0. This is the case of "vacuum
bubbles" expanding from a minimum radius H ' to in-
finity according to the de Sitter law

R(r) =H 'cosh(Hr) . (6.7)

It should be noted that the case A+ ——0 is inconsistent
with Eq. (6.7) since, in this case, the energy is positive de-
finite; the case A+ & A and E )0 corresponds to the
evolution of the spherical domain of a false vacuum in the
background of a true vacuum. The simple solution (6.7),
once interpreted as a spontaneous bubble nucleation event,
is the key to the success of the new inflationary cosmolo-
gy: it provides the exponentially expanding phase of the
early Universe needed to remove some of the inconsisten-
cies ' of the standard cosmological model. During the
phase transition described in the Introduction, the false
metastable vacuum decays into the true asymmetric vacu-
um through the formation of low-density (A =0) bub-
bles. According to Eq. (6.7), one such bubble can materi-
alize with vanishing total energy, and then expand to en-
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compass the entire observable Universe. In this connec-
tion, we note that Coleman and De Luccia have studied
the gravitational effects on the vacuum decay process in
the framework of a semiclassical scalar field theory, while
Berezin, Kuzmin, and Tkachev" have proposed an equa-
tion of motion for the bubble based on Israel's formula-
tion of shell dynamics. With due account of the differ-
ence in units and notation we have explicitly checked that
our results based on the Lorentz-force equation are con-
sistent with those of Refs. 8 and 11. We also wish to
record here Tryon's observation that a bubble with van-
ishing total mass energy could also emerge as a spontane-
ous vacuum fluctuation from an initial zero-energy state
(or even from a state for which energy is not defined at
all ) rather than from a false-vacuum phase. In this case
the solution (6.7) seems to provide us with a natural
bridge between de Sitter era and the (presently quite un-
clear) preceding quantum state of the Universe. This
lends support to our claim the action functional of our
theory provides an effective approach to the inflationary
cosmology.

(b) H =0, E /167rp =0. In this case the equation of
motion reduces to the form

A+ —A
A~=~E

q q
—1

48~ p

(c) H =0, (A —A+)/487r p =1. In this case the
equation of motion reduces to the form

2
W4= —1+ R4'

dR
d7

(6.13)

where

E
4m.p

1/2

(6.14)

R (71)=A sin'~ (271), (6.15)

1 1
7(71)= — F a, —2E a,'v'2 ' vZ

In this case, the effective potential is of the form
V(R ) = —2 /2R and we anticipate an oscillating

behavior again. Indeed, setting dr=R(71)d71 as before,
one finds by integrating the resulting equation of motion

dR
d7.

2 8= —1+—
R

(6.8)

1 m 1F —,~ 2E— (6.16)

where

A —A+B=E —1
48vr p

1 dR
2 d~

=e—V(R)

and can be regarded as the equation of motion

2

(6.9)

(6.10)

a =arcsin[v'2 sin(7r/4 —
71 )] . (6.17)

Therefore, the motion consists again of an expansion-
recontraction cycle with a range 0 (R (3 and a period

m/4

dy cos2y '

m.A
(6.18)

where F and E are elliptic integrals of the first and second
kind, respectively, with

dr=R (71)d71 .

Integration of the resulting equation gives

(6.11)

R (71)=E A+ —A —1 sin —,
48~ p

E A —A+
7(71)=—

48~ p
—1 (71 —sing),

(6.12)

which is of the same form describing a closed, oscillating
universe in the standard cosmology. In our case the oscil-
lating bubble expands from a vanishing initial radius up
to

of a unit mass point particle moving with constant total
energy e = ——, in the potential V(R ) =B/2R. The
motion is physically acceptable only for
A —A+ &48m p . In this case a parametric solution is
obtained by switching to the conformal time

1

2
' v'2

A —A+ A

6
—8m p R +4mpR 1—

1/2
R
RD

(6.19)

It is worth observing that the approximate solutions
described in (b) and (c) are complementary to each other:
near the origin solution (b) is unreliable whereas (c)
represents a good approximation to the solution of the
general equation since the 1/R term dominates over the
others. Moreover, as a consistency check one can easily
verify that (a) and (c) above correctly reproduce the
asymptotic behavior of the general solution for R~~
and for R ~0, respectively.

(d) R =0. In this case Eq. (6.2b) gives the relationship
between the total energy and the radius of the bubble at
rest. Thus, the energy spectrum is

A+ —A

48~ p

and then recollapses, the whole cycle occurring in the time

where we have set (3/A )=RD. We observe from Eq.
(5.17) that only the horizon of the interior geometry enters
this relationship so we cannot define any rest point
R &RD. This limitation agrees both with our choice of
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~ =R/RD, y =E/4~pRD',

and with the definition

(6.20)

standard spherical coordinates, which cannot be extended
across the cosmological event horizon, and with the defi-
nition of E; in fact for R )RD we can no longer define a
timelike Killing vector and therefore Eq. (3.9) becomes
physically unreliable. In terms of the dimensionless vari-
ables

to combine analytical and numerical techniques to solve
this equation. As previously mentioned, this equation
possesses a single maximum and at most two roots. Using
this information, along with the time reflection and time
translation symmetries of (6.1), it is possible to splice ap-
proximate analytical solutions (which are valid for certain
ranges of R) with numerical solutions (which are em-
ployed outside these regions). In particular, the form of
the equation to be solved is

a= (A —A+ —48~ p ),
24~p

(6.21) (R') = AR +B +C— +D =g (R)
1 1

R R4

the energy spectrum is represented by the curve

y =ax-'+x'(1 —x')'" (6.22)

4+ 3a +
~

a
~

(9a + 8) '~
X=

6(1+a )

We also note that

(6.23)

In the domain of definition 0 &x & 1 there is a single max-
imum

with A, B,C,D constants which may be computed from
(6.1). For large R, small R, and near the aforementioned
roots and maximum, g(R) may be approximated by some
function for which (6.1) has an analytical solution; else-
where, numerical integration may be used to interpolate
between such solutions. All such solutions fall into one of
the four classes of behavior mentioned above.

VII. BUBBLE DYNAMICS IN MINKOWSKI SPACE

dy=0 and OO

dx dx

and that y =a when x = 1. Therefore the curve intercepts
the x axis only when a & 0. In this case the x intercept is
given precisely by

RD ——H (6.24)

which is the minimum radius at the bouncing point for a
bubble with E =0 [cf. case (a)].

Finally, a special subcase which is worth mentioning is
characterized by p=0, A+ ——0. In this case there is no ki-
netic term in the action functional and the energy spec-
trum (6.19) reduces to the simple relationship

1 R
R

6 2 RD'
(6.25)

Thus, in the absence of surface tension the membrane is
simply the geometrical boundary of a "bag" supported
purely by its own volume tension. This is strictly a vacu-
um effect due to the gravitational interaction of the F
field and whose astrophysical significance, if any, remains
unclear to us. An extreme case of Eq. (6.25) is one in
which the Schwarzschild radius Rz ——2E and de Sitter ra-
dius RD =(3/A ) coincide with the radius R of the bub-
ble. This is a static configuration, even though dynami-
cally unstable; any amount of surface energy (p~0), how-
ever small, would drive the object to its collapse into the
central singularity. The object represented here is the
crudest model of a star; it consists of a ball of de Sitter
"vacuum fluid" endowed with nonvanishing energy densi-
ty and negative pressure. Interestingly enough, if one
takes for A the typical energy density of nuclear matter,
say p=10' g/cm, one obtains R =10 km which is of the
order of the limiting size of a neutron star prior to its
gravitational collapse into a black hole.

We close this section by remarking that there is no gen-
eral analytical solution to Eq. (6.1). However it is possible

Of special interest in our theory is the "flat" spacetime
limit, i.e., the limit in which the gravitational interaction
is switched off and the manifold M is Minkowski's space-
time (R,g). In this limit our action functional describes
the dynamics of a closed surface embedded in Minkowski
space and coupled in a gauge-invariant way to the general-
ized Maxwell field F:

Sq, , ———p f d'tv' y ——fJ"—~(x)A„(x)d x

1
d xF" ~ (x)F „(x).

2X4~
(7.1)

S,rr= f d xL~co —&c f d x

—p f d'rv' ). — (7.2)

According to this action, the dynamics of the quark-gluon
system at short distances, within the bag domain U is
governed by the Lagrangian LQCD, However, the onset of
the confinement mechanism at distances of the order of
the hadronic size (typically, 1 fm) is guaranteed by the

This special form of the action acquires a special
relevance in particle physics in view of the observed prop-
erties of hadronic systems. It is well known that strongly
interacting particles are composite objects whose structure
may be explained in terms of more fundamental entities
(quarks and gluons) permanently trapped in the interior of
the hadron. ' At present there are essentially two alterna-
tive views about confinement: (i) in the low-energy region
where nonperturbation effects come into play, quantum
chromodynamics will eventually lead to the force law
needed for quark trapping; (ii) the phenomenon of con-
finement is simply postulated in phenomenological
models involving extended structures ("bags") by intro-
ducing a "cosmological term, " such as the vacuum pres-
sure in the action for the hadronic system.

A typical effective action for a confined quark-gluon
system is
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1 inside the bag,gvx =.
0 outside the bag .

(7.3)

It is stipulated that Ov(x) depends only on the surface
coordinates of the bag and has the property

"vacuum pressure" term in S,ff as well as by the kinetic
term for the bag's boundary. In order to stabilize the bag
against the pressure of the hadronic constituents one must
provide an amount of energy —,c per unit volume and an
amount of energy p per unit surface.

It should be noted that the existence of the vacuum ten-
sion in a finite domain is simply postulated. In order to
extend the space integrations to be over all space in any
Lorentz frame, in the literature on hadronic bag models
one encounters the "volume step function" Ov(x) which is
defined by

the F field.
The connection with the confinement mechanism of the

bag model can be established also through the Lorentz-
force equation which, in Minkowski space, simplifies con-
siderably. Here we have two options: (i) derive the equa-
tion of motion directly from the action (7.1) and then
deduce the radial equation for a spherical bubble, or, (ii)
specialize the radial equation of motion previously ob-
tained to the limit in which the gravitational interaction is
switched off. We have checked that both methods lead to
the same result. The first possibility was rigorously
analyzed in Ref. 14; hence the computational details will

not be reproduced here. We start instead directly with the
expressions (5.12)—(5.15) of the first integral of motion in

which we restore the explicit dependence or Newton's
constant:

B„Ov(x)= n„—5av(x) (7.4) EGN = ( Ein E()U1 )R
3

r)„'F=cn„5sv(x) (7.6)

which is the same form as Eq. (7.4). Hence, the solution

where n„ is the unit outward spacelike normal to the sur-
face of the bag and 5sv(x) is the surface 5 function with
the property

f d x B'av(x)f (x)= f (d x)svf (x) . (7.5)

The integral on the right-hand side (RHS) is restricted to
the volume enclosed by the bag surface.

The connection between our formulation of bubble
dynamics and the confinement mechanism of the bag
model can be appreciated by observing first that our
Maxwell equation for the F field is a mathematically
rigorous and gauge-invariant formulation of the relation-
ship (7.4).

Indeed, by construction, the dual current *J (x ) is
directed along the spacelike normal n to the world track
of the bubble and, at each point on the bubble, possesses a
surface 6-type singularity. Thus at each point on the sur-
face of the bubble the Maxwell equation becomes

1/2
4~ 2

2EG
+27TpG~R 1 — G~ coutR — +R

+ 1 — G~EjnR +R
1/2

(7.10)

where we have set

++=4~Gx ~in, out (7.11)

and e represents the energy density in the new units. In
Minkowski's space: G& ~0 and, in terms of Minkowski's
time coordinate

.
2 dR

d7

2
dR
dt

2

d7.

2
U2

1 —U
(7.12)

where v=dR/dt is the velocity of a point on the mem-
brane. Therefore, using Eqs. (4.10) and (4.11),

*F= —cev(x), (7.7)
2

~in ~out c —2C u (7.13)

where now we set the global constant e'=0 on account of
the translational invariance of Minkowski space. The
contribution of the F field to the energy-momentum ten-
sor is now

we obtain

3E
4mp

where

3R

( 1 2)1/2
(7.14)

Tg'"= —, c ri" Ov(x) . — (7.8)

Thus, TP"contributes to th'e energy but not the momen-
tum of the bubble and the volume contribution to the total
energy of the bubble is given by

Ep ———,c V, (7.9)

where V is the volume enclosed by the bubble. Thus, the
interior vacuum (or hadronic phase) is endowed with a
nonvanishing volume energy density which, in a Min-
kowskian background, is precisely the "volume tension"
advocated in the bag model in order to confine quarks and
gluons. It is worth observing that in our formulation, this
vacuum energy density is simply the (finite) self-energy of

C, Ca
p 2

(7.15)

where we have defined R o
——&E /4m p

The solution to this equation is the following elliptic

which agrees with the radial equation established in Ref.
14. For our immediate purpose we note the following
properties. When a'=0, as we are presently assuming
and, in addition, c =0, there is no coupling and the bubble
is simply under the influence of its own surface tension.
The equation of motion (7.14) reduces to

(7.16)
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function:

R (t) =Rocn
v'2t 1

Ro
' v'2 (7.17)

ment of quarks and gluons, since the energy of the
quark-gluon system will stabilize the bag into a physical
hadron.

The bubble starts from rest at time t =0 as a sphere of ra-
dius Rp, but collapses to its central singularity R =0 at
the time

RpT= ~K

2

(1 —v )
2 1/2

~ R'+P (7.18)

The physical requirement v
~

(1 is therefore equivalent
to the following two conditions on the range of R for a
given value of the parameter P:

A, (R +/3) &0 (7.19)

and

kP(R) &0, (7.20)

where P(R) is the polynomial

P(R)=R' ——R +P (7.21)

whose positive real roots are the points of rest (v=0) of
the bubble. The polynomial P(R) can be brought to
canonical form

P(r) = r +3pr+2q (7.22)

by the substitution R = r + 1/k where

$ /g2 q
2 A3

(7.23)

Its discriminant 6 is thus given by

b, = —p' —q =p (7.24)

Since P & 0, P (R) has only one positive root R given by
(1) for P&4/A, (6 &0), R =(I/A, )(1—2 coshg) where
cosh30=PA. /3 —1, (2) for @=4/X (5=0), R = —1/k,
(3) for P&4/A, (b, &0), R =(I/A, )(1—2cosg), where
cos30 =pA, /2 —1 (0 & 30 & m ). It follows from Eq. (7.20)
that R &R =—R „. Therefore the solutions are bounded
and singular as in the case X=0.

We have therefore demonstrated that, provided A, &0,
the bag collapses under the combined effect of volume
and surface tensions whatever the value of the initial ra
dius. This mechanism of collapse implies the confine-

The qualitative behavior of this extreme case is rnain-
tained in the interesting case c&0, a'=0 (so that X &0).
To appreciate this point it is convenient to introduce the
definition

P= — (03 E
4 ~pk

so that the equation of motion becomes

VIII. CONCLUSIONS

We have shown that the physics of two distinct vacuum
phases (characterized by two constant arbitrary energy
densities) is describable by an action functional invariant
under generalized gauge transformations of a rank-3 an-
tisymmetric tensor field. Such a formalism follows, as
discussed in Sec. II, from a consideration of the interac-
tions between membranes, and is a natural generalization
of the interactions between pointlike/stringlike objects. In
each case a gauge principle is needed to preserve locality
and positivity of energy in flat space. However, in con-
trast with the pointlike/stringlike cases, our action func-
tional does not lead to propagation of disturbances by
waves but instead yields the aforementioned two phase
medium. The boundary between these two vacua (the
bubble) evolves according to Eq. (6.1) which also follows
from our formalism. No ad hoc assumptions concerning
either the shape of a Higgs potential or the geometry of
spacetime were employed; the complete dynamics of this
system followed from minimization of our action func-
tional ~ The equation of evolution of the bubble has been
shown to agree with that derived by Israel and Chase. ''

We have separately considered the cases of vanishing and
nonvanishing gravitational field, the latter being the Min-
kowski space case.

In the gravitational case we have shown that the evolu-
tion of the bubble corresponds to various cosmological
scenarios: the bubble either inflates exponentially, oscil-
lates, or remains static. In particular, our formalism pro-
vides an effective approach to inflationary cosmology as
we have shown in Sec. VI. What makes inflation possible
in the gravitational case is the fact that the background
cosmological constant cx' cannot be set to zero due to the
coupling of the F field to gravity. Consequently in curved
spacetime the volume energy can be negative due to the
presence of two separate cosmological constants A+ and
A; the total energy can be zero as in the case of the ex-
panding de Sitter bubble of inflationary cosmology. In
contrast with this, in the flat-spacetime case the volume
energy must be positive definite, leading to the collapse of
the bubble as shown in Sec. VII. In the context of the ha-
dronic bag model this implies the confinement of quarks
and gluons, whose energy must stabilize the system
against such collapse. Since the energy of the bubble in-
creases with its size, it would cost an infinite amount of
energy to isolate the hadronic constituents as free parti-
cles, thus permanently confining them to the interior of
the bubble. ' We conclude that our formalism provides an
effective action for describing the physics of two phase
media, whether it be for inflation or for hadronic physics.
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APPENDIX A: THE CALCULATION OF E

We wish to calculate the surface and volume energy
contributions to the total mass energy of a spherical bub-
ble according to the defining Eq. (3.9) supplemented by
the specific expressions (3.7) and (4.9) of the energy-
momentum tensor.

The components of the unit norm timelike Killing vec-
tor are

by the difference (2~) '(A —A+). With this under-
standing the volume energy contribution is

Ep T'c——(c —2a') 0yr sinO dr d O d PS
A —A+

6
R (Al 1)

Equations (A10) and (All) lead to the first integral of
motion quoted in the text [cf. Eqs. (5.12)—(5.15)].

gp
——( —Q —goo, 0,0,0) .

The surface element is

(Al) APPENDIX B: THE ISRAEL-CHASE APPROACH
TO THE RADIAL EQUATION

dS =n (g' ')' dr dOdg, (A2)

where n is the normal vector to the spacelike surface of
integration S,

Let r =R (r) be the equation of X, the timelike hyper--

surface of the bubble dividing spacetime into two four-
dimensional domains: U+ and U . Then the intrinsic
metric on X is given by

n =(goo 0,0,0), (A3)
(dS )~———dr +R (r)dQ (dQ =dO +sin Odg ),

and g' ' is the determinant of the three-dimensional
metric on S:

(g I-")'"=&—1/g„, r'sinO . (A4)

f f (»)o(»)d» = ,
' (f+ (0)+f (0—)) (A6)

which amounts to averaging out the contributions of the
inner and outer geometries, as we have repeatedly done in
the main text of the paper. Therefore,

&s = —2~P» '[( 1'+ )' —"goo+ ( —7'") '"goo l

where

With these data and integrating over the angular vari-
ables, the surface energy of the bubble is

Es= 47rp dr r —y g~6 r —R t . A5
0

The recipe to handle the singularity on the surface of the
bubble is the standard formula for symmetrical integra-
tion

(dS ) =f 'dr +r dQ f dt, r—&R(r),
(dS )+ f+ 'dr +r d——Q f+dt+, r—~R(r) .

(B2)

(B3)

where f+ are defined in the main text by Eqs. (5.4) and
(5.5). We have already shown, by proper choice of t+(r)
on X, that the metrics induced by (B2) and (B3) on X,
agree with the intrinsic metric (Bl).

Let U now represent the unit velocity vector tangent to
X and n represent the unit spacelike vector normal to X
and directed, say, from U to U+. Then one has

(Bl)
where ~ represents the proper time along the coordinate
lines O, p =const. The Israel-Chase ' approach requires
the knowledge of the line elements in both U+ and U
In general, the line element in both domains is reducible
to the Reissner-Nordstrom metric, by extension of
Birchoff's theorem. In particular, our action functional
specifies the following form of the line elements:

00y+ =f+ f +
'+—dR

dt+
(AS)

and

r U =R(r) (B4)

The two coordinate times t+ are now eliminated in favor
of the bubble proper time r by matching the two induced
metrics on the bubble with its own intrinsic metric. This
procedure gives Therefore,

P g P (B5)

t

dt+
f+R

1+f+ 'R
(A9)

where R—:dR /dr and R R(r=) is now understood as the
scale factor of the intrinsic metric. Substituting Eq. (A9)
and (A8) into (A7) gives finally

(r n )=r ttU n +r
d~ 6~

p
- 6U~=r

~

~n U —Rn~
6~

(B6)

Following Chase, ' the equation of motion of the mem-
brane takes now the form

Fs ——27tpR [(f++R )' +(f +R )' ] . (A10) 6U
n~ =4~(p+ 2P), (B7)

In order to calculate the volume energy of the bubble we
need only the first term in Eq. (4.9). Indeed, the volume
energy Ez is measured with respect to the overall energy
background of the spacetime manifold and this implies
that the effective energy density inside the bubble is given

(pU~) ~+PU~ ~ =[T ttn U.~], . (B8)

where, by definition, a, P, . . . =1—4 (coordinates
r, O, P, t+), i,j, . . . =2—4 (coordinates O, p, r), p, P= surface
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energy density and pressure; [4&]—:@+—N, and a sem-
icolon denotes intrinsic covariant differentiation with
respect to the three-metric of X. Since ( Tp )+ cc 5p for
both Schwarzschild and de Sitter spacetimes, Eq. (88) im-
plies

where

"=—P" (4 R')
d7

(89)

M (r) =4mpR. (810)

6U
R n (811)

and using Eq. (87) we arrive at

represents the total proper mass of the membrane. Equa-
tion (89) tells us that the rate of increase of surface energy
is equal to minus the rate of work done by the pressure in
expanding the bubble. In order to arrive at our form of
the radial equation, from Eq. (86) we obtain

=[r
~

pn UP] — (r na)
dv.

aid of the connection coefficients listed in the text leads to
the results

(r
~

pn UP)+ ——0,
r n =F=[f(R)+R )'~

where we have used the parametrization

U =(R,O, O, t), n =(t,0,0, —R)

and the matching condition

(813)

(814)

—1=f 'R ' ft '.—

Hence, Eq. (812) becomes

IdF
d7

=4trR (p+ 2P) =—d M(r)
d~ R

(815)

where the last equality follows from Eqs. (89) and (810).
Integrating Eq. (815) and noting that the constant of

integration is necessarily zero (cf. Chase, ' p. 142) leads to
the final form of the radial equation

47TR(p+2P) =[r ~apn Up] — [(r,an )] .
d7-

(812) F —F+ ——4mpR (816)

The explicit calculation of the RHS of Eq. (812) with the
derived in the text [cf. Eq. (5.17)] via the Lorentz-force
equation.
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