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We introduce a model for an infinite-length, straight U(1) cosmic string as a cylindrical, singular
shell enclosing a region of false vacuum. The properties of the geometry for the region exterior to
the string are fully determined under the assumption that changes in the scalar and gauge field vari-
ables occur only at the cylindrical shell. This is consistent with a limiting form of the scalar poten-
tial V(P) where a minimum at

~ P ~

=0 is separated by a large barrier from a global minimum at

~ P ~

=g&0. The introduction of an approximately singular "surface" for the string allows the defi-
nition of a 5-function stress-energy density that characterizes discontinuities in the fields. We show
consistency of the model with the full coupled equations for the metric, and the scalar and gauge
fields in curved space-time. It is found that for this model, in the absence of an "external" cosmo-
logical constant, the exterior geometry of the string approaches Minkowski space-time with a deficit
angle, and it is shown that in the limit when the string becomes a line source, i.e., its radius vanishes,
the deficit angle reduces to the well-known expression 50=8~@, with p the proper mass per unit
length of the string.

The introduction of gauge theories with spontaneous
symmetry breaking to describe elementary-particle phys-
ics has given rise to an intensive study of cosmic strings.
In these models the Universe may have undergone a num-
ber of phase transitions since the big bang. ' One impor-
tant cosmological consequence is that these phase transi-
tions can give rise to vacuum domain structures such as
domain walls, strings, and monopoles. Among these to-
pological structures, cosmic strings have been of great in-
terest because, in addition to possibly acting as gravita-
tional lenses, they may provide density perturbations
leading to galaxy formation.

One particular aspect of cosmic strings that has been
intensively investigated by several authors is the gravita-
tional effects of an infinitely long straight string.
Zel'dovich et al. and Kibble estimated the gravitational
field of a string in the Newtonian approximation. Later,
Vilenkin calculated the gravitational properties of a stat-
ic, cylindrically symmetric string in the linear approxima-
tion to general relativity. He showed that the geometry of
the space-time exterior to a string of uniform linear ener-
gy density p exhibits, to first order in p, a conical
behavior with deficit angle 60=8m.p. In his approach,
the stress energy of the string is approximated as that of
an infinitely thin line with positive (5 function) energy
density and equal negative pressure (tension) along the
axis.

Recently, there have been several studies where a cos-
mic string is considered as an extended source (finite ra-
dius). Gott and Hiscock approximated the stress energy
of a string, in analogy with Vilenkin's calculations, as
that of a cylinder of a finite radius with uniform energy
density and equal negative pressure T along its axis. In
their model, surface stresses and energy density were not
considered; that is, the surface of the string was assumed
to be nonsingular. They then found the exact space-time
metric representing the exterior of a static cylindrically
symmetric string and also obtained that the geometry out-
side the string is conical, with a deficit angle AI9=8~p, ;
thus, these results agree with those of Vilenkin to all or-
ders in p. Similarly, Linet has generalized the model of a
string as an extended source to include nonuniform linear
energy density p along the radial direction. In addition,
he has also studied' a string as a line source where the
space-time in which the string is immersed has a nonvan-
ishing cosmological constant A. Tian" generalized this
model to thick strings and showed that, with nonzero A,
the stress-energy components T~~ and T„, cannot both
vanish, as they can in the case A =0; consequently, the ex-
terior metric for a string may or may not be conical.

To our knowledge, the most general treatment of the
gravitational effects of a string has been given by Garfin-
kle. ' In his approach, he solves the gravitational field
equations, as well as those of a string treated as a self-
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interacting scalar field minimally coupled to a U(1) gauge
field, with an effective potential of the form
V(

~ P ~

)=k(
~ P ~

—r) ), with A, and q constants. He
points out that one of the difficulties of other approaches
has to do with the scalar and gauge fields; that is, since
the string is a configuration of these scalar and gauge
fields, to find the gravitational field it is not sufficient to
assume a stress energy, e.g., energy density equal negative
pressure, and solve for the metric. In order to be con-
sistent, one has to find the metric by solving simultane-
ously the coupled Einstein-scalar-gauge field equations.
Garfinkle then showed that there exists a class of static,
cylindrically symmetric solutions to those field equations
which asymptotically approach Minkowski space-time
with a deficit angle AL9=8~p, to second order in g.

The purpose of this paper is to give a model for a gravi-
tating cosmic string that allows, to some extent, analytical
solutions for the fields and leads to the stress energy of
the string as a reasonable limit of Garfinkle's general ap-
proach. Our model is based on the assumption that the
values of the scalar and U(1) gauge fields do not signifi-
cantly vary at the core and outside of the string; that is,
any change in the values of the field variables takes place
at a cylindrical shell (which defines the "surface" of the
string) whose thickness is small compared with the radius
of the string. This is an analogous treatment to that of
vacuum bubbles in the old inflationary universe. Under
that scenario, a thin-wall bubble of true vacuum is materi-
alized within the false vacuum; Coleman' showed that
the thin-wall approximation holds if the potential differ-
ence between the real and false vacuum is much smaller
than the potential barrier between them. Thus, for a
string we also require a substantial barrier in the scalar
potential V(

~ P ~
) between the false vacuum

~ P ~

=0, and
the global vacuum

~ P ~

=r) (Fig. 1); however, in this case
the symmetry is obviously cylindrical and, contrary to the
case of vacuum bubbles, the region enclosed by the thin
wall is the false-vacuum region.

We start by reviewing the full coupled Einstein-scalar-
gauge field equations which describe a static, cylindrically
symmetric string in curved space-time. We then show
that the assumptions on which our model is based are
consistent with the field equations; in particular, that
there exist solutions for which the variations of the field
may occur in a thin, cylindrical shell region. This allows

us to introduce an approximating 6-function singular
stress energy for the string at its surface. Later, by means
of Israel's jump conditions in surfaces of discontinuity, '

we obtain the geometrical properties of the space-time in-
terior and exterior to the string surface. Finally, we show
that in the limit when the radius of the string vanishes,
Vilenkin's results for the stress energy and deficit angle
are directly obtained.

Following Garfinkle's approach, ' we begin by consid-
ering that the string fields are given by a vector field 3,
and a complex scalar field P. The total Lagrangian of
these fields is

L = —(V,P+ieA, Q)(V'P ieA—'P)/2 —V(P)

FgbF /1677 )

where F,~
——V', Ab —VbA, and V(P) is the effective poten-

tial. (We use Wald's notation'-' and units where
fi=c =G= 1.) Varying the fields P, P, and A, indepen-
dently, one obtains

V'V, P —BV/BP+ieA'(2V, Q+ieA, Q)+iePV"A, =0,
(2a)

V"Fb, —2mieg(V, Q —ieA, P)+2mieg(V, Q+ieA, Q) =0 .

(2b)

In addition, we have Einstein field equations,
G,b

——8~T,I„where the stress-energy tensor T,b is given
in terms of the fields by

T,b (V, QVbp+
——V, QVbp)/2

+ie(A, QVbp AbpV, /+A—bpV, Q A, QVbp)/2—

+F,Fb'/4n+e A, Abpp+Lg~g,

where e is a constant and I. the Lagrangian defined by
Eq. (1).

Since we are interested in a static infinite-length cosmic
string, the configuration of the fields must possess static
cylindrical symmetry; that is, the space-time has a set of
three commuting Killing vector fields, one timelike and
the other two spacelike, with one of them having closed
orbits, such that any two are orthogonal to each other and
each is hypersurface orthogonal. In addition, there exists
an axis where the Killing vector with closed orbits van-
ishes. Normalization is chosen so that along a closed in-
tegral curve the parameter takes the values from 0 to 2m. ,
and the spacelike and timelike Killing vector fields have
norm 1 and —1, respectively, on the axis. For the coordi-
nates t, z, r, and 0, where r is the geodesic distance from
the axis in the direction orthogonal to all Killing vector
fields, (8/Bt)' is the timelike Killing field, (8/88)' is the
Killing field with closed orbits, and (8/Bz)' is the Killing
field along the axis. Under these assumptions the metric
is given by

2 2Ad$. 2+e2 dz +e dg +dr (4)

FIG. 1. The effective potential.

where 3, B, and C are functions of r only. From the nor-
malization conditions, we have that 0 &0 & 2', with 0=0
and 0=2~ identified, and that the boundary conditions at
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the axis are

lim A (r) = lim B(r)=0, (5a)

where now the metric functions K and H satisfy Einstein
field equations (10) given as

lime /r =1
r~0

(5b)

Boundary condition (5a) arises as a consequence of the
chosen normalization for the spacelike (a/az)' and time-
like (a/at)' Killing vector fields. Condition (5b), on the
other hand, states the requirement of smoothness of the
metric at the axis.

We assume that the scalar field P has the form /=Re'
where R =R (r). This structure has the implicit assump-
tion that the circulation or winding number of the string
is equal to unity; it can be demonstrated that for winding
numbers larger than one, for at least some potential func-
tions V(

~ P ~
), and choices of the gauge coupling e, the

U(1) gauge string is unstable. ' In addition, we will also
assume that the gauge field A, has the structure
eA, =[P(r) —1]V',8, and the effective potential V(P) is
axial symmetric, i.e., V= V(R). With these choices, Eqs.
(2) for the scalar and gauge fields become

R "+(A+B+C)'R'=dV!dR+e P R, (6a)

P"+(A +B—C)'P"=4m.e R P, (6b)

In terms of these unit vector fields, the stress-energy ten-
sor T,b for the scalar and gauge fields has the form

Tab atb + zZazb + g~a Ob + r a

where

E= P, =[(R') +e —R P +2V

+e (P') /4~e ]/2,
Pa ——[—(R') +e R P 2V+e (P')—/4rre ]/2,

(9b)

P, =[(R') —e R P 2V+e (P') /4me —]/2 . (9c)

For the given metric (4), the only nonvanishing com-
ponents of Einstein field equations, G,b ——S~T,b, are'

G b r r =A 'B'+ A 'C' = 8mP, ,

G bO 0 =A"+B"+(A') +(B') +A'B'=8vrP0, (10b)

(10a)

G.,z z'=A "+C"+(A')'+(C')'+A'C'=8~P, ,

G,b t t =B"+C"+ (B') + (C') +B'C' = 8~e . —
(10c)

(10d)

From the boundary conditions (5) at the axis, it can be
shown that A =B everywhere; this make Eq. (10c) and
Eq. (10d) identical. If we set K =e "~ and H=e +
the metric (4) then takes the form

ds2=K4~ ( dt +dz )+H2K —2/3dg2+d&—2

where ( )'=d/dr—. Because of the choice that we have
made for the scalar and gauge fields, the stress-energy ten-
sor (3) is diagonal. Thus, it is useful to define the follow-
ing set of orthonormal vector fields:

t'—:e (a/at)', z'=e '(a/az)',
8'=e (a/ae)', r'=—(a/ar)' .

H" + ( 8~@+2vrP e )H =0,
K"—6' gK =0,
L'H' —6~P,KH =0 .

(12a)

(12b)

(12c)

Furthermore, using Eqs. (6) for the scalar and gauge fields
(which imply conservation of the stress-energy tensor) and
the Bianchi identities, it is also possible to show' that Eq.
(10a), or equivalently Eq. (12c), is superfluous. Conse-
quently, the set of equations to solve for the metric func-
tions (H, K) and the string fields (R,P) are Eqs. (12a) and
(12b) and Eqs. (6a) and (6b), where the latter can be
rewritten as

(KHR')'=KH(dV/dR+P R/H K i ),
(K P'/H)'=(4~e R P)K /H

(13a)

(13b)

Equations (12a) and (12b) and (13a) and (13b) are the set
of equations for which Garfinkle' showed there exists a
class of static, cylindrically symmetric solutions, with ef-
fective potential V(

~ P ~

) =A, (
~ P ~

—g ), that asymptoti-
cally (in the cylindrical spacelike direction) approach
Minkowski space-time with a deficit angle, to second or-
der in g, given as 60=S~p.

We will now proceed to introduce our model which will
allow us to have a solution for the metric near (and also
inside) the string surface. First, we will assume that, al-
though not explicitly specified, the scalar field P interacts
with itself through the standard "old inflation" potential
(Fig. 1); that is, V(R) possesses two relative minima, at
R =g and R =0, only one of which, R =g, is an absolute
minimum. These should be true local minima in both
cases. The barrier between the two minima is essential for
the thin-wall approximation to hold. Second, we divide
the space where the string is immersed into three disjoint
regions. Region M (the core of the string) consists of
the points whose geodesic distance r from the axis satis-
fies 0(r & r, —6/2, where 5 is an arbitrary non-
negative number and r, is what later will become the
string coordinate radius. Region M+ (the exterior of the
string) is given by r,++6/2(r+, and region M, (the
"surface" of the string) is given by r,++5/2 ) r
&r, —6/2. Mutually independent coordinate charts are
introduced in each region; furthermore, we assume the ex-
istence of mappings at the boundary of each region that
allows the relation of the components of tensorial quanti-
ties, i.e., r,+~r,

Finally, we will have the following set of assumptions
for the metric, scalar, and gauge fields.

(1) Throughout region M, i.e., in the core of the
string, the field variables are well approximated by
P(r ) =1, R(r ) =0, and the effective potential exhibits
its local minimum, V(0) =A,g, where A, is a constant.

(2) In region M+, exterior to the string, the field vari-
ables are well approximated by P(r+ ) =0, R(r+ ) =q, and
the effective potential for this case is given by its absolute
minimum V(g) =0.

(3) At the "surface" M, of the string, the coefficients H
and K of the metric (11) do not vary significantly, and the
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H" +a H=O,
K"+a K=O,
H'K'+a HK=O,

(14a)

(14b)

(14c)

where a =6+kg in M and a+ =0 in M+. A
straightforward integration of these equations yields

K=b cosa(r+ro), H=(d/a) sina (r +ro),
where b, d, and ro are constants of integration, and it is
understood that these solutions have their respective
values at each region M+ (a+ ——0) and M (a &0).

scalar potential exhibits a barrier of height PA, g . In order
that the thin-wall approximation holds, P » 1.

Assumptions (1) and (2) give the solutions for the scalar
and gauge field variables P and R in M+ and M; conse-
quently, in these regions one only has to solve from Ein-
stein field equations for the metric variables H and K,
and check for consistency. However, in region M„where
the magnitudes of the scalar and gauge fields could vary
abruptly, the average value of the magnitudes for the
fields will be obtained by integrating Einstein equations in
that region in the limit when 6~0, i.e., region M, will be
squeezed to a singular cylindrical hypersurface, and only
5-function singularities will then survive. Great care
should be taken whenever one speaks about the limit
6~0. We shall see that for the purpose of analyzing the
jump behavior of the field variables one takes the limit to
thin-wall behavior formally to a 5 function. However, the
thickness of the wall is in fact finite and determined by
the parameter P giving the height of the potential barrier.
In particular, one cannot in every detail approximate the
effective potential barrier as a 6 function.

Applying assumptions (1) and (2) to the expressions (9),
one obtains that the stress-energy tensor (8) is given by

Tb ——0 in M+,
~b= —~'g g b

Thus, Einstein field equations (12) read now

Boundary conditions at the axis and Eqs. (5a) and (5b) im-

ply that as r~0 the space-time becomes locally Min-
kowskian, i.e., K (0)= 1 and H (0)~r. Thus, it is re-
quired that the constants of integration d and b to be
equal to unity, and ro ——ro+ ——0. Consequently, the solu-
tions for the field variables H and K are given as

K = cos(ar ),

H =(I/a) sin(ar ),

in M (15a)

and

K=b+,

H =d+r+
in M+ (15b)

where the constants of integration d+ and b+ in Eq.
(15b) will be determined later by the junction conditions in
the surface of the string.

It is important to notice that H and K in (15b) are not
the most general solution of Eqs. (14a)—(14c) with a =0.
The general solution to these equations is either K=b,
H =c+dr or K=e+fr, H=g, where b, c, d, e, f, and g
are constants. The first solution is Minkowski space-time
minus a wedge, and it can be brought to the form given in
(15b) by changing the coordinate r to r +c /d. The
second solution (K=e+fr, H =g) is a nonflat metric
analogue of a Kasner metric. As is pointed out in Ref.
12, this solution can be ruled out because in this metric
the length of a particular closed integral curve of (8/BO)'
vanishes and, consequently, does not represent an isolated
string.

If a &0, which is the case in M, the metric (11) with
the solutions (15a) has a real singularity; that is, there ex-
ists a region where the curvature scale R,b,dR' '" becomes
infinite, and this is at a finite spacelike geodesic distance
from the axis. The point at which the singularity occurs
can be obtained from the nonvanishing components of the
Weyl tensor, which are given by'

C""„„=4a[v„ /4 ——, —(v„/6) cos(2ar)]/[ sin(2ar)] for x =z, O, t (16a)

C"~
~ =4a [u„v~/4+ —,

' +[(v„+u~)/6] cos(2ar) I /[ sin(2ar)] for x&y, (16b)

where v, =v, = ——, and v& ———,. Thus the invariant
C' d, C', b of the Weyl tensor, and consequently
R',dR', b, will have a singularity at 2ar =n~, with n a
nonvanishing integer. For the case n =0, one can show
from expressions (16a) and (16b) that the Weyl tensor is
regular at the axis. The existence of this singularity
means that a string of the type we postulate cannot have
an arbitrarily large coordinate radius r. Although the
coordinate radius r is an arbitrary parameter of this
model, it cannot exceed vr/(2a) =n/2(6~Ay )'~ . Howev-

er, if we recall that the physical radius of the string is
given by p=HK '~ =(I/a) sin(ar)[cos(ar)] '~, the
singular case ar =~/2 corresponds to a string of infinite
physical radius.

Finally, it is easy to check that the choice, from as-
sumptions (1) and (2), for the scalar and gauge fields in
M+ and M is consistent with Eqs. (13a) and (13b). The
only term in these equations that requires a little more
careful explanation is the one involving dV/dR in Eq.
(13a). One can see, however, that this term will vanish
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[[G,br r ]]=0=8vrS,br r

[[G,bx r ]]=0=8vrS, bx r

[[G,bx'y ]]=8~$,bx y

where x', y'=t', z', 0', and
r +5/2

[[ ]]= lim f dr .

(18a)

(18b)

(18c)

(19)

The junction conditions (18a) and (18b) have the physi-
cal meaning that the momentum flow is entirely in M„
i.e., no momentum associated with the surface layer flows
out of M, . On the other hand, the junction condition
(18c) states that the stress-energy tensor S,b in M, gen-
erates a jump discontinuity in the extrinsic curvature.
The extrinsic curvature is one derivative of the metric,
and the curvature is two derivatives. Hence, jumps in the
metric (and 5 singularities in the extrinsic curvature)
would give more than 6 singularities in the curvature
(hence in the matter). They are thus excluded in the phys-
ically motivated jump conditions used here. Since in our
model the Einstein tensor (10) and the stress energy (8) are
diagonal, junction conditions (18b) hold identically. Also
from expression (10a) for the G~br r component of the
Einstein tensor, one sees that the left-hand side of the
junction condition (18a) holds identically because G,br r
only depends on first derivatives of the metric which, at
the most, have jurnp discontinuities and therefore do not
contribute when they are pill-box (19) integrated.

What is left to show is that the right-hand side of Eq.
(18a) also vanishes; that is, from (9c) we need to show that

both in M+ and in M if one recalls that V(R) is as-
sumed to have two relative minima, an absolute in M+
and a local in M

Up to this point, we have obtained the solution for the
metric, and the scalar and gauge field variables R and P
in regions M+ and M . What follows is the integration
of Einstein field equations in region M, along the radial
direction, in the limit when the thickness of M, vanishes.
If the limit is finite and nonzero, it will define the jump
conditions for the extrinsic curvature and the stress-
energy tensor S,b on M, . Let us define the surface
stress-energy tensor on M, to be the integral of T,b with
respect to the proper distance r, measured perpendicularly
through M, :

r +5/2
S~b = 11111 f T~bdr

p r —5/2

The surface stress-energy tensor S,b will then only consist
of "5-function" contributions from T,b, which arise from
the field variables and the potential [see Eq. (9)]. The ef-
fect of the surface layer M, on the space-time geometry is
obtained by performing a "pill-box integration" of Ein-
stein field equations

r +5/2
(17)

p r, —5/2

It can be shown' that in the absence of jump and 6-
function discontinuities in the metric g,b and of 6-
function discontinuities in the extrinsic curvature, the
Einstein field equations when integrated yield

S,br r =[[T,br™r]]=[[P,]]=0. (20)

We begin by multiplying Eq. (13a) by KHR' and Eq. (13b)
by K P'/H. Integration of these equations yields

(R') =2V+H K ' f P (R )'dr

(P') =4vre f R (P )'dr,

(21a)

(21b)

(22)

If we recall the expression (9c) for P, in terms of the field
variables, Eq. (22) simply expresses the statement that P„
defined in M, approximately vanishes. This approxima-
tion, when pill-box (19) integrated, becomes an equality
since for that case the metric functions H and K remain
strictly constant throughout M„and consequently one ar-
rives at the desired result, Eq. (20). This completes the ar-
gument that, within the given assumptions (1), (2), and (3),
a model for a string, as a cylindrical shell-type surface of
discontinuity enclosing a region of false vacuum, is con-
sistent with the general equations for a U(1) cosmic string.

We need now to exploit junction condition (18c), which
expresses how the geometry of the space-time reacts to the
presence of M, . We begin by pill-box integrating Einstein
field equations (12), where now it is safe to write the
stress-energy tensor T,b as

T,b
——T,b9(r, —r )+S,b5(r, —r)+ T,bO(r+ —r, )

(23)

with S "=o(t t —z'z") —re 0, o'=[[e]], andr:—[[Pe]].—It is clear from Eq. (23) that only the 5-
function term, and not the jump terms, will contribute to
integration (19). Therefore, if we multiply Eq. (12a) by K
and add it to Eq. (12c), similarly for Eq. (12b), we obtain
after pill-box integration that

( K'/K ) (K'/K ) = —6m.r, —

( H'/H )+ —(H'/H ) = 8m.o.+2n.r,
(24a)

(24b)

where ( )+ —( ) is understood as a limit process Equa-.
tions (24a) and (24b) are the so-called jump conditions'
that relate the jumps in the derivatives of the metric, i.e.,
jumps in the extrinsic curvature, to the stress-energy at
the singular hypersurface. Substitution of the obtained
solutions (15a) and (15b) for the metric functions K and
H in M+ and M allows us to rewrite Eqs. (24a) and
(24b) as

a tan(ar, )= 6mr, —
1/r, + —a cot(ar, ) = —8n o + 2m r,

(25a)

(25b)

where we have used the assumptions that
a =—a =6~A,g, and that the absolute minimum of the

where we have used assumption (3) which states that the
metric variables H and K remain almost constant through
M, . Dividing Eq. (21b) by H K / and adding Eq.
(21a), one then obtains the following approximation which
holds throughout M, :

(R')2 2V+(p')2H —2 K2 /3 /4~ e2 H 2K2/3R2—p2
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effective potential V(
~ P ~

) vanishes at M+. The quanti-
ties o and r are from Eq. (23) the surface energy density
and the stress in the 0'0 direction, respectively. On the
other hand, from assumption (3) we know that the metric
variables K and H are continuous throughout M, ; that is,

Varying with respect to 6, we obtain

do. /d6=0
= —(g +1/alp )/5 +(2Pk, g +r) /16p )

(30a)b+ = cos(ar, ),

d+r,+ =(1/a) sin(ar, ) .

(26a)

(26b)

or equivalently

The jump conditions (25a) and (25b), together with the
conditions (26a) and (26b) for the continuity of the metric,
form the set of equations that determine the space-time
geometry outside the string.

By looking back to the exterior metric (11) in M+, we
have that the deficit angle is given in this case by
b.O/27r=(1 —b+ 'i d+ ). Using the junction conditions
(25) and (26), one obtains that

60/2m=4p, +[[1+2cos (ar, )]/3[cos(ar, )] i —1I,
(27)

where we have defined the mass per unit length, or linear
mass density, of the string as

p =2m T,bt ™t"HK ' dr .
0

2o = [[(R') +2Pk,g +[(P') laA, +P R ]Ip ]], (28)

where o.—:4~e /A. and p is the physical radius of the
string defined as p =H K . The thickness 6 of the
wall is determined by minimizing the surface energy den-
sity o. The gradients of the field variables R and P con-
tribute to this surface energy density as g/6 and 1/6,
respectively, and the "electromagnetic" term P R contri-
butes with (g/4) . Thus the pill-box integration in Eq.
(28) yields

2cr=(g +1/asap )/5+(2pkq +ri /16p )o . (29)

The expression (27) for the deficit angle can be rewrit-
ten in terms of the coordinates for the radius of the string
in M+ by means of the mapping r, ~r, given by Eq.
(26b). Equation (27) also shows that in the limit when r,
vanishes, i.e., when the string becomes a line source, we
get the well-known result by Vilenkin for the deficit angle
as given by b,O/2rr=4p. Furthermore, from Eq. (25a) in
that limit one obtains that r—:[[Ps]]=0. Therefore, the
only nonvanishing components of the stress-energy tensor
are [[e]]=—[[P,]], as it is expected for a line source
string.

Finally, given the behavior of the effective potential at
the string wall (M, ), one should be able to obtain explicit-
ly the surface equation of state cr=o(r), and thus from
the set of Eqs. (25) and (26), to determine the space-time
geometry outside the string. As an example, let us consid-
er the case when the effective potential V(R) has,
throughout M„ the constant value /3k', where P»1 is
required for the thin-wall approximation to hold. This as-
sumption for the scalar potential allows us to rewrite the
surface energy density cr =[[@]],from Eq. (9a), as the
pill-box integration (19)

6 =2Pk, rI [(1+1/32Plp rl )I(1+1/alp g )] . (30b)

Aside from the factors between the brackets, which are
due to the gauge field, the thickness of the string wall, as
given by Eq. (30b), has essentially similar behavior to the
thickness of a bubble wall in vacuum decay. ' They will
agree in the case of a global string, in which the gauge
field is not present, and for the situation when P, the scale
of the potential barrier, approximates a/32. In these two
cases the factor between the brackets in Eq. (30b) becomes
of the order of unity, and then 5 =2@i,rj . Notice that
Eq. (30a), and consequently (30b), can also be obtained
directly, although without the same physical motivation,
from the approximation (22).

Following an analogous procedure to that used to ob-
tain Eq. (29), we can also compute

2r—:—2[[Ps]]
=(rI —1/asap )/5+(2p7 rl ri /16p )—o . (31)

This equation, together with Eq. (29) for o, allows us to
write the equation of state (parametrized by the physical
radius p) as

a =r) /5+1/(asap 5),
&=g /6 —q 6/16p

(32a)

(32b)

Equation (32b) shows again that as the physical radius p
of the string gets comparable with its wall thickness
(4p=6), r:—[[Tsg—]] vanishes; furthermore, from Eqs.
(30b) and (32a) the thickness and linear mass density of
the string are now given by 5 =2@k,rI and p =Acr =2rj,
respectively, when a =32f3. These results agree with those
for a line source string.

Based upon the analogy with bubbles in the old infla-
tionary universe scenario, ' we have constructed a model
for a U(1) cosmic string as a cylindrical
shell-type singular surface which traps a region of false
vacuum. The strongest assumption, upon which this
model is based, is that the thickness of this singular shell,
where the fields vary, is small compared with its radius in
order for the thin-wall approximation to hold. We have
also shown that this model, within approximations (1), (2),
and (3), is consistent with the general equation' for a stat-
ic, cylindrically symmetric U(1) cosmic string. The main
motivation for introducing this model for an infinite-
length straight cosmic string is that, as in the case of vac-
uum bubbles in inflation, it is analytically more manage-
able. Perhaps with this model, a study of string annihila-
tion may be done similarly to that made for bubble col-
lisions. ' Although our work is mathematically
equivalent to the standard treatment of singular hypersur-
faces, we have explicitly pill-box integrated the Einstein
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field equations instead of directly using the Lanczos equa-
tions and the jump conditions' ' (that relate the average
and jump of the extrinsic curvature to the matter sources),
which in some cases could obscure the treatment.

The only drawback to this model is that a particular
"old inflation" form of the scalar potential V(

~ P ~
) is re-

quired. However, one sees that the model successfully
reproduces the deficit angle and the equation of state for a
line source string when taking the limit of vanishing ra-
dius.

On the other hand, by looking at the numerical solu-
tions' for the flat-space field variables for a U(l) string
with effective potential V(

~ P ~
) =A, (R —g ), one sees

that the asymptotic and near the origin behavior of the
field variables is consistent with the assumptions here
made for these fields in our model. It would then be in-

teresting to -find, from those flat-space numerical solu-
tions, the range of values for the parameters of the theory
and the barrier that should be introduced to the effective
potential that allow one to confine the changes of the field
variables to a thin cylindrical-shell region. Finally, a de-
tailed study would also be important to determine whether
the gravitational and/or the gauge terms in the total La-
grangian prevents a U(l) string in this model from col-
lapsing into a "one-dimensional" string, in particular, to
analyze perturbations of this static model.
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