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We study the consequences of Stevenson's optimized perturbation theory applied to the second-

order QCD calculation of the moment of the photon structure function Fzr The .singular inn term

present in the second-order coefficient in the conventional calculations based on the modified-

minimal-subtraction and momentum-space-subtraction schemes is completely absorbed into the ef-

fective mass scale. Comparisons with other analyses are also made.

Perturbative QCD calculations of physical quantities
depend explicitly on the procedure how we define the ex-
pansion parameter or the coupling constant'
a =g, /4m . This ambiguity arises because we are free to
prescribe how much of the finite parts of renormalization
constants are left behind on taking the infinities away.
Resolution of this renormalization-scheme (RS) depen-
dence can be successfully carried out with the use of the
optimized perturbation theory (OPT) proposed on the
basis of the principle of minimal sensitivity by Steven-
son.

Within the second-order calculations, choosing the RS
is equivalent to choosing the renormalization point p.
The response of the coupling a to a change of p is given
by the renormalization-group equation

or the operator matrix elements A„. This factorization
procedure, which is interrelated with the renormalization
of the operator matrix elements, again causes an ambigui-
ty similar to the RS-dependent ambiguity. Therefore,
generally speaking, the calculational scheme dependences
of the perturbative results can be analyzed only if the RS
dependence and the factorization-scheme (FS) dependence
are taken into account simultaneously. However, there
are quantities that are free of the FS dependences, e.g., in
the present case the Q dependences of the structure
function I' z..
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where b and c are RS-independent constants. With the
appropriate boundary condition we can integrate Eq. (1)
in the form

dx dx
ln

P(x) o bx (1+ex)
whose second-order expression becomes

h„=c +r„ld„. (6)

If we start with the perturbative calculation of R2, then
by applying the original single-scale OPT (Ref. 7) to the
second-order approximation to Rz(g ) we get the opti-
mized solution
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Typical of the predictions of perturbative QCD are
those for the structure functions of deep-inelastic scatter-
ing processes. The Mellin-transformed nth moment is
calculated perturbatively in the form

Fz(g )=A„a "(1+r„a+. . ),
where d„ is a RS-independent constant while r„as well as
a depends explicitly on the RS used in the calculation.
The overall normalization 3„ is, in general, uncalculable
within the framework of perturbation theory, but is in-
dependent of scale p.

In order to get Eq. (4) we should factorize away the un-
calculable "soft" part into parton distribution functions,

where p„ is a RS invariant thus can be calculated in any
scheme:
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p„=h„b in(glp) . —
Substituting Eq. (8) in Eq. (3) with p and a replaced by
popT and aopT, respectively, we get the determining equa-
tion for aopT..
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Having obtained (R2)opT, we can evaluate [F2(Q )]op'r
at any Q through a simple integration, once we know
F2(Q ) at some reference value of Q =Qp:

0.3

Q =5 GeV
2 2

F2r(Q )= 3 6+ 5ca
exp —, ln( 1+ca ) + ~

ca
8(1+ca)

(12)

This single-scale OPT solution is the main result in the
present note.

In Fig. 1, the single-scale OPT result, Eq. (12), with
four quark flavors is shown over the range 3 (n & 50. We

»[F2(Q )]opT lnF2(Q0)

+bd. f, [&2(Q')]OPT.
«Q'
0

Thus we can apply the OPT to the perturbative analysis
of the structure functions in two different ways: (i) ap-
plying the two-scale OPT (Refs. 4 and 5) to the structure
function F2 itself that depends both on the RS and FS; (ii)
applying the original single-scale OPT (Ref. 3) to the Q
dependence of Fq, Eq. (5), then integrate the result via Eq.
(11) to get back the structure function.

In view of the above considerations the photon struc-
ture function Fz~ shows a particular feature in its pertur-
bative regime because the asymptotically dominant point-
like contribution is free of the unknown parton distribu-
tion functions and can be calculated purely frotn QCD
(Refs. 9 and 10). Namely, A„(denoted explicitly as Ar in
the photonic case) in Eq. (4) belongs to the "hard" part in
the sense that A ~ is, in contrast with the hadronic case,
calculable in the leading-order perturbation calculation
and is independent of RS. This fact means that, if we
confine our interest in the asymptotically dominant con-
tributions, the factorization of the photon structure func-
tion is carried out trivially or, in other words, there is no
need to factorize the whole process into the "soft" and
"hard" parts. Thus at first sight one may. expect that the
original single-scale OPT can be applied directly to the
structure function Fzr itself and get the optimized solu-
tion. This is not the case simply because d„=—1 in Eq.
(4).

If we employ the two-scale OPT, the above difficulty
can be overcome and the optimized solution to the photon
structure function is in fact obtained. " The purpose of
the present note is to apply the alternative method or the
single-scale OPT to the photon structure function and
study the consequences of the result. As can be seen
below, there are some differences between two optimiza-
tion methods.

As explained above, in the single-scale OPT, the "op-
timized" Fzr(Q ) can be obtained at any Q through Eq.
(11) provided that it is known at some reference value of
Q =Qp. Remarkably enough, thanks to the asymptotic
freedom, QCD predicts Fzr(Q ) exactly at a special value
of Q, i.e., Q = oo. Namely, the leading-order coefficient
A~ is now exactly calculable, as stressed above. Substitut-
ing Eq. (7) in Eq. (11), changing the integration variable
Q' to aopT(Q') by the use of Eq. (10) and taking the limit
Qp~ oo, we get (hereafter we shall neglect the subscript
OPT)
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FIG. 1. Moments of the photon structure function Fz~ in
units of e I

~
b ~, predicted by the leading-order QCD calcula-

tions (Ref. 9) (dashed curve), the second-order calculations in the
MS scheme (Ref. 10) (dotted curve), the two-scale OPT calcula-
tions (Ref. 11) (dashed-dotted curve), and the single-scale OPT
calculations Eq. (12) (solid curve). The predictions are for
A=0. 2 GeV and four quark flavors. We have plotted n times
the structure-function moments, for convenience.

have used the value of the scale parameter A =AMs ——0.2
GeV that corresponds to A=0.224 GeV for four quark
flavors. For comparison, we also show the results for the
leading-order calculations, for the second-order calcula-
tions in the modified minimal-subtraction (MS) scheme, '

and for the two-scale OPT result. " Available experimen-
tal data are not accurate enough to discriminate one
scheme from another. In the following we will discuss
characteristic features of various calculations.

As seen from Fig. 1, both of the optimized solutions,
i.e., the single- and the two-scale OPT results, share quite
a similar n dependence. In fact, for 3(n &50, their ra-
tios are within the range 0.86—0.94 and 0.94—0.97 at
Q =5 and 20 GeV, respectively. '

Two widely used conventional calculations, i.e., the MS
calculations and the MOM (momentum-space subtraction
scheme) calculations (not shown in Fig. 1), also show
similar n dependence between themselves. Their ratios
are in the range' 1.06—1.09 and 1.03—1.04 at Q =5 and
20 GeV, respectively. Note, however, that the two OPT
results and the conventional calculations show quite dif-
ferent n dependences.

In order to study the behavior of the ordinary perturba-
tion coefficients calculated in various schemes, we expand
Fzr in the form of Eq. (4) with dr = —1:
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TABLE I. The second-order to the leading-order ratio r„a(M(Q)) for the original MS (Ref. 10) and for the two OPT calculations.
The two-loop effective coupling constant in the MS scheme is calculated with M = Q and AMs 0.2 GeV.

r„a(M(Q))
Q~=5 CxeV'

Single-scale Two-scale
OPT OPT

Single-scale
OPT

Q =20 CreV~

Two-scale
OPT

3
5

10
15
20
25
30
35
40
45
50

0.439
0.443
0.565
0.681
0.788
0.890
0.989
1.087
1.184
1.282
1.382

—0.0735
—0.0174

0.0046
0.0187
0.0352
0.0535
0.0730
0.0933
0.1142
0.1357
0.1577

—0.343
—0.346
—0.414
—0.454
—0.479
—0.497
—0.511
—0.522
—0.531
—0.538
—0.545

0.265
0.266
0.302
0.329
0.349
0.364
0.377
0.388
0.398
0.406
0.414

—0.0539
—0.0123

0.0031
0.0119
0.0215
0.0315
0.0416
0.0515
0.0612
0.0707
0.0798

—0.276
—0.278
—0.332
—0.365
—0.385
—0.400
—0.411
—0.419
—0.427
—0.433
—0.438

F2& —— (1+r„a+ . ),
a

(13)

where r„as well as a depends on the scheme used, while
A r does not. The single-scale OPT result, Eq. (12), gives

r„(single-scale OPT) = —,c, (14)

whose n independence is a striking result about which we
will discuss later. First let us study the consequences of
the numerical analysis. In Table I we give the second-
order to the leading-order ratio r„a for various calcula-
tions. ' Both of the OPT predict the second-order coeffi-
cients to be always positive (except for small n), in con-
trast with the original MS or MOM calculations in which
the second-order coefficients are always negative. As can
be seen from Table I, at Q =5 GeV, the single-scale
OPT predicts r„a to exceed unity at n =31 and then we
cannot take the result for n & 31 seriously.

Second let us study the large-n behavior of the pertur-
bation coefficient r„. In the conventional calculations,
e.g., in the MS schemes, r„ in Eq. (13) behaves as inn for
large n. In the single-scale OPT calculations, r„ is in-
dependent of n as noted above [see Eq. (14)]. This means
that the inn singularity present in r„ is completely ab-
sorbed into the optimized mass scale popy or the coupling
constant aopr [see Eq. (8)] through the process of optimi-
zation. This is in a sharp contrast to the two-scale OPT
result in which only a part of the inn singularity is ab-
sorbed into the mass scale. '"

Finally we give a comment on the comparison between
the photon and the hadron structure functions. We can

get two "optimized" solutions for the Q dependence R zr
through the two OPT procedures. One result is Eq. (7)
with Eq. (10) that is obtained through the direct applica-
tion of the single-scale OPT to Rqr, Eq. (5) with dr = —l.
The other one is obtained as follows: first apply the two-
scale OPT to the photon structure function Fzr itself;
then, by using quantities thus optimized, evaluate R2&
directly. The difference between these "optimized" solu-
tions can be shown to be of O(a'), which is just the order
of the RS-dependent ambiguity. This result is to be con-
trasted with the hadronic structure-function case where
the difference between the two OPT results for R2 is of
0(a ), two orders higher than expected. This difference
is not surprising from the following observation: Al-
though the single-scale optimization of R„works in a
same manner for the photonic and hadronic cases, the
same is not true for the two-scale optimizations. The
photonic case is considerably more complicated and it is
not just like the nonsinglet hadronic case with
d„~d~ = —1.

In conclusion two OPT results for the photon structure
function share many desirable features. Furthermore,
their perturbative coefficients have similar n dependence
and their ratio is rather close to unity. For this reason it
seems to be difficult to discriminate them experimentally.
However, the n dependence of the two OPT results is
quite different from those of the conventional calculations
such as MS and MOM calculations, especially in the
small-n region, and may be compared with experiment
rather easily.
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