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Particle creation due to the changing spacetime metric at the end of an inflationary era in the ear-

ly Universe is discussed. The Universe is assumed to make a transition from de Sitter space to ei-

ther a radiation-dominated or matter-dominated universe. A perturbation approach is used to calcu-
late the number density and energy density of massless, nonconformally coupled particles created by
this transition. It is found that their energy density is typically of the order of p, /ppi, where p, is

the value of the cosmological constant in the de Sitter phase and ppl is the Planck energy density.
This is approximately the energy density of a thermal bath at the Gibbons-Hawking temperature of
de Sitter space. The possible applications of this effect to inflationary models is discussed. It is

shown that gravitational particle creation is capable of reheating the Universe after inflation and of
being the source of the matter in the Universe. This effect makes it possible to avoid the difficulty
with reheating which inflationary models with weakly coupled scalar fields otherwise encounter.

I. INTRODUCTION

Since the original proposal of the inflationary model by
Guth, ' several variations of inflation have been proposed.
All versions of the inflationary model contain certain
essential features. These include a de Sitter phase in
which the Universe expands by a factor of at least e and
a mechanism for ending the de Sitter phase and reheating
the Universe. The reheating is typically assumed to occur
through the damping of the coherent oscillations of a
Higgs scalar field by coupling to other fields. However,
the change in the spacetime metric at the end of inflation
will itself create particles due to their coupling to the
spacetime curvature. This type of particle creation was
first discussed by Parker.

The purpose of this paper is to investigate this gravita-
tional particle creation in spacetimes which make a transi-
tion from de Sitter space to another Robertson-Walker
universe, and to discuss its possible role as a reheating
mechanism in inflation.

II. PERTURBATION CALCULATION
OF THE PARTICLE CREATION

We take the metric to be that of a spatially flat
Robertson-Walker universe:

/+/RE=O, (2)

where R is the scalar curvature and g is an arbitrary con-
stant. If g& —,', this field is not conformally invariant and

ds =dt —a (t)dx =a (q)(dg —dx ),
where dt =a dg. In such a conformally flat spacetime,
quanta of conformally invariant fields are not created.
However, massive particles and particles which are not
conformally coupled to the background gravitational field
are produced. An example of the latter is a scalar field
which satisfies the wave equation

particle production occurs.
In general, the solution of Eq. (2) in a given metric is a

nontrivial task, and there are few scale factors for which
the particle creation rate may be calculated exactly. How-
ever, if one performs a perturbation calculation treating

as a small parameter, it is possible to obtain sim-

ple expressions for the number density and energy density
of created particles. This was done by Zel'dovich and
Starobinsky and by Birrell and Davies. The essential re-
sults will be quoted below. Let

V(g) =( —, —g)C(g)R (g), (3)

where C=a . The scalar curvature R may be expressed
as

R = 3C '(D+ —,D ), (4)

where D =C/C and an overdot denotes differentiation
with respect to g. If

p = f e ' "V(g)dg,2'
the number density of created particles is

n=(2' a )
' f P

~

codco

X V(gi)V(q2) .

Here p is an arbitrary mass. These expressions for n and

and their energy density is

p=(2vr2a )
' f co iP ~

dco .

These quantities may also be expressed as coordinate-
space integrals:

n =(16tra )
' f V (ri)dq

and

p= —(327r a )
' f dg, f dgqln(

~ gi —gz ~

Itt)
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p are of order (g ——„' ) . The contributions which have

been ignored will in general be 0(
~ g ——,

'
~

). Gravitons
in a particular gauge are equivalent to massless scalars
with /=0 (Ref. 6). Thus Eqs. (8) and (9) with /=0 and
an extra factor of 2 to account for the two polarization
degrees of freedom yield a reasonable estimate of the
number and energy densities of gravitons. This estimate
is at least qualitatively correct and is presumably accurate
to about 20%%uo.

We require that V(q)~0 as g~+ co sufficiently rap-
idly that the above integrals converge at both limits. Con-
sequently, p is independent of p because

V g dg=0. (10)

The requirement that V vanish in the past and in the fu-
ture is linked to the need for asymptotic in and out re-
gions where particle number is well defined. This would
certainly be satisfied if spacetime were to be asymptotical-
ly flat in both the past and future. More generally, it will
be satisfied if one can define adiabatic vacuum states in
either region. This is the case in our present problem,
where the in region is de Sitter space, in which the de
Sitter-invariant vacuum state is an adiabatic vacuum
state, and the out region is a Robertson-Walker universe
which is asymptotically flat in the future. We will assume
that g&0 so that the scalar field is both classically stable
in de Sitter space and possesses a de Sitter-invariant vacu-
um state. ' The in-vacuum state for the particle creation
calculation is taken to be the de Sitter-invariant vacuum,
and the out vacuum is the usual Minkowski vacuum. The
latter is the appropriate choice because the spacetime is
asymptotically flat in the future. It may be regarded as
effectively flat after the curvature has fallen to some
small fraction of its value in the de Sitter phase. Particle
number is less well defined in the in region where the cur-
vature is nonzero. Fortunately this does not introduce
any significant ambiguity into our calculation. After
several e-folding times of inflation, essentially any choice
of in state is indistinguishable from the de Sitter-invariant
state and hence the choice of in state does not affect the
results of a particle creation calculation.

Because the perturbation approach is not well suited for
massive particles if the scale factor does not approach the
same constant value in both the past and the future, ' we
restrict our attention to the massless, nonconformally cou-
pled scalar field. Although in de Sitter space, where R is
constant, both fields satisfy the same wave equation, they
cease to be equivalent after the end of the de Sitter phase.

The factors of a and a in n and p, respectively, re-
flect the dilution of the particles by the expansion after
their creation. We can regard the particle production as
having effectively ceased after V and V have become
small compared to their maximum values. From that
time onward, the particles behave as a photon gas.

Let us first consider an abrupt transition from de Sitter
space to a radiation-dominated universe. The scale factor
may be taken to be

The scalar curvature is

12H g &goR=. (12)

Hence V =0 for g & qo, and the number density of created
particles just after the transition is

n =[16~a (rjo)] ' J V~(rI)dri

=(12') '(1 —6g) H (13)

Note that this density is independent of the time go at
which the transition occurs.

We may also investigate the spectrum and the energy
density associated with this transition. From Eq. (5) we
find that P is expressible as an incomplete I function:

P =2(1—6$)1 ( —1,2iror)o) . (14)

The frequency spectrum of particles falls off as co at
high frequencies:

P„~ ——,
' (1—6g)'(repro) ", cu~ co . (15)

C(g) =a'(g) =f (Hri),

where

(16)

1/x, x & —1,
f (x) = .a„+a~x +a~x +a3x,2 3

bo(x+b, )', x )xo —1

—1(x (xp —1 (17)

This is a universe which makes a transition from de Sitter
space to a radiation-dominated universe on a time
bg=H 'xo. We require that f(x), f'(x), and f"(x) be
continuous at x = —1 and at x =xo —1. These six condi-
tions then uniquely determine the coefficients
ao, a ~,az, a3, bo, b] to be

ap: 6—S] /(xpSp )

a, =8—3S] /(xpSp),

ap ——a] —5, a3 ——ao —6,
bo ——3S& '(9xo +12xp+4),
b, =S)[6(3xo+2)]

(18)

where

Thus the integral in Eq. (7) for p is logarithmically diver-
gent at the upper range of integration. This reflects the
fact that this abrupt change in the metric produces too
many particles in the higher-frequency modes. As will be
shown below, a smoother transition leads to finite results
for both n and p.

The basic difficulty with the abrupt transition is that
the scalar curvature changes discontinuously at q=go so
V acquires a 6-function term. If the scale factor and its
first two derivatives are continuous, then p will be finite.
Let us consider the following choice of scale factor:

(H
i g i

) ri & go & 0
a(g)= .

H[a —rip+(H
l

rio ')] ri& rio

St ——2&3(3xp +6xp +7xp +6xp+3)'
—2(3xo +2xp —1)
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and

Sp =S& +9xp + 10xp + 1

The energy density may be expressed as

H4

128m~a 4

where

(20)

(21)

3.0-

xo —1 x —10I= — dxI dxq» x~ —xz
1

V (xI)V (xz)

(22)

2.0-

and

V( )=f 'lf"f ——'(f')'] (23)

For x & —1, V(x)=4/x and for x &xo —1, V=O. Its
behavior in the interval —1 & x &xp —1 can be obtained
from Eqs. (17) and (18). However, in the limit that
xp«1, it is approximately a linear function of slope—4/xp. If we let

1

I.O 2.0

) x (—1
X

Xp
—1 (Xi (Xp —1

then I may be explicitly evaluated to be

I = —161nxo+32(xo —1) ~xo lnxo+4

(24)

Xp

FIG. 1. The energy density p and number density n of creat-
e particles are shown for the case of a t to a transition to a
radiation-dominated universe. Here x =H 15 hw ere hg is
the transition interval in conformal tim Fime. or xo «, n ap-
proaches a constant and p ~ a ln(1/ ) hxo, w ere a is t e scale
factor at the end of the transition. For xo &~1, p~ a and
n ~a

so

I —16 lnxp as xp~0 (25)

Because a = 1 at the time of the transition, q = —H ', we
have that b, t=Ag if xo ——

1
Hb, rj

1

«1. Thus if the tran-
sition occurs on a comoving time scale At small compared
to H ', we can approximate the energy density of created
particles as

(1 —60) Hp= 1n(1/Hb, t) . (26)

V(rI ) =2(1 —6g)(g'+ go') (27)

The scale factor which corresponds to this form of V may
be found by solving the equation

Thus p diverges logarithmically as At~0. As our previ-
ous calculation has shown the number d 't

) er ensi y n is finite
in this limit and is given by Eq. (13).

For arbitrary values of xp, both p and g may be
evaluated numerically. The results of such a calculation
are shown in Fig. 1. We see that as xp~O, n approaches
the finite limit of Eq. (13) while p is asymptoticall iven

Let us now consider a universe which makes a smooth
transition from de Sitter space to a matter-dominated
universe. Let V())) be given by

/3„= — (1—6()e
CO'gp

(29)

and, from Eqs. (6) and (7), the number density and energy
density are found to be

and

(1—6g)
2'gp a

(30)

(1—6g)P=
pa

First consider the limits g~+ oo. Here the solutions are

C-C 4
D ——2/g and D-4/g, which lead to C-C dan

Ig, which are the de Sitter space and the matter-
dominated universe, respectively. We must still show that
there is a solution which is de Sitter space in the past
g~ —ao ) and the matter-dominated universe in the fu-

ture g~+ ao ). This may be done by numerically solving
E . (28&. Thq. ). e resulting solutions for a())) are shown in
Fig. 2. In all of the cases investigated, a solution which is
asymptotically de Sitter space in the past becomes a
matter-dominated universe in the future (rather than re-
turning to de Sitter space) and makes the transition on a
time scale of Ag=gp.

From Eqs. (5) and (27), the coefficients P are found to
be

D+ —,D'=( ——3g) V=4()I'+ ') —' (28) We note that the spectrum of created particles decays ex-
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III. DISCUSSION AND APPLICATIONS
TO INFLATIONARY COSMOLOGY

IO ~ We have seen that a universe which makes a transition
from de Sitter space to a matter- or radiation-filled
universe results in the creation of an energy density of the
order of

IO

IO

-20 - IQ IO
I

20 30

FIG. 2. The scale factor a(g) obtained by numerically in-

tegrating Eq. (28) with go ——5.0H ' is shown. The dotted line is
the function 49.9/

I
tl and the dashed line is the function

1.90' . Because a (g) makes a smooth transition from the
former to the latter, this represents a universe which makes a
transition from de Sitter space to the matter-dominated universe
on a time of order of go.

ponentially at high frequencies.
Until g= —go, the scale factor is approximately that of

de Sitter space: a = (H q ~

) '. Thus the value of a at
the beginning of the transition is a =(Halo) . In the
limit go~0, the product goa remains finite and ap-
proaches H '. Thus both g and p are finite in the limit
rlo~0. The reason for this is presumably that the V(rt)
given in Eq. (27) is continuous for all r)„. That is, al-
though V(rl) is large at q =0 when go is small, it does not
develop a discontinuity at the origin for small ~~ ~ The ef-
fect of the large increase in V in the interval —go & g &0
is canceled by a corresponding decrease in the interval
O&g &go. If one were to have a sudden transition from
de Sitter space to the matter-dominated universe in which
a and a are continuous but R is discontinuous, then V
would be discontinuous and p will diverge. If the transi-
tion is governed by the dynamics of scalar field whose en-
ergy density p, is continuous, this will be the case. In de
Sitter space, the trace of the Einstein equation yields
R =2~p„whereas in the matter-dominated phase the cor-
responding relation is R =8~p, . Thus a transition to a
matter-dominated universe which occurs on a time scale
At «H ' will lead to a rapid increase in R and hence V.
The expressions for the energy density p of created parti-
cles should then be of the form of Eq. (31) but with an ex-
tra factor of ln(1/Hb, t), as in the case of the transition to
a radiation-dominated universe, Eq. (26).

877H = pvpp (33)

where pp~ —(10' GeV) is the Planck density. If we then
make a transition to a radiation-dominated universe, the
energy density of created particle is (in Planck units)

1p=(1 —6g) (p, /pp))a ln
Hht

(34)

If At —H ', p —(1—6g') (p, /pp~) just after the transition.
Thus if inflation were to occur near the Planck scale, we
would have p=pp~. On the other hand, if p, =(10'
GeV), tQen p=(l —6g) (10"GeV) (Ref. 11).

Gravitational particle creation will reheat the Universe
to a temperature of the order of (p„ /pp~)'~ . If this is
greater than the mass of the gauge bosons, one can gen-
erate the observed baryon asymmetry by CP-violating de-
cays of these bosons. ' ' Baryon asymmetry can also be
generated by decay of Higgs bosons if the reheating tem-
perature is at least 10" GeV (Ref. 14). It is also possible

p=( 1 —6g) 10 H a

as long as the transition is not too abrupt. This energy
density is of the order of that associated with a thermal
bath at the Gibbons-Hawking temperature T =H/2~.
One is tempted to ask whether these particles are created
by the transition, or whether one can regard them as al-
ready being present in de Sitter space and then "dumped"
at the end of inflation. This question does not have an
unambiguous answer because particle number is only
clearly defined after the end of the de Sitter phase. If one
chooses the latter interpretation, then particles must be
continuously created in de Sitter space to compensate for
the effects of the expansion and maintain a constant parti-
cle density. In the case of quick transition which changes
the scalar curvature, at least the high-frequency part of
the spectrum is created by the transition. In any case, the
present results show no evidence of an instability of de
Sitter space due to particle creation, in contradiction to
the recent claim of Mottola. ' Such an instability would
require particles to be created faster than they are red-
shifted by the expansion in order that the energy density
grow in de Sitter space and produce an instability. In the
present calculation this would require that the energy den-
sity increase as the length of the inflationary phase in-
creases, which is not the case.

Let us now consider the possible relevance of particle
production by the gravitational field to inflationary
cosmology. Suppose that the inflation is produced by a
vacuum energy (cosmological constant) p, . If inflation
were to occur at the grand-unified-theory (GUT) scale,
then p, =(10' GeV) . Einstein's equations relate p, to the
parameter H:
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pe=p@ .

Then the energy density red-shifts as
3(1+a)

p~ =p.
a

(35)

(36)

where ao is the scale factor at the end of inflation. As
long as p~, dominates the expansion, the scale factor is
given by

0 (r) 2/r[3( I+a)]

and hence, because p ~ a

(37)

2(3a —1)
3(a+1) (38)

Here po is the initial energy density of created particles at
to, the time at which inflation ends. If a & —, , the scalar
field's energy density will red-shift faster than that of the
created particles and eventually become negligible.

The value of a depends upon the details of the potential
V(4) which governs the evolution of N. If the potential
is approximately quadratic, then the coherent, harmonic
oscillations of N behave as a pressureless fluid. However,

for gravitational particle creation to generate a baryon
asymmetry directly if CP-violating interactions are
present. '

It is usually assumed that the end of inflation is
governed by the dynamics of a scalar field N. In the "new
inflation" model of Linde' and Albrecht and
Steinhardt, ' this field evolves classically from an unstable
maximum to a minimum. If the oscillations about this
minimum are damped, then particles are produced and
the Universe reheats. ' ' In Linde's "chaotic inflation"
model, ' the field evolves from a nonmaximum value, but
reheating is again assumed to occur through damping of
oscillations. If these oscillations are damped efficiently,
then the vacuum energy p, of the N field is essentially all
converted into thermal radiation. Unless inflation occurs
near the Planck scale so P=p, =pp1, the effect of gravita-
tional particle creation will then be small. However, if the
damping of the oscillations of + is weak, it is possible for
gravitational particle creation to be the dominant mecha-
nism for reheating the Universe. The constraints on in-
flationary models that adequate inflation occur and that
density fluctuations not be too large in fact require @ to
be very weakly coupled to other fields. This requirement
makes it difficult to achieve adequate reheating by damp-
ing of N oscillations alone. Gravitational particle creation
offers a possible solution to this difficulty.

The change in the metric from de Sitter space to that of
another Robertson-Walker model will create a matter en-
ergy density p=(p /pp~). However, the total energy densi-
ty is still dominated by the N field, if P (Pp1. In order
that most of the mass of the Universe at later epochs be
that arising from particle creation, it is necessary that the
scalar field N have a large positive pressure so that its en-
ergy density red-shifts more rapidly than does p. Let the
equation of state of the 4 field be

more generally there will be a pressure. Consider the po-
tential

V(C&) =A, N ",
for which the equation of motion is

+2n g+2n —1 p

(39)

(40)

and the energy-momentum tensor is

T„=4„4 , g„—C—& pC& ~+g„V(&b) . (41)

If &b=N(t), then the energy density and pressure are,
respectively,

p (42)

and

g) 2 g(p27l (43)

If the period of oscillation is short compared to the expan-
sion time, then &=4, and

+2gn +2n —1 p (44)

or

2+ gq 2n gq 2n (45)

where +o is the amplitude of the oscillations. Thus

pc =~No pc =A(@o —24 (46)

To find the average pressure, we must average W " over a
period of oscillation. Note that

—
( &bN) =@ +@@=@ —2kn @ " .

dt

Average this equation over a period to find

(e') =2nz(e'"),
and hence from Eq. (45), that

(@2n) ( + 1)—1@ 2n

(47)

(49)

Thus we have an equation of state of the form
(pz, ) =apz„where '

n —1a=
n+1 (50)

Anharmonic oscillations produce a positive pressure.
For n =2, a= —, ; the oscillations in the conformally in-
variant N model behave like radiation. All values of
n &2 yield a & —, , so the energy in the oscillations red-
shifts more rapidly than that in radiation. If the potential
does not have a minimum but rather approaches a con-
stant value as N~ ~, there will be no oscillations but N
will grow without bound. The possibility of potentials of
this type in supersymmetric theories has been discussed by
Wit ten. Here we have asymptotically that
p@

——p+ ———,W; so o. =1. For a generic potential in which
oscillations about a minimum occur, large amplitude os-
cillations can be expected to be anharmonic. Just after the
end of inflation such large amplitude oscillations are ex-
pected, so in general there will be a nonzero pressure. If
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the potential is not of the power-law form, Eq. (39), the
effective value of a may decrease as the amplitude of the
oscillations decreases. If a& —,', the scalar field energy
density will eventually become smaller than that of the
created particles. In order that the scalar field energy
density not alter the standard-model nucleosynthesis pre-
dictions, we should have p@ ~p at t = 1 sec. If
(p, /po) = 10' at to ——10 sec, which are values associat-
ed with inflation at a scale of 10' GeV, then p+ &p at
t =1 sec if a &0.7. This can be satisfied in several ways:
(1) by the potentials without a minimum and ct= 1 dis-
cussed above; (2) a power-law potential, Eq. (39), with
n ) 5; and (3) by more general flat-bottomed potentials for

which the effective value of a remains &0.7. It is thus
possible to have models in which the energy density of
particles is eventually dominant, and most of the matter
in the Universe arose from gravitational particle creation.
This avoids the problem of inadequate reheating from
which inflationary models with weakly coupled scalar
fields otherwise suffer.
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