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In both the Starobinsky and the R? models of the inflationary universe, after the inflationary
phase the Universe enters into a period in which the scalar curvature oscillates rapidly. The rapid
oscillations in the geometry result in particle production when conformally noninvariant quantum
fields are present. By solving the semiclassical back-reaction equations the temperature to which the
Universe reheats due to the particle production is computed. It is also shown that the oscillations
are damped essentially exponentially with the result that the Universe evolves into a classical
radiation-dominated Friedmann phase. Both analytical and numerical solutions to the back-reaction
equations are obtained, with the results in accurate agreement with each other. The numerical
schemes presented here for solving the semiclassical back-reaction equations can be used for scalar
quantum fields with arbitrary curvature couplings and arbitrary masses. They are expected to be
useful for many future calculations of the evolution of the early Universe. The analytical analysis
presented provides some insight into the coupling between the quantum field and the higher-
derivative terms in the back-reaction equations. The implications of this are discussed.

I. INTRODUCTION

Many inflationary models! have been proposed in
which the Universe has undergone a period of superlumi-
nal expansion. In most of these models,’? the expansion is
driven by the false-vacuum energy of a Higgs field. These
“standard” models have an important drawback. The ef-
fective potentials of the Higgs fields responsible for the
inflation in these models have to have very specific
shapes’ in order for the models to describe our Universe,
i.e., for the models to deliver sufficient inflation, a decent
exit from inflation proper reheating, and reasonable densi-
ty perturbations. It is not easy to come up with a particle
theory in which such a Higgs field naturally exists.

In contrast, the higher-derivative inflationary models,
which are based on higher-derivative terms in the effec-
tive gravitational Lagrangian, clearly have an advantage.
It has been argued®* that these terms would have to exist
on the classical and/or quantum level. Two such models
have been proposed and studied in some detail.>*~® The
Starobinsky model is based on the semiclassical back-
reaction equations with conformally invariant free quan-
tum fields. Renormalization of the stress-energy tensor
for the quantum fields results in higher-derivative terms
in the equations and therefore many solutions. Starobin-
sky showed that de Sitter space is one of these solutions
and that for a certain sign of one of the regularization pa-
rameters it is unstable. This instability allows for a grace-
ful exit from inflation. Vilenkin® has shown, using a
wave-function analysis and the boundary condition of
“tunneling from nothing,” that the Universe is likely to
begin close enough to the exact de Sitter solution that
there will be sufficient inflation.

In the R? model the inflationary period is not exactly
de Sitter but appears at a time when the Hubble parameter
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H is linearly decreasing with respect to the proper time t.
In Ref. 4 it was shown that such a “linear phase” is gener-
ic if a Ricci scalar squared R? term is dominating over
other higher-derivative terms in the effective Lagrangian,
as assumed in the model.

Since the late-time evolution of the universe in the
Starobinsky model is also dominated by an R? term in the
effective Lagrangian, the two models have the same quali-
tative behavior at late times. In both models, near the end
of the inflationary phase, both the scalar curvature R and
the Hubble parameter H decrease in magnitude. The
Universe then exits from the inflationary phase and goes
into an oscillation phase with R «(1/t)sin2w¢t and
H o« (1/t)cos’wqt. The oscillation frequency w is deter-
mined by the coefficient of the R? term in the gravita-
tional Lagrangian. The scale factor a(r) goes like
123[1+sin(2wgt) /(3wgt)] so that when averaged over
several oscillations, solutions expand like classical
matter-dominated Friedmann universes. Hence Starobin-
sky calls this the scalaron-dominated phase in his model.

The oscillations in the geometry are expected to excite
the conformally noninvariant quantum fields living in the
Universe. The resultant particle production is then ex-
pected to provide the necessary reheating.*® At the same
time the back reaction of these quantum fields on the
spacetime geometry is expected to damp the oscillations
and drive the Universe into a classical Friedmann phase.
Assuming this is the case, Refs. 4 and 8 have given es-
timations for the reheating temperature of the Universe.
These estimations are based on calculations of the Bogo-
liubov coefficients between the in and out vacua using the
method of Zeldovich and Starobinsky.” The calculations
are done in a fixed background spacetime. The out vacu-
um has been taken to be the adiabatic vacuum of the
radiation-dominated Friedmann universe. The in vacuum
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is the usual Minkowski vacuum in an assumed static “in
region.” Because of the preceding inflation it is a good
approximation to assume that the initial state is a Min-
kowski vacuum state. The energy of the particles pro-
duced is obtained from the Bogoliubov coefficients for the
quantum fields. By comparing the contribution of this
energy with other terms in the Einstein equations (Ref. 4),
or with the energy density of the ‘“scalarons” (Ref. 8),
reheating temperatures are estimated.

There are several features which make these analyses
unsatisfactory. The most serious is that a back-reaction
calculation is never performed so one has to assume that a
classical Friedmann radiation-dominated phase exists at
late times. Secondly, any argument relating the energy of
the “scalarons” to that of the produced particles (Ref. 8)
is suspect since the energy-momentum tensors of the “sca-
laron” and the conformally noninvariant quantum fields
are conserved separately. Finally vacuum-polarization ef-
fects are completely neglected by these calculations.

For these reasons it is desirable to do a more rigorous
calculation of the reheating which takes the full back re-
action of the quantum fields, including both vacuum po-
larization and particle production, directly into account.
In this paper we present such a calculation and show ex-
plicitly that the phase plane oscillations are damped and
that the Universe is driven into a radiation-dominated
Friedmann phase. It is shown (cf. Sec. IV) that the
Universe enters into the radiation-dominated phase with a
temperature on the order of 10° GeV, while its tempera-
ture earlier on in the oscillation phase can be as high as
10" GeV.

Our calculation of the reheating in the models is based
on the semiclassical back-reaction equations!'®

R;w_ 'Zl‘ngv_Fa ”)H‘uv‘f‘B(Z,H;w

= —87G(in| T, |in)™" . (1.1)

We use units such that #i=c =k =1, with /pjncc=V'G .
a and B are arbitrary renormalization parameters and R,
is the Ricci tensor. In Eq. (1.1), “)Huv is associated with
the variation of an R? term in the effective gravitational
Lagrangian and ‘2H uv is associated with the variation of
an R, ,R*" term.'"> We follow the notation of Birrell and
Davies!® throughout the paper. Here, |in) denotes the
initial state of the quantum fields living in the spacetime;
and (T, )™ is the renormalized expectation value of the
energy-momentum tensor operator 7T,,. We shall see that
due to the inflation present in the models, it is essentially
irrelevant what we choose the initial state to be.
Throughout the paper, we consider only homogeneous and
isotropic spacetimes and free scalar fields. This should be
a good approximation for the observable portion of our
Universe as far as post-inflation reheating calculations are
concerned. The scalar fields are assumed to be massless
and to have nonconformal couplings to the geometry. We
consider this case, in which the particle production is due
to the nonconformal coupling instead of the mass term,
for two reasons. First, in order for the particle production
to be effective, the mass of the field has to have a value
close to that of the oscillation frequency of the geometry.
We may not have such a massive field in nature. Second,
the Universe will not go over to a radiation-dominated

Friedmann phase with such a massive field. Hence, in or-
der to see explicitly the emerging of a radiation-
dominated Friedmann phase, we would have to consider
the subsequent decay of these massive particles. This is
an unnecessary complication of our purpose. We there-
fore, in the reheating calculations of Secs. III and IV, con-
sider massless nonconformally coupled scalar fields.

To treat the back-reaction equations with nonconfor-
mally coupled fields we have developed two numerical
schemes, the high-k-expansion scheme and the iteration
scheme. Both schemes use adiabatic regularization.!!
The high-k-expansion scheme is general in the sense that
it can be used for all situations where adiabatic regulariza-
tion has been developed. It also has important implica-
tions which are independent of the regularization pro-
cedure. The scheme has been described in Ref. 12 and
will be mentioned only very briefly in this paper. The ap-
plicability of the iteration scheme is somewhat more re-
stricted since the iteration parameter cannot be too large
(cf. Sec. II). However, it is still general enough to be use-
ful for solving the back-reaction equations (1.1) for many
interesting situations, and in particular, it can be used to
calculate the reheating of the inflationary models. One
nice feature of this scheme is that it explicitly demon-
strates that the results obtained are self-consistent solu-
tions to the back-reaction equations. This scheme will be
described in some detail in Sec. II. The two schemes pro-
duce results which agree accurately with each other. The
longer calculations reported in Sec. III are done using the
high-k-expansion scheme since it is somewhat more effi-
cient than the iteration scheme.

These schemes for solving the semiclassical back-
reaction equations for free quantum fields with arbitrary
masses and curvature couplings open the door to many in-
teresting calculations because they solve the technical
problems which have prevented these calculations from
being done in their entirety. In the past various approxi-
mations have had to be made which have seriously limited
the applicability of the results. Such approximations in-
clude the limits of nearly conformal coupling to the scalar
curvature,'® small anisotropy,'* and the neglection of the
higher-derivative terms in the back-reaction equations.'* ¢
The first calculations without such approximations were
done by one of us for the conformally coupled massive
scalar field in spatially flat homogeneous and isotropic
spacetimes.!” Using our schemes it is now possible to
solve the back-reaction equations for free scalar fields
with arbitrary couplings and masses in homogeneous and
isotropic spacetimes and, probably, in the anisotropic Bi-
anchi type-I spacetimes as well. In fact it appears that the
only limitation on our methods is that they make use of
adiabatic regularization which has not been developed for
other spacetimes or for other quantum fields. However,
there seems to be no reason, in principle, that adiabatic
regularization could not be developed for other spacetimes
and other quantum fields. If this is done, then we expect
that our schemes could be applied to these cases as well.

In Sec. II we set up the back-reaction problem and
describe the numerical schemes discussed above. In Sec.
III the results obtained in using these schemes on the
reheating calculations of the higher-derivative inflationary
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models are reported. Section IV contains an analytical
study of the reheating problem. This analytical study
provides valuable insight into particle production and its
effects on rapidly changing geometries. Section V con-
sists of a brief conclusion.

II. THE BACK-REACTION EQUATIONS AND
THE NUMERICAL SCHEMES

In this section we first write down the coupled set of
equations which must be solved to determine the back re-
action of the quantum fields on the spacetime geometry
and then describe two schemes to solve them numerically.
We consider a single scalar field with arbitrary coupling
to the scalar curvature and arbitrary mass. The generali-
zation to more than one such field is straightforward.

A. Derivation of the equations

We wish to solve Eq. (1.1) for the case of a scalar field
with arbitrary coupling to the scalar curvature and arbi-
trary mass in a homogeneous and isotropic spacetime.
The metric for such a spacetime is given by

dr? .
T_—{-{-;Z—-l—rz(dez-f—smz@d(j)z) ,
where a(¢) is the scalar factor and K =0,+1,—1 corre-
sponds to spacetimes with zero, positive, and negative spa-
tial curvatures, respectively.

We now write down each term in Eq. (1.1) in terms of
the metric (2.1). The symmetries of homogeneity and iso-
tropy allow one to deduce all components of each tensor
in these equations from its time-time component and its
trace. The first two terms on the left of (1.1) are well
known with

R,=3(H+H?,

ds?=dt*—a*(1) 2.1

(2.2a)

R =6(H+2H*+K/a?) . (2.2b)

Here an overdot denotes d /dt and H =a /a is the Hubble
parameter. Since the spacetime is conformally flat,
(Z’Hﬂvz%(”HM, and we can set =0 in (1.1) without
loss of generality.!® For the line element (2.1), '"H,, is

given by

WH,=_—6(HR —-R*+H?R +a~?RK) , (2.3a)

(Wl #= _(6R +18HR) . (2.3b)

]
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To determine (in| T, |in) in (1.1) we must choose the
initial state for the scalar field, solve its evolution equa-
tion, and compute the expectation value of T,,. The evo-
lution equation for a scalar field with mass m and curva-
ture coupling § is

O¢+(m*+£R)p=0 . (2.4)
We decompose ¢ by
$(t,x)= [ dE(k)[a, Uelt,x)+@ L U (1,0] (2.5a)
Up(t,x)=a "% ()Y (1), (2.5b)

Y (x)=2m) 3 %* >, k=(ky,ky,k3) (K=0)
=17 (x)Y(6,8), k=(k,,m) (K=+1).
Here the Y are the usual spherical harmonics, the

I1i7(x) are given in Chap. 5 of Ref. 10, and the measure
of the integration in (2.5a) is given by

[ dao= [ d* (K=0) (2.62)
=/, dk% (K=—1) (2.6b)
(2.6¢)

=33 k=1.
k=11lm

The mode function v, (¢) satisfies the normalization con-
dition

Uk —vidi=—i/a, (2.72)
and the evolution equation
Ur + Hiy + [0+ (E— )R]y =0 , (2.7b)

with wil=k%/a*+m?.

A quantum state of the scalar field is represented by a
set of mode functions ¥, by requiring that the quantum
state be annihilated by @ in (2.5) for all k. The unrenor-
malized expectation value of the energy-momentum ten-
sor with respect to a certain state |in) of the quantum
field is given in terms of the mode functions ¢, by

(T, =(in| T, [in)=dr [ (T, ), (2.82)
1 P2 1 Pk K? 2 i 2 K 2
<Tn>k=m' a|1/Jk| +6(§—;)aH(¢k¢k+¢kd/k)+ ?-Fm —6(§—?) H —;7 a |¢k| , (2.8b)
(Ty=(; Loy du(k)
=(in|T, ‘1n)—41rf e (T, (2.9a)
1 . . .
(The=75 |36—%la |k | —aH (bt i+ Ui )]
2 2
+ =) %+m2+% R—6H2—Z—Iz< +(E—TIR | la | |?], (2.9b)
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where

[ dutk)= [ " akk?, K =0,—1 (2.10a)

o0
=3 k% K=1. (2.10b)
k=1

(T,,) is divergent and must be renormalized. The renor-
malization scheme most easily adapted to numerical com-
putations is adiabatic regularization'®!! in which the re-
normalized energy-momentum tensor is obtained by sub-
tracting the adiabatic counterterms [obtained from the
fourth-order adiabatic solutions to Eq. (2.7)] mode by
mode, so that

(T#V>‘e“=47rfw((ﬂw)k—(ﬂw)id). .11
P

(T, )3 for a Robertson-Walker spacetime has been given
by Bunch.'® It is determined solely by the geometric
quantities of the spacetime. Equations (1.1) and (2.7), to-
gether with (2.2), (2.3), and (2.11) form the complete set of
equations that must be solved to determine the back reac-
tion of the quantum scalar field on the spacetime
geometry.

In (1.1), again because of the symmetry of (2.1), we
have only to look at the # and the trace components.
Like the standard classical Friedmann equations, here the
tt equation is also a first integral of the trace equation.
We can regard the #f component as a constraint equation
and evolve forward with the trace equation. This, in some
cases, is computationally more convenient than integrat-
ing the 7t equation directly.

B. The numerical schemes

Having written down the back-reaction equations, we
next discuss a major problem which arises when one tries
to solve these equations numerically. We then describe
two schemes which can be used to overcome this problem.

To numerically obtain the time evolution of ¥, (¢) and
a (1), we must first algebraically solve (2.7b) and the trace
J

Ry—+R+a VH,= —87G(T, )™,

< Tn )ren:<Tu )g+<Tn >¢ ’

<T">g258“§10_2 —30m’H?+3H*+"H,[ — 5 +10(6 —
T
H’K K?
—(£—+)180 | =5~ — = | —1080(& —
a a
du(k
<Ttt>¢=477f 0(3 )(<Ttt>k_<T”>]l:v) ,
W - a1 ) K m2H?
<Tﬂ>k"16ﬂ'3 wk—3(§—6)wk H_:z? + a)k3

—R+a'"H, = —87G(T )™,
(T)ye=(T)+(T)¥,
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of Eq. (1.1) for fb‘k and R, respectively, so that we have ex-
pressions for them in terms of the lower-derivative quanti-
ties. It is trivial to do so for 1/’k R appears in both
a'"H,* and (T)3%. When the scalar field is conformally
coupled, i.e., =+, the only R term in (T )3 is propor-
tional to 1/’ which makes this term finite when the k
integration of (2.11) is performed. (For the K =1 case, it
is a summation over k. However, for simplicity, we shall
say k integral for all three cases henceforth.) So, for
§=%, there is no problem in solving algebraically for R.
One of us has used this method to study the back reaction
of conformally coupled massive scalar fields.!”

However, when we go away from conformal coupling,
i.e., £+, there are two additional terms in (T3 which

contain R (see, e.g., Ref. 18). One is finite when the in-
tegration over k is performed and thus poses no problem.
The other is proportional to 1/w>. This term, when con-
sidered by itself, is divergent because of the integral over
k. It cancels the logarithmic divergence of the unrenor-
malized trace (T). Because of this divergent term R can-
not be solved for in terms of lower-derivative quantities.
This is a serious problem and it is not even clear, a priori,
under what conditions solutions of an equation with such
a peculiar structure exist. This is the major obstacle in ex-
tending the calculations of Ref. 17 to nonconformally
coupled scalar fields.

We shall present two schemes which can be used to
overcome this problem. Before doing so it is useful to
rewrite (T, )™" in a slightly different way. The idea is to
split (T, )™ into two separately conserved pieces:
(T,,)* and (T,,)". Both pieces are finite. {T,,)* is
solely determined by the geometric quantities and does
not involve the mode functions explicitly. It consists of
all the terms in (7, )* which are finite when the in-
tegration over k is performed. (T, ) involves the mode
functions v of the quantum field. It is the unrenormal-
ized (T,,) with the divergent parts removed via the sub-
traction of the divergent terms of (7,,)*!. With these
definitions the #¢ and the trace equations are

(2.12a)
(2.12b)
i 6H’K 3K?
DI+
+)PH?R|, K=0,—1, (2.120)
(2.12d)
1 1
26—’ ‘”H,,! , (2.12€)
(23
(2.13a)

(2.13b)
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_; 2 6K (1) 1 1
(T)E= 288072 [—IOm R—F + H#”[~—-g+10(§~—;)]
24H2 2 2 2
L2HR —12H 4 2R21<_ 2K_ 1215 -1 6012K_360112{K_3604K
a a a a a a
—180(6— 1)? |6HR +2R>— 12RK ] K=0,—1, (2.130)
a
du(k uv
<T>‘p=47r_f—'L%MT)k—(T),c ) (2.13d)
v 1 2 _ 6K 3K
(THp= = {%-(g—%) o~ |R —6H*— R —3H>- =
k a k a
(E—3) 9m *H> 9 . R? RK
(1 L\ Im 1,2 9m 2
g )2 e RS L HR 2.1
+ e A E—T) o, +(E—1) P T += (2.13¢)

Here the quantities (T, ), and (T ), are given by Egs.
(2.8b) and (2.9b). The last two terms in (T )}’ are conver-
gent in the k integration of (2.13d). They are included in
(T)}{" so that (T, )? is conserved. For the terms (T )*
and (T )¢ the integrations over k have been performed for
the K =0, —1 cases. The sum over k for the K =1 case
is discussed in the Appendix.

In using these formulas [(2.12) and (2.13)] for the mass-
less field, there are some rather subtle points. First, it is
important to do the integrations over k before setting the
mass equal to zero,'®! otherwise the trace anomaly is
omitted. Second, in (T,,)" [Egs. (2.12¢) and (2.13¢)],
the term proportional to (VH,, produces an infrared
divergence in the massless limit. However, as this term is
proportional to ‘"’H,,, this divergence can be absorbed
into the definition of the parameter a. Thus, one can im-
pose an infrared cutoff either by putting in a lower limit
to the integral over k for this term or by setting
wp*=k?/a*+M? (for this term only) with M an arbitrary
parameter with units of mass. Different values of the cut-
offs correspond to different values of the parameter a.

Combining all of the contributions for a, we call the
net constant coefficient before "’H ., in the back-reaction
equations €, following Ref. 5. It is the negative of the
coefficient of the R? term in the effective Lagrangian in
the convention of Ref. 10, which we follow in this paper.
With this definition and the explicit forms of the back-
reaction equations in (2.12) and (2.13), we are now ready
to describe our schemes for solving them. We first note
that in (2.13e), the ‘"H*, term contains R and has a coef-
ficient 1/k3 for large k It produces a logarithmic diver-
gence if we perform the k integration in (2.13d) for this
term alone. This keeps us from solving for R ex?hcnly in
terms of lower derivative quantities unless £= ¢, as dis-
cussed above. In the high-k-expansion scheme, this prob-
lem is solved by noting that in order for the trace of the
renormalized energy-momentum tensor (7 )™" to be fi-
nite, (T ); of (2.9b) in the high-k limit has to contain a
1/k term and a 1/k3 term having exactly the same struc-
ture as that in (2.13e). Hence, the value of R can be ob-

tained from the structure of the high k& modes of the
quantum field. This scheme has been discussed in Ref. 12
and will not be repeated here.

The iteration scheme is intuitively simpler. We can
symbolically represent (2.13) by
.. 102G A =
R—+—(§-—g)“‘6'OR=f, (2.14)

where O is the operator involving the k integral; and f in-
volves only the lower derivative geometric quantities. The
problem in solving for R is that we do not know how to
invert O. However, we notice that when G /e is not too
large, we should be able to solve for R iteratively. The
procedure is as follows. First O is set to zero to obtain an
approximate value for R. This value is then substituted
into the second term in Eq. (2.14) and a more accurate
value of R is obtained. The iteration continues until the
desired accuracy is reached.

For the reheating calculation of the higher-derivative
inflationary models (Refs. 4, 7, and 8), G /€ is less than
10719 and the iteration scheme is clearly appropriate. We
do not have a definite criterion for the convergence of the
iteration scheme, but whenever it converges it is clearly
guaranteed to produce a self-consistent solution to the
back-reaction equations. Since € is the coefficient of the
R? term in the effective gravitational Lagrangian, we may
expect it to be of the Planck scale for many cases, i.e.,
G /€ would be of order 1. In this case, for (£ —+) also of
order 1, we have tested the iteration scheme for various
initial data. It always converges and produces the same
result as the high-k-expansion scheme. For G /e > 10, the
iteration scheme breaks down for the choices of initial
data which we have tried.

The actual numerical calculations are done as follows.
First the initial values of the geometric quantities a, H,
and R are chosen according to the problem at hand. Then
a certain number of kX modes of the quantum field are
chosen. These modes should be centered at a value k =k,
with a /k. equal to the time scale of the changing of the
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geometry, and should cover a range where the back reac-
tion of the quantum field is important. This may require
some insight into the problem at hand if only a small
number of modes can be used because of restrictions on
the available computing time. (An explicit example of
how the modes are chosen will be discussed in Sec. IIT A.)
Then an initial state |in) for the quantum field is chosen
by specifying values for ¥ (¢t =0) and ¥, (z =0) for each
of the k modes used, in such a way that they satisfy the
constraint (2.7a). Equation (2.12) is then solved iteratively
for the initial value of R. This equation has the same
structure as symbolically represented in (2.14), with R re-
placing R. Thus the iteration procedure for solving it is
the same. The R(r =0) so obtained is substituted into Eq.
(2.13) which is then solved iteratively, for R(z=0).
Y (t =0) is trivially obtained from (2.7). With this
complete set of initial data {zﬁk,z/}k,{l;k,a,H,R,R,I'i}, we
evolve forward a time step Ar and are left with
{¥1,¥r,a,H,R,R}. To obtain R at this later time, we
start the iteration procedure by using the value of ()Y at
the previous time step. As long as At is small, the first
approximation for R is already quite accurate, and for
most purposes only a small number of iterations are need-
ed, provided the iterations converge. 1, at this later time
is obtained from (2.7); and we do not have to use the ini-
tial constraint equation (2.12) anymore, although it serves
as a nice check on the numerical accuracy. The set up of
the high-k-expansion scheme!? is very similar except in
the way that R is solved at each time step. It does not in-
voke iteration and can be used even when G /e is large.
These schemes are expected to be useful in many future
back-reaction calculations.

Before ending this section on the discussion of the nu-
merical schemes, it is important to point out a very useful
change of variables, which is used in the calculations re-
ported in the next section. We define the real variable W,
by

4
Y= |Cexp —if—k dtJ
a
o Wk
+Coexp |+i detl J/\/zwk. (2.15)

The constants C, and C, satisfy

|Ci|*—|Cy | %=1, (2.16)

as required by (2.7a). The evolution equation of W is
given by

W2

—_HW
W, k

W, ==
L)
3

Wk k2 1
—2—+2Wi |5 +(E—F)R (2.17)
a

a

In numerical calculations, the advantage of using W; in-
stead of v, is enormous, especially for larger values of k.

A constant W, corresponds to a rapidly oscillating
which requires a much finer step size for accurate numeri-
cal integration.

III. NUMERICAL STUDY OF THE REHEATING
OF THE HIGHER-DERIVATIVE INFLATIONARY
MODELS

In this section we discuss the numerical results obtained
in applying the numerical schemes outlines in Sec. II to
the reheating calculation of the higher-derivative infla-
tionary models. As discussed in the introduction, the late
time evolutions of the Starobinsky and the R? models are
qualitatively the same. In both models, at the end of the
inflationary phase, the scalar curvature and the Hubble
parameter decrease to small positive values and the
Universe evolves into an oscillation phase. Hence, as far
as reheating is concerned, there is no distinction between
the two models. In the following we will use the notation
and terminology of Ref. 4.

As we are interested only in the post-inflationary evolu-
tion of the Universe, we need only consider the K =0
case. This is because the large amount of preceding infla-
tion makes the geometry effectively spatially flat indepen-
dent of the value of K.

A. Initial conditions and the setting up of
the numerical calculation

We begin with a discussion of the initial conditions.
The existence of a long inflationary period implies that, at
the end of the inflation, the Universe should be empty;
that is, any reasonable measure of the energy density due
to matter and radiation should be effectively zero, in-
dependent of how much matter or radiation was in the
Universe before inflation. To incorporate this, the start-
ing point of our numerical study is taken to be at a time
not long before the end of the “linear phase” when the
Hubble parameter H linearly decreases with respect to
proper time ¢t. We henceforth call this time ¢ =0. As dis-
cussed in Ref. 4, this linear phase is an inflationary
period; i.e., comoving distance is expanding faster than
the horizon size 1/H. It is assumed that before ¢ =0
there has been a period of inflation long enough to solve
the horizon and flatness problems. Since we are consider-
ing spatially flat spacetimes, the initial scale factor
a (t =0) can be arbitrarily taken to be 1. The initial Hub-
ble parameter is chosen such that V'eH (t =0)=0.466,
which is dimensionless, while €R(t =0)=2.44. These
values are picked so that from ¢ =0 to the very end of the
linear phase, the Universe has expanded by a factor a little
larger than exp[18eH*(t =0)]=50 (cf. Ref. 4). This en-
sures that the energy density of any radiation that was
present in the Universe at ¢ =0 would have red-shifted by
a factor of 1/a*~10~7. This means that as long as the
initial state is a fourth-order (or higher) adiabatic vacu-
um'® so that (T, )¥ given by (2.12d) and (2.13d) has no
ultraviolet divergences, it does not matter how iy (z =0)
and ¢, (t=0) are specified, provided the energy-
momentum of the field is not orders of magnitude larger
than the geometric quantities. Such a large energy-
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momentum is physically unreasonable at r =0 because of
the preceding inflation. We have tested and verified this
point in our numerical calculations by using different ini-
tial conditions for the lower-k modes. Making use of this
fact, we let the constant C, be zero in (2.15). Then (2.16)
requires C; =1 (up to an irrelevant constant phase). The
initial conditions of the W}’s for high k, i.e., for
a /k <<(changing time scale of the geometry), are given
by the fourth-order adiabatic expression, which has been
written down explicitly in Ref. 18. Lower k modes are
freely specified. In our numerical calculations, a condi-
tion frequently used to specify the W, (r=0) and
W, (t =0) for small k is the vanishing of (7, )¢ and
(T)Y.

In a typical calculation, we use 400 to 600 modes with
k values well covering the region where the back-reaction
effects of the quantum field are important, i.e., k., is
chosen so that (kg 2Ak /a*®)( Tﬂv)}f’mx is down by a few

orders of magnitude compared to the contribution from
the “central” k values with the same Ak. However, as the
Universe is slowly expanding while oscillating with essen-
tially the same proper frequency wg, to keep w, smaller
than k.,,/a, a large k., is needed at late times. It is
time consuming and unnecessary to carry the very high-k
modes right from the beginning. Their initial contribu-
tion to {7, )? is negligible and their high frequencies call
for very fine step sizes. What can be done instead is to
add more high-k modes as the equations are evolved for-
ward in time. The new modes enter the calculation at a
time when k/a is still much larger than @, and hence
their starting values can be given by the fourth-order adia-
batic expression for W.

This ends our discussion of the initial conditions and
the setting up of the numerical calculations. We now turn
to the results of the calculations.

B. Results of the back-reaction calculations

1. The conformally invariant case

In order to set the stage for the discussion of the reheat-
ing of the Universe and the damping of the oscillations,
we first study the case where the quantum field used in
the calculation is conformally coupled to the geometry,
ie, £=+ and m =0 in (2.12) and (2.13). Because of the
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FIG. 1. The evolution of the Hubble parameter H (solid line)
and the scalar curvature R (broken line) are shown for the case
of a conformally invariant scalar field with e=G. On the verti-
cal axis, H is scaled by its initial value 0.466G ~!/? and R by its
initial value 2.44G ~'. The horizontal axis is tG ~'/%. The ini-
tial values of H and R are chosen so that the Universe starts out
close to the end of the “linear phase” of Ref. 4, in which the
Universe inflates as H decreases linearly. The transition from
the “‘linear phase” to the “oscillation phase” is clearly displayed.
The decay of oscillation amplitude for both H and R is associat-
ed with the expansion of the Universe (i.e., adiabatic decay) and
is unrelated to particle production.

conformal invariance, there is no particle production in
this case and hence no reheating.

In Fig. 1 the evolution of H (solid line) and R (broken
line) with respect to the proper time ¢ in units of G are
shown for a conformally invariant scalar field. VGH
starts at 0.466. We see that H decreases linearly, ap-
proaches zero, bounces, and enters into the oscillation
phase. For € > G, the “)H#v term dominates the postinfla-
tionary evolution for all physically reasonable choices of
the initial conditions of the conformally coupled field.
This is because changes in the state of the field add pieces
to (T, ) which scale like a ~* (see, e.g., Ref. 20). Hence,
the evolutions of H and R shown here are essentially the
same as those shown in Fig. 1 of Ref. 4 in which the cal-
culation is done without any quantum field but with only
the (“HW term in the back-reaction equations. The evo-
lution of H and R is given in Ref. 4 by

—1
3 3 3 .
Hax | =+t —15)+ ——sin2wg(t —to,) | cos’wy(t —t,) (3.5a)
@y 4 8(()0
~ icosza)ot, b —tos >> € , (3.5a’)
3t (o)
3003 3 !
R~—6 wto+z(t~zos)+go—sin2wo(t~tos) Wo SIN2wq(t —t) (3.5b)
—8w
=20 Gindeot, —t 5> (3.5b")
t o
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with wg~1/V'24€ and ¢, is the time the oscillation phase
begins.* Equations (3.5a) and (3.5b) are accurate for
t —to>1/wo. From (3.5a’), we see that the scale factor
a(t) is proportional to t2/3[1+4sin(2wet)/(3wet)]. Thus,
when a(?) is averaged over a few cycles, it increases as
t?3, which is the same as for a matter-dominated
universe. Hence, this phase is called the ‘scalaron-
dominated” phase in the Starobinsky model.® The de-
crease in the amplitudes of the oscillations in (3.5) is asso-
ciated with the expansion of the spacetime and is unrelat-
ed to reheating. We shall call this rate of decrease in am-
plitude the adiabatic rate.

2. The results on reheating

In more realistic models of the Universe, there are con-
formally noninvariant quantum fields which give rise to
the damping of the oscillations above the adiabatic rate.
In this section we describe our numerical results when a
minimally coupled, i.e., £=0, scalar field is 5 present.

In Fig. 2, V/G Rt is plotted against /V'G for a typical
solution when a minimally coupled field is present. The
case when only a conformal field is present is also plotted
(broken line) for comparison. From the figure it is clear
that the back reaction of the minimally coupled field
damps the oscillations in the curvature above the adiabat-
ic rate: Rt is decreasing in time. Note that the frequency
of the oscillations is essentially unchanged.?!

In Figs. 3(a) and 3(b), the £=0,e=G case of Fig. 2 is
plotted up to /V'G =3000. The vertical axes are, respec-
tively, Ht and VG Rt. In these figures, individual oscilla-
tions are barely resolvable. The oscillations are nearly
completely damped at late times. In Fig. 3(a), we see that
the decay of the amplitude of Ht is smooth. Notice that
this is in contrast with the picture of a scalaron-
dominated phase,>~® i.., the picture in which the
Universe expands in a matter-dominated manner for some
time before the produced particles dominate the expan-
sion. A scalaron-dominated phase would imply a plateau
in the time-averaged (over a few cycles) value of Ht at a
constant value of 5. But from Fig. 3(a) we see that the

center of the oscillations is decreasing gradually to 5,
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FIG. 2. The quantity RtG'/? is plotted against tG ~'/2. The
broken line is for the case £= % (the conformally coupled field),
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and the solid line is for the case £=0 (the minimally coupled
field). Both solutions start with the same initial values of R and
H as in Fig. 1. For 5:—;-, R can be described by Eq. (3.5b) and
Rt has a constant amplitude at late times. The damping of the
oscillations above the adiabatic rate is clear for the £=0 case.

showing no plateau at % At late times Ht is very close to
%, hence a(t)«<t!/2, and the expansion is in a radiation-
dominated Friedmann manner. In Fig. 3(b) we see that
V'G Rt is smoothly damped towards zero. In Fig. 3(c) we
plot the logarithm of the upper envelope of the oscilla-
tions in Fig. 3(b) versus time. In a few oscillations time it
is very close to a straight line, indicating that the damping
in Fig. 3(b) is nearly exponential. We compute the en-
velope of the oscillations in Fig. 3(b) analytically in the
next section. It is plotted in Fig. 3(c) as the broken line
starting at # =200V'G. The agreement is so precise that
the two lines are barely resolvable. The rapid vanishing of
Rt means that at late times the evolution is following the
classical Einstein equations with a trace-free energy-
momentum tensor. To verify explicitly that the classical
Einstein equations are satisfied, we plot
[H*>—(87G /3){T, )*]t* vs t/V'G in Fig. 3(d). We have
put in the factor of ¢ to take away the effect of the adia-
batic decay. (T, )¥ is the energy density of the scalar
field apart from a vacuum-polarization piece (T, )%
which is given in Eq. (2.12c). We see that vacuum polari-
zation is negligible and the classical Einstein equations are
satisfied at late times. Figure 3(e) shows that a*( T, )¥G?
is approaching a constant at late times, i.e., { T, )? is red-
shifting with @ —* as it should be for classical radiation.

In Figs. 4(a) and 4(b) the initial data for the geometry
and the minimally coupled scalar field are the same as
those of Figs. 3, except now € is taken to be 0.2G. In
Figs. 4(a) and 4(b) we rescale all quantities by 0.2G, i.e.,
the vertical axes are Ht and V'0.2G Rt, respectively, and
the horizontal axes are 1 /V'0.2G. We see that the oscilla-
tions are damped much more rapidly than in the previous
case. This is expected since a smaller value of € means
that, in the effective Lagrangian, the eR? term, which is
giving rise to the phase plane oscillations, is less impor-
tant. This dependence on € also explains why we have not
shown the case of €e=10'"'G, which is the value proposed
in Ref. 4 (the value proposed in Refs. 7 and 8 for the
Starobinsky model is slightly different). The damping
will be noticeable only after an extremely long time, al-
though the damping mechanism and the final outcome
will be exactly the same. The explicit dependence of the
damping on € will be studied in the next section.

In Fig. 4(c) we enlarge the latter part of Fig. 4(b).
There is a low-frequency oscillation showing up at this
later time superimposed on the higher-frequency ones.
These are the same kind of oscillations which appear in
Fig. 3(d) at late times. In time, these lower-frequency os-
cillations are damped in amplitude, and even-lower-
frequency oscillations appear in a self-similar fashion.
We will not study this hierarchy of lower- and even-
lower-frequency oscillations in this paper; but, as we shall
see in the next section, all these oscillations are exponen-
tially damped and cannot affect the overall picture that
the Universe expands in a classical radiation-dominated
manner at late times.

IV. ANALYTICAL STUDY OF THE DAMPING

The coupled system of differential equations (2.7) and
(2.13) may look too complicated for analytical analysis,
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FIG. 3. (a) Ht is plotted against tG ~'/? for the e=G,£=0 case with the same initial data as in Figs. 1 and 2. Individual oscilla-
tions are barely resolvable on the scale of the plot. The amplitude of the oscillations is decreasing in time with the mean value tending
smoothly to %, showing no plateau at % At very late times, when the oscillations are well damped, H evolves in a radiation-
dominated Friedmann manner, i.e., H = -;-(t —const)™'. Thus, Ht approaches ;v as t—'. (b) RtG'? is plotted against tG ~'/2 for the
same case as (a). The oscillations are damped towards zero, again signaling the onset of a radiation-dominated phase. (c) The quanti-
ty In[(R)maxG ?] is plotted against tG'/? as the solid line. ( R1)y,, is the upper envelope of the oscillations in (b). The broken line
starting at tG ~'/2=200 is plotted using the analytic result derived in Sec. IV [Egs. (4.18) and (4.19)]. The agreement is so close that
the two lines nearly coincide, except for small scale variations in the solid line. The lines are nearly straight for tG ~'/?> 200 with a
mild Int modification which slightly decreases the slope of the lines. Hence the damping in (b) is essentially exponential. (d) The
quantity [ H>—(87G /3)( T, »*]t? is plotted against tG ~'/? for the same £=0,e=G case. This is a measure of the deviation from the
classical Einstein equation. The factor of ¢2 is introduced to counter the effects of adiabatic decay. The plot shows that, at late times,
the classical Einstein equation is satisfied and the energy density of the scalar field, given by (T, )Y, behaves classically. (e) The
quantity a*( T, )¥G? is plotted against tG ~'/2 for the same £=0,e=G case. For ¢ >2000G /%, one sees that { T, )? is behaving essen-
tially classically since it is red-shifting like 1/a*. The initial value of a has been taken to be 1.
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FIG. 4. (a) The quantity Ht is plotted against ¢(0.2G)™!/2
All initial data of the geometry and the minimally coupled field
are the same as in Figs. 3, except that now €=0.2G instead of
G. The additional rescaling of 0.2 in this case makes the width
of individual oscillations in the figure the same as those in Figs.
3. Clearly the oscillations are damped much more efficiently
than in the e=G case. The dependence of the damping rate on
€ is given in Eq. (4.18). (b) The quantity RtG'/? is plotted
against 1(0.2G)~ /2 for the €=0.2G case as in (a). Rt is rapidly
damped to zero. (c) The right portion of (b) is enlarged, showing
the emergence of lower-frequency oscillations superimposed on
the well-damped higher-frequency oscillations. In time this new
series of oscillations is damped and even longer frequency oscil-
lations appear in a self-similar fashion.
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but as we shall see, the dominant piece of physics for the
damping of the oscillations is in fact quite simple. In the
following analysis we consider a massless nonconformally
coupled scalar field in a spatially flat (K =0) universe. A
simplified version of this analysis is sketched in Ref. 22.
22. We first study the damping of the oscillations and
then compute the reheating temperature of the Universe.

A. The damping of the oscillations

We start with the observation that there exist two obvi-
ous time scales in the problem: the shorter time scale
t,=1/w, associated with the oscillation of the scalar cur-
vature, and the longer time scale t;=a /a associated with
the expansion of the Universe. f; is also the time scale of
the adiabatic damping, i.e., the decrease in amplitude of R
and H, if there are only conformally invariant fields in
the Universe. In the oscillation phase of the higher-
derivative inflationary models, #; is increasing in time and
is orders of magnitude longer than #; except at the very
beginning of the oscillation phase. We now want to find a
third time scale 7z, hidden in the equations, associated
with the damping coming from the effect of particle pro-
duction when a nonconformally invariant field is present.
We expect t; to be longer than or comparable to ;.

We look at the evolution equations (2.13) and (2.17) at a
time well into the oscillation phase, i.e., t —f, >>t,. In
the trace equation (2.13), we can drop all terms in (7 )#
except the term proportional to ‘'H G- All dropped
terms are proportional to 1/¢2" with n > 1: Both R and H
would decay faster than (or equal to) 1/t if there is damp-
ing above (or equal to) the adiabatic rate. It is more con-
venient to work with the quantity

Q=a’"’R , 4.1)
and the dimensionless time
T=2w,t . (4.2)

Here wy=~1/v24€ is the oscillation frequency of the
Universe. The evolution of Q is given by

d? _m G 3n ¥
£2Q+Q 3 0l (T)?¥. 4.3)
In deriving (4.3) we have again dropped terms which are
proportional to 1/7%". We have also used the fact that
(T )% is dominated by the (”H"# term in the oscillation
phase (cf. Sec. IIIB 1), (T)¥ is given by (2.13d), and its
main contribution comes from modes centered around
k =aw,. The exact range of modes we have to sum over
to obtain this main contribution is yet to be determined.
[Examination of (2.9b) and (2.13d) shows the contribu-
tions of the modes with small values of k in (T ), are
small due to the k2dk factor, while (T )%’ in (2.13¢) will
be dominated by a divergent term proportional to ‘'H us
whose contribution is to be incorporated into the value of
€ as discussed in Sec. II B. The very high-k contributions
are negligible due to the cancellation between (T ), and
(T)%’.] For the evolution of the quantum field, we first
study the behavior of a single k mode starting with a
large w=k /a which gradually decreases and approaches
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g as a (1) increases. When o >>wg, W) of (2.15) is essen-
tially k. We shall use the variable

Zy=Va(Wy—1), (4.4)

and keep only terms which are first order in Z;. Equa-
tion (2.17) then reduces to

2
%Zk +(0*/wg?)Z, =8sinf , (4.5a)
with
b= "5 (6704 - (4.5b)
0

Here we have again dropped terms proportional to 1/7°".
The sinusoidal driving force in (4.5) has a slowly changing
(on time scale of t;) amplitude 8. Q, is the magnitude of
Q with the ¢, oscillation factor taken out. a(z) and hence
o also contain pieces which oscillate on the z; time scale,
but they are relatively small compared to the total magni-
tudes of a(t) and » and we shall ignore them. From
(4.5a) we see that Z; evolves like an aging oscillator
driven by a sinusoidal force with fixed frequency. Start-
ing at a time when w=k /a is much bigger than wg, Zj is
initially zero [cf. Eq. (4.4)], and remains small as long as
the “spring” is still stiff. The natural frequency w of the
oscillator gradually tends to wo on the time scale ¢.
When o ~w, it can be seen from (4.5a) that there is a res-
onance and Z; grows with a 7 /2 phase lag compared to
Q. This growing Z; gives the dominant contribution to
(T)Y, and hence (T )Y also has a /2 phase lag with
respect to Q. From (4.3) we see that this will cause Q to
be damped.

Quantitatively, this goes as follows. We assume that
the Universe expands throughout the oscillation phase by
a(t)=a;f", with a; being constant. r will go from the ini-
tial undamped value of = to the radiation phase value of
+. We shall not specify r and shall find that the final re-
sult is independent of its value. Given this approximate
behavior for a(t), Eq. (4.5) can be solve exactly in terms
of integrals, but it is more illuminating to determine the
damping in the following approximate manner. When o
gets close to g the driving force in (4.5a) will produce a
resonance, and the amplitude of Z; will grow linearly in
time such that

Zy~— %Tcos? . (4.6)
We denote the time when w=wy by T="7,:
1/r
?res = k 4.7)
a;wo

At this time Z; as given by (4.6) is 7/2 out of phase with
Q, which oscillates with sinz. That is,

6217 _=6o |t~m—% . (4.8)

The natural frequency w/wq of the oscillation of Z; will
keep decreasing as a(?) increases. This eventually makes
Z, go out from the ‘“resonance region.” We need to
determine the time it takes for Z; to go out of this reso-
nance region as this will enable us to determine the range
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of modes that reside in the resonance region at a given
time. The growth in (4.6) will stop at a time
Tend = Lres + AT when the phase lag of Z; with respect to Q
increases from 7 /2 to 7. This increase in phase lag comes
in as the natural frequency [which is w(7)/w, in units of
7] of Z, decreases in time and differs from the frequency
(which is 1 in units of 7) of Q, cf. Eq. (4.5a). The time in-
terval Af=7,,4—I,.s can be approximately determined
from

m Tend @

—— =1 1—— |df 49
T 5 ] f‘res o0 (4.9)

which gives

12
~ T~

AT = —tmsl . (4.10)

r

[The value of A7 so obtained has been confirmed by nu-
merical integration of (4.5).] We can approximate Z; in
the time interval 7,. to f.,q by its mean magnitude in this
interval
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1 5 | T SCOST’ TE(?resrTend) , (4.11)

Zp~——
k 4

where 8 is evaluated at 7,,. From (2.13d), (2.13e), and
(2.9b), (T)¥ for this mode is given by

— . 2
<T>fz3—(%a[wkw—%wkr2] @.122)

Uiy
r res

3 !
=g
All the other terms in (T);f are down by at least 1/7.
Using (4.4) and (4.11), we obtain
3

1673

Wi k?

4.1
p W, (4.12b)

(TYf~—

(E—2)a="

1/2
fres ] 6| 7re5005t .

(4.13)
Next we have to determine the range of  in this “reso-
nance region:”

Aw= %Aa:
a

HAT . (4.14)
aawy

Here, H is the Hubble parameter, H =d /a, averaged over
a few oscillations. (7T )¥ which is dominated by the
modes residing in the “resonance region” is hence given

by
(T =470 Ao (T | k —awy - (4.15)

To evaluate (T){ in (4.13) and Aw in (4.14) at

k =a(t)wy, we reexpress I in (4.7) by (kf'/awy)'".
Then (4.15) becomes

<T>¢:‘;:(§—%)2woza“3/2Q+ (4.16a)

=—;;3(§_ Ly R ™, (4.16b)

where Qt,R+ denotes Q,R with a /2 phase lag, and we
have used the relation Ht/r~1. We notice the following
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features of the trace of the energy-momentum tensor of
the quantum field as given by (4.16). (1) It is independent
of r, i.e., independent of the rate at which the Universe
expands (as long as it is slow compared to the rate of the
oscillation of the curvature, i.e., t; >>t). (2) It is directly
proportional to the scalar curvature with a 7 /2 phase lag.
(3) It depends strongly on the oscillation frequency of the
curvature.

When we insert (4.16) into the right-hand side of (4.3),
we obtain

Q~Cexp|——— |sinf, (4.17)
with
G
A=4—6(§—%)2w0. (4.18)

C is a constant which is determined by matching R to Eq.
(3.5b'). We find

2 372
Wo Aos

R=-2
a3/2

e ~Msin2wgt . (4.19)

This is a remarkable result. The damping of R has the
same pattern and the same time scale t;=1/A through
the oscillation phase and is independent of the rate of ex-
pansion of the Universe. The transition to the radiation-
dominated phase is smooth; there is no plateau of
“scalaron-dominated phase” as discussed in the previous
section.

The result (4.19) has been plotted as the broken line in
Fig. 3(c) for the case of £=0 and e=G. We determine a
by first integrating (3.5a’) over a few oscillations, which
gives a =a [ 1+ wolt —t4)/4]*/? and then matching it to
the early part of the oscillation phase. This gives a,~62.
The analytic and numeric results shown in Fig. 3(c) are in
very close agreement. Given the nature of some of the ap-
proximations made in the analytic analysis, we would not
have expected, a priori, such a close agreement between
the analytic and numeric results. Notice that the a —3/2
modification to the exponential damping in (4.19) is visi-
ble in the figure: the slopes of the lines decrease slightly
with respect to time. The agreement between the analytic
result and the numerical calculation for the e=5 case of
Fig. 4 is essentially the same; the analogous plot is not
shown.

We want to emphasize that the above analysis is not re-
stricted to the study of reheating in the inflationary
models. An R? term in the effective Lagrangian intro-
duces a scalar degree of freedom, in addition to the usual
tensorial degree of freedom of gravity.*> The above
analysis shows the way the oscillation in this auxiliary
scalar field gets damped in an expanding universe by cou-
pling to other quantum fields. In Ref. 23, it was suggest-
ed that the energy contained in the phase plane oscilla-
tions of this auxiliary scalar field might still be large
enough today to close the Universe. It was shown in Ref.
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24, using our numerical iteration scheme, that this energy
is dissipated too rapidly by particle production to be signi-
ficant in the present Universe. The above analysis shows
that, in fact, it dissipates essentially exponentially. Any
significant “universal” oscillations that exist today have
to have t;~Hubble time~10'° yr. By (4.18), this corre-
sponds to an oscillation period of ~ 10* secx(10''G /e).
10''G is the value for € suggested in Ref. 4.

B. Reheating temperatures of the Universe

In the following, we return to the higher-derivative in-
flationary models and use (4.19) to determine the reheat-
ing temperature of the Universe.

The Hubble parameter is related to R by

6H +12H*=R , (4.20)

with R given by (4.19). For t>>t;, R =0 and the solu-
tion is H~(2t+const)~!. Matching this to the solution
for t <<y, i.e., (3.5a"), and using the fact that the oscilla-
tions are to be damped essentially exponentially, we find
that H can be approximated by

Het + %( ++ 2cos2wgt)e ~M

(4.21)
for ¢ >>t.. Let us arbitrarily pick the beginning of the
Friedmann phase to be the time ¢r when the oscillations
have been damped by 2 e-foldings, i.e., tr=2/A. At this
time, the effectively classical Einstein equation

H2=87”6<T,,>¢ 4.22)
describes the behavior of solutions with an error of about
20%, with (T, )¥ evolving essentially like classical radia-
tion [cf. Figs. 3(d) and 3(e)]. Hence the radiation-
dominated Friedmann phase is beginning with an energy
density

3 A
T, Y|, =—— (4.23)
(T 1287 G
This corresponds to a Friedmann temperature 7g:
1/4 ) 1/4
3 Gwg
— ¥y1/4 _ _ 4
TF—(<T11> ) 20487T |§ 6 | 62
(4.24)

In order to define meaningfully a temperature, we have to
consider interacting fields. We expect that the interacting
fields which are nonconformally coupled to the geometry
will be excited by the oscillations of the geometry in
essentially the same manner as the free fields described
above. For a realistic estimation for the Ty of our
Universe, we may want to include more than just one non-
conformally coupled field. Let the ratio of nonconformal-
ly invariant to conformally invariant scalar degrees of
freedom in the Universe be N. T in (4.24) would have to
be multiplied by N'/* and such a factor is of order 1 in,
say, any grand unified theory proposed. Hence (4.24) im-
plies that the Friedmann temperature of our Universe is
approximately
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3/4

GeV , (4.25)

10''G
Tp~10° | ——
F €

where we have used wy=~1/V'24€ as in the higher-
derivative inflationary models. For the inflationary
models to produce small enough scalar perturbations €
must be larger than or on the order of 10''G (e is bounded
from above by € < 10'2—10!> G by other considerations,
cf. Ref. 4). Equation (4.25) coincides with the estimation
given in Ref. 4. With this large value of € the oscillation
phase is long, containing some 10'? oscillations. (It is still
very short compared to every day time scales, as
t;~107%* sec.) Interesting physics would have happened
early on in the oscillation phase, and it is important to
determine the temperature, which is relevant to, say, a
phase transition of a Higgs field at that time. For fields
with grand-unified-theory (GUT) scale couplings, it takes
only ~1/(10" GeV)~10*ppcx  to achieve thermal
equilibrium through mutual interactions. This is shorter
than the expansion time scale in the oscillation phase
which is 1/H (t > 1) > V216€ =~ 5X 10°pjei., and the os-
cillation time scale which is 7/wo~15V €~4X 10% p k.-
Hence fields with GUT scale couplings have time to
equilibriate even early on in the oscillation phase. Howev-
er, at this early time, the vacuum-polarization energy is
large, as the (T, )¢ given by (2.12c) and (2.13¢) is com-
parable in magnitude to (T,“,}'/’. It is not clear how
much, if any, of the vacuum-polarization energy is associ-
ated with excitation of the quantum fields. Hence,
without going into a detailed investigation using interact-
ing fields, we can at most make an order of magnitude es-
timate for the temperature at this early time:

T=(T )V =((T)®)!/*

, (4.26)

cf. (3.5b) and (4.16). The reheating temperature early on
in the oscillation phase, i.e., t ~1/w,, is hence on the or-
der of

—1/2

T, ~10"? GeV (4.27)

_€
10''G

T, is also insensitive to the number of nonconformally
coupled fields in the Universe. We have taken (£ —+) to
be of order 1. T, given by (4.27) again coincides with the
estimate given in Ref. 4. Notice that this temperature is
low enough to avoid the GUT phase transition and hence
the associated monopole problem, and is high enough for
standard baryogenesis to go through.! This is surely a
healthy sign for the higher-derivative inflationary models.

V. CONCLUSION

We have discussed two numerical schemes to handle
the semiclassical back-reaction equations for quantum
fields with arbitrary curvature couplings and masses, i.e.,
the high-k-expansion scheme!? and the iteration scheme.
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They differ only in the way the highest-derivative
geometric quantity in the back-reaction equations is
solved for. The high-k-expansion scheme is limited only
by the fact that it uses the adiabatic regularization, which
has been developed for free scalar fields in Robertson-
Walker and Bianchi-type-I spacetimes but not other cases.
The iteration scheme also uses adiabatic regularization,
and depends on the smallness of the iteration parameter.
It has the nice feature of explicitly demonstrating that the
results obtained are self-consistent solutions of the semi-
classical back-reaction equations. We expect these
schemes to be useful for many other calculations relevant
to the evolution of the early Universe.

In Sec. III these schemes were applied to the reheating
calculation of the higher-derivative inflationary models.
The results are plotted in Figs. 1—4, showing that the os-
cillations in the curvature are damped and the Universe is
driven into a radiation-dominated Friedmann phase.

In Sec. IV we presented an analytic study of the reheat-
ing and the damping of the oscillations using the back-
reaction equations. It was shown that the oscillations in
the curvature decay essentially exponentially in an ex-
panding Universe, as long as nonconformally coupled sca-
lar fields are present. Reheating temperatures are ob-
tained which are in close agreement with the estimations
given in Ref. 4. The analytic results are also plotted in
Fig. 3(c) in comparison with the numerical results. They
agree to high accuracy.

Note added in proof. It has recently been shown?® that
if the measure (2.10a) is used in computing the adiabatic
counterterms in the case K =1, then the trace anomaly is
recovered and adiabatic regularization is equivalent to
point splitting. Equations (2.12c) and (2.13c) are then also
valid for the case K =1.
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APPENDIX

In this appendix we show the explicit form of the
back-reaction equations for spacetimes with positive spa-
tial curvatures, i.e., K =1. We display (T,,)™ in the
same way as was done in Egs. (2.12) and (2.13) except that
no sums over k are performed. The back-reaction equa-
tions are the same as in (2.12a) and (2.13a) and the break-
up of (T, )™ into (T, )* and (T,“,)"’ is the same as in
(2.12b) and (2.13b). With the definition

n k2
Z|—m?*|= (A1)
2 ] kgxa"wﬁ
we find!'®
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1 | m*’H?_ s m*a* _ : 4RK 24H’K 4K?
T, Y= —— {22 Z(3 m?)— Z.m? |*HR —+R?*+ 2 H?R —4H* - —
< n) 87T2l 4 (2m) 64 Z(zm) 3 R 9R+3 +3az az a4
Tm®a® 2HK 105m%aH*
s Z(5,m? [%HzR +2H*— b " Z(5,m?)
2.2 X 2 2
=) [PEZ(3,m?) [4HR — R+ 1287R — 12544 ARK 2R DK
a a a
5m*at 7 9H*K 105 9
___Z_Z(;,mz) 2H’R +9H*— =~ |+ m% H*Z (§,m?)
a
+(E—+)9m%*H’RZ ($,m?) ’ , (A2)
<Ttt>w=—%2 <Ttt>k—<Ttt>ll:V) (A3)
.1 3 K | 3mH? ‘VH,
(T )k =mlwk—(§—%) o HZ_;_Z o ' 76— wkal ’ (A4)
_ 4 _2
(T)g:—il’"s" z(3,m? iR y2m?- 2K Sa*H?Z (L,m?)
T a
_ m* (2 m?) R 11HR+ 1R2em2g - 10 10 RK 8H2K+ 8K?
32 2’ 3773 3 3 g2 a? at
66 2 2
F M9 (2 m?) |2 HR + IR? 4 140HR + s4p4— 23RK _ O16H'K |, 84K
128 z 3 3 a? a? at
231m%?® 4 8H’K 1155m % '°H*
_L2ima S ou oy 2 4_ 13 2
356 (5,m?) | TH'R +8H i 8 Z(Z,m?
2,42 .. . 2 2
FE—1) [ 73 m?) |R+7HR + LR>+4HR +6mt— 3RK | 12HK | 6K
4 a’ a2 at
4.4 . 2 2
% Z(1,m?) |SOHR +10R*+400HR — 1205+ ~20RK _ 1320H'K , 240K
32 a? a’ a*
6,6 2 8 8ry4
+ e Z (3,m?) |2240HR -+ 8400H* L760H K | _ 945’"8“ H 7 (11 2 ]
a
2.2 5
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(A6)

(TYW=2TF 22(T) —(T)),
k=1

Q
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v 1 2 1 2 4rr2
(T)=— ‘m— (E—0) | |[R—em?— K | Mg sy K| gmH l
(5% (2)3 a [o)% a [o)%
(§—3) m? | . R RK
+ ; (I)Hup+18 : HR___+H2R_+_ > . (A7)
4wy oy a

The quantities Z (n/2,m*a?) have been analyzed by Shen, Hu, and O’Conner.?> They find

2

22y _ % t 1 2.2y=n/2
Z(n/2,mad)= [ di st (lema) +1,,(m%a?), (A8a)
e dt (1+it)? (1—it)?
I, ,(m%a?) =i _
/2 0 e _1 | [(14i+m2a? " [(1—it)+m’a’]"" (A8b)

When (T, )® is evaluated in the limit m goes to zero and £ goes to +, one sees that the usual trace anomaly does not ap-
pear. This may be an indication that the adiabatic counterterms for the K =1 case [Egs. (A2), (A4), (A5), and (A7)]

which were first obtained by Bunch!® have to be modified.
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