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We discuss the way glueball states cpn be calculated using the t-expansion technique for the SU(3j
lattice gauge theory in 3+1 space-time dimensions. Starting with strong-coupling wave functions
we specify the simplest glueball structures that can be analyzed. They are described in a general
group-theoretical language. We also present an alternative construction in terms of electric and
magnetic fields. We then explain the use of the connected matrix formalism for this problem and
discuss the results for the 0++ and 1+ glueballs that have been analyzed before. We present new

results for 0,1,and 2 glueballs, for which we calculated the t expansion to order t . They
exhibit a scaling behavior leading to masses which are of the order of twice that of the scalar glue-
ball.

I. INTRODUCTION

The t expansion is an analytic method which is suitable
for the study of lattice-QCD in the Hamiltonian formula-
tion. It has, so far, been applied to the pure glue sector.
In this approximation it is quite useful for estimating
masses of glueball states. We report here on the efforts
carried out in this direction.

We start in Sec. II by recapitulating the basic elements
of the t-expansion technique and the methods that have
been developed for its analysis. This is followed in Sec.
III by a group-theoretical analysis of the wave functions
which we use for the glueball states. These wave func-
tions are the simplest structures which can be created in
the strong-coupling description. We describe several pos-
sible sets involving two-plaquette structures. A systemat-
ic construction of a glueball with any quantum number
can be given in terms of color-electric and color-magnetic
fields. This method, described in Sec. IV, is more
cumbersome but may be unavoidable for some quantum
numbers. Section V is devoted to an explanation of the
computational techniques that are being used here, in par-
ticular the formulation of the t expansion for the mass as
an explicit volume-independent series. Section VI con-
tains a presentation and discussion of our old as well as
new results. The latter include our analysis of 0, 1

and 2 glueballs to order t . The last two are degen-
erate in this order. Using the same techniques employed
for the scalar glueball we obtain scaling results which ex-
hibit masses about twice that of the scalar state. The
higher angular momenta lie lower than the J =0 state.
These features follow the strong-coupling pattern in spite
of the cumulative effect of hundreds of diagrams which
enter into this calculation.

II. THE t EXPANSION FOR SU(3) IN
THE STRONG-COUPLING BASIS

The technique of the t expansion was introduced in
Ref. 1 and applied to the SU(2) lattice gauge theory in
Ref. 2. Its first application to SU(3) was given in Ref. 3.

In this chapter we recapitulate the basic elements of the
model and the technique used to analyze it.

The theory we study is the (3+ 1)-dimensional SU(3)
lattice gauge theory defined by the Kogut-Susskind Ham-
iltonian

H = g Et +x g (6—trU~ —tr U~ )
2

1

(2.1)

where g is the coupling constant and x =—2/g . The link
operators Et and Ut which appear in (2.1) are conjugate
quantum variables satisfying the commutation relations

(2.2)

Et 10~ =0,
we define the energy function

(0~He '"~0)E t,g
(0

i
e

—tHi 0)

(2.5)

(2.6)

This function tends in the limit t~ oo to the correct vacu-

Intuitively, the operator EI' is the color-electric flux
operator associated with the link l, and tr Uz is the color-
magnetic flux operator associated with the plaquette p.
The operator Uz is defined to be

Up ——Ui U2U3 'U4 (2.3)

where the product of the unitary link operators U& is tak-
en in the counterclockwise direction. In carrying out ex-
plicit computations it is useful to work with the operator

H = g Et —x g (trU~+trU~),
l

which is related to (2.1) by an overall multiplicative and
additive constant.

In our analysis we employ the t expansion in the same
way in which it was applied to the SU(2) theory in Ref. 2.
Using the vacuum of the strong-coupling limit

~

0),
which is the state annihilated by the color-electric field
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um energy. The Taylor series of this function defines the
connected matrix elements:

2 ca t n

L(t) = g g (H "+')'+ (2.7)

Here V is the total volume (number of plaquettes) of the
system. E is an extensive quantity and so are all the con-
nected matrix elements. It was shown in Ref. 1 that the
connected matrix elements for any Hamiltonian H and
trial wave function

~ go) obey the recursion relations

(Hn+1)c (q
~

Hn+1
~ q )

M(t) we are in a position to construct one also for R.
This was used successfully both for the SU(2) theory and
the SU(3) one.

To calculate masses of other glueballs one has to con-
struct states with different quantum numbers. One such
example is the axial glueball which was studied in Ref. 5.
The general method consists of constructing appropriate
wave functions in the extreme strong-coupling limit and
operating on them with the t-expansion technique. The
structure of these states is studied in the next section.

III. GLUEBALL WAVE FUNCTIONS

p=0
(2.8)

which can be used for their algebraic evaluation.
From the energy function one can extract both the vac-

uum energy and the 0++ glueball mass (first excitation in
the vacuum sector). The latter is given by the t~ ao limit
of the expression

M (t)—:— —ln
g' a az(t)
2 at at

(2.9)

where the operator S creates a straight infinite string
along one axis; i.e.,

(L /2, 0,0)s= Q U&.
1 =( —L/2, 0,0j

(2.11)

All these quantities refer of course to values of opera-
tors defined for lattice QCD. To extract physical infor-
mation we have to study quantities which are expected to
scale in the continuum limit. Such a quantity is the ratio

M(t)'
o(t)

(2.12)

Having obtained an algebraic series for both o(t) and

The third quantity that we calculate is the string tension.
This is obtained by calculating the difference between the
ground-state energies of the sector with a string of length
L and the sector without any string. The tension cr(t,g )

is defined by dividing this difference by the length L of
the string and taking the limit L, ~ oo. Thus to calculate
cT( t, g ) we compute

(o
~

s'ae-'"s
~

o)
cT t,g = lim— E t,g—

(0
~

s"e '"s
~

o)-

(2.10)

In the strong-coupling limit the vacuum
~
0) is defined

as the state annihilated by all electric field operators. The
gauge-invariant excitations are given by acting on ~0)
with the magnetic operator trUp. We require the wave
functions to be translationally invariant, i.e., represent
zero-momentum states. We also like to classify them ac-
cording to the octahedral group, the cubic symmetry
group, in order to be able to read off their corresponding
quantum numbers in the continuum. Therefore, let us
start with a short description of the octahedral group fol-
lowing the paper by Johnson.

The octahedral group consists of 24 elements which
map the cube onto itself. These operations may be inter-
preted as permutations of the four main diagonals of the
cube; therefore, it is isomorphic to S4. There are five con-
jugacy classes in this group; hence, there exist five dif-
ferent irreducible representations. Table I is the character
table for this group. The notation C„refers to rotations
of the cube by angles of 2vrin The .classes C2 and C~
refer to rotations about the coordinate axes, C3 includes
rotations about the main diagonals, and C2 are rotations
about axes parallel to the face diagonals.

The classification of the single-plaquette wave func-
tions was already given by Kogut, Sinclair, and Susskind.
Let us derive their results by using the group-theoretical
analysis. We start by noting that there are six different
wave functions at our disposal. Three of them are given
by using one of the three loops in Fig. 1, each representing
an operation by trUp, and constructing a translationally
invariant superposition from it. We will designate these
states

~

1 ),
~

2 ), and 3 ) accordingly. The three other
states are constructed similarly by using tr Up. They can
be represented by arrows drawn in the opposite direction
and designated by

~

—1),
~

—2), and
~

—3). Clearly we
will not get all possible representations of the octahedral
group this way, because we have just six states. It is easy
to verify that we obtain the representations 3 &, T&, and

TABLE I. Character table for the octahedral group.

icity 3
Cp

8

C3

6
Cg

6
C2 Lowest

J
Al
A2
E
Tl
T2

1

1

2
—1

—1

1

1
—1

0
0

1

—1

0
1

—1

1
—1

0
—1

1
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FIG. 1. Graphic notation for the operation of tr U~ on three
different faces of a cube. FIG. 2. A state created by simultaneous operation of tr U~

and trU~ on the vacuum IO). The two different plaquettes are
located on opposing faces of one cube.

E. The representation A
&

is just the scalar state:

IS&=
I
»+ I

—»+
I
»+

I

—»+
I
3&+

I

—3& (3 il and

The representation T
&

is three dimensional. The basis is
defined by combinations such as

I
~„)=

I
1)—

I

—I) . (3.21

Finally, the representation E has two components given
by

I »+ I

—1& —
I
» —

I

—»
and

I
1)+

I

—1)+
I
2)+

I

—2) —2
I
3) —2

I

—3) .

By comparing with the characters of the rotation group
one finds that the state

I
S ) of the representation 2, is a

scalar, the states of the representation T, are the three
components of angular momentum J= 1, while the two
states of E are appropriate projections of J =2.

The parity of a state is determined by the behavior of
its wave function under lattice inversion, and its charge
conjugation by its transformation property under arrow
inversions. All our six original states are even under pari-
ty; hence, the quantum numbers J of the one-plaquette
glueball states are found to be 0++, 1+,and 2++.

If we wish to obtain other quantum numbers we have to
invoke more complicated structures. In the rest of this
section we will discuss several such structures which are
constructed by the simultaneous operation with two pla-
quettes. An example of this kind is given in Fig. 2. Here
we have two plaquettes on two opposing faces of a cube:
one representing the operation of tr Uz and the other that
of trU~ on the vacuum state

I
0). By taking a transla-

tionally invariant superposition of this structure we form
the state

I
3, —3 ) employing a notation which is an obvi-

ous generalization of the one used above for the single-
plaquette states. Once again we find that there are six dif-
ferent states that we can form this way. But, whereas the
one-plaquette states were invariant under space inversion,
we find that these two-plaquette states transform into one
another; thus,

I3, —)= I3, —3) —
I

—3,3),
we obtain states which have P =C = + and P =C = —,
respectively. We are left therefore with only three states
of each kind to form bases for irreducible representations
of the octahedral group. By taking a symmetric combina-
tion of all directions one forms the A

&
representations,

corresponding to quantum numbers of 0+ + and 0
The remaining states can be used to for m E representa-
tions, fitting the quantum numbers of 2+ + and 2 . We
will be particularly interested in the 0 state because it
has exotic quantum numbers and is so easily described in
this formalism.

Next let us look at structures of the type depicted in

Fig. 3 which we will refer to as "window" diagrams.

P I3, —3)=
I

—3 3) .

It is then obvious that by taking linear superpositions

I
3, +)=

I
3, —3)+

I

—3,3)

(3.3)
FIG. 3. Window diagrams. (a) A state generated by the

operation of tr U~ and tr U~ on two neighboring plaquettes. (b)
A state of similar character generated by a loop of length eight.
The linear combination of type a- b corresponds to a 3 represen-
tation on the common link.
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These are two-plaquette states in which the two plaquettes
are nearest neighbors on the same plane with the arrows
on the joint link pointing in the same direction. Let us
denote the corresponding states by

~

ab) if the two-
plaquette structure lies in the ab plane and the direction
of the common link is a. If the common link points in
the opposite direction we will denote the state by

~

—ab ).
Clearly these two states are charge conjugates of one
another. Since they can also be related to one another by
reflection all our irreducible representation will have
P =C. We can form bases of the representations by con-
sidering combinations of the type

~x,cd)= ~xy)+c ~xz)+d
~

—xy)+cd
~

—xz), (3.4)

where the parameters c and d take the values 1 or —1.
All 12 states can be described in this way by adding all
obvious permutations where y or z are the common axes.
The value of d is equal to that of P and C.

For the combination c =d = 1 we obtain the A
&

and E
representations with the corresponding 0++ and 2++
lowest states. The scalar state is given by the symmetric
superposition

~x, ++&+ ~y, ++&+ ~z, ++&
in complete analogy with the scalar combination of the
single-plaquette states, Eq. (3.1). The basis for the irredu-
cible representation E can also be constructed in the same
way as in the single-plaquette case. Using c = —d =1 we
find a basis for the representation Ti whose lowest state
corresponds to 1 . c = —d = —1 leads to a mixture of
the irreducible representations A2 and E, whose lowest
states will be 3++ and 2++, respectively. The representa-
tion Az is given by the symmetric combination

ix, —+&+ iy, —+&+ iz, —+&

and E is again constructed by the two remaining orthogo-
nal states. Finally, for c =d = —1 we obtain the T2 rep-
resentation corresponding to a 2 state. It should be
noted that the same kind of classification holds separately
for the structures depicted in Figs. 3(a) and 3(b). A sum
or difference of the two corresponds to the choice of a 6
or 3 representation on the joint link. To obtain the lowest
state in the strong-coupling limit one should choose of
course the difference.

In Sec. VI we report calculations carried out for states
with d = —1. These are states which include in every
plane a structure with negative charge conjugation. This
structure cannot be removed by operating twice with the
Hamiltonian; hence, the number of diagrams that have to
be calculated for these states is much smaller than for
positive charge conjugation. Thus we will obtain results
for 1 and 2 states. Since, to the order t to which
we carry out our calculations there is no significant con-
nected matrix element between two perpendicular planes,
the sign of c is irrelevant. Hence both these states, which
correspond to the irreducible representations TI and T2,
have identical mass functions.

Finally let us study the family of "wing" diagrams
shown in Fig. 4. All these diagrams can be described by
two neighboring plaquettes on a cube. Using the notation
of Fig. 1 we can classify all 24 possible diagrams by speci-

I

I

I

I

I

I

FIG. 4. Wing diagrams. States generated by loops of length
six which wrap around two neighboring faces of a cube. Using
the notation explained in the text they represent the states (a)
~1,2,out), (b) ~1,—2, in).

fying the two plaquettes as well as the direction of the
magnetic flux (in or out of the cube). Parity is defined by
reflection through the center of the cube and charge con-
jugation by arrow reversal. This leads to relations of the
following kind:

~

1,2,out)~PC~
~

—1, —2,out),

~

1, —2,out)~PC~
~

—1,2,out),

~

1,2,out)~C~
~

—1, —2,in),
2,out)~C~

l

—1 2 in& .

Since operations of the cubic octahedral group do not
change an out state into an in state we can analyze the
two families separately. Their linear superpositions will
give the two possible values of C with the same value of
PC.

We define the combinations

i
z, cd, out) =

i
1,2,out) +c

i

—1, —2, out)

+d
~

1, —2, out)+cd
~

—1,2, out) (3.5)

and similarly for the in states and all permutations of the
axes. Again c and d take the values of 1 and —1. The
value of c specifies the sign of the product PC. Out of
these combinations we form bases for the irreducible rep-
resentations. The A

&
representation is obtained from the

symmetric combination

~x, ++,out)+ ~y, ++,out)+ ~z, ++,out)

and similarly for the in states. The sum and difference of
these two form yet another description of the quantum
numbers 0++ and 0 . The E representation is obtained
from the two orthogonal combinations of c =d =1 lead-
ing to 2++ and 2 wave functions. The three states
with c = —d =1 form bases for the irreducible represen-
tation T2, corresponding to alternative wave functions for
2++ and 2 . The negative PC states form groups of
three-dimensional representations. The three vectors are
given by

~z, —+&+e ~y, ——&, ~y, —+&+e~x, ——&,

(x, —+&+e ~z, ——
& .

For e =1 they form a T& representation, describing wave
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functions for 1+ and 1 + states. e = —1 leads to a
basis for the T2 representation corresponding to the quan-
tum numbers 2+ and 2 +. We have not yet carried out
calculations for these states. We present this analysis of
the wing diagrams in order to point out the richness of
the spectrum that can be calculated from two-plaquette
wave functions. We learn also that the same quantum
numbers can appear in different wave functions. This
should allow us in the future to carry out several calcula-
tions which can serve as a check on each other.

IV. GLUONIC OPERATORS AND CxLUEBALL FIELDS

A systematic search for glueball operators was carried
out in Ref. 8 for the 4-dimensional Euclidean formulation
of lattice QCD. Using the group-theoretical structure of
the hypercubical symmetry, Mandula et al. classified all
possible operators that can be obtained from products of
the color-magnetic and -electric fields. The magnetic
color field can be defined by

Up —H. c.
2

(4. l)

where the sum goes over the four plaquettes which are
orthogonal to the same axis and share one vertex, as de-
picted in Fig. 5. U& is the product of the unitary link
operators U~ taken in the counterclockwise direction as in
Eq. (2.3). The arrows on the plaquettes in Fig. 5 indicate
the direction which enters the sum with a positive sign.
The term A, '/2 should always appear in the appropriate
location of the common vertex. Obviously a structure
such as this is reproduced through reflection in the com-
mon vertex, while it obtains a negative sign under arrow
reversal. Therefore it has the correct characteristics for a
1+ operator associated with the given vertex and direc-
tion, and it is an octet under the color gauge group at this
vertex.

I

I

I I

I I

I

t

I I

I

I

II
I I

II
II
II

xJ
I

l

I

I

I

FIG. 5. The definition of the B field involves the sum of
terms defined in Eq. (4. 1) over four plaquettes as shown here.

The electric field operator is also associated with a ver-
tex and a direction on the lattice. Its operation on a link
field which lies in the positive direction is defined in Eq.
(2.2). By taking various tensor products of the electric
and magnetic fields one can build up in a systematic way
glueball fields with all quantum numbers. The simplest
example is the pseudoscalar given by the scalar product of
these two operators: g, ,E B . However, when applied
to the strong-coupling vacuum this operator will annihi-
late it, since every electric field component annihilates

~
0). Hence, to obtain an appropriate pseudoscalar state

we should first create a scalar one, e.g. , H
~
0), and then

apply to it g, ,E; B . The result of applying E' to this
state is given by

E'H
~
0) —g tr Uz —H. c.

~

0), (4.2)

where the sum extends over the eight plaquettes which
share a given direction and a common vertex, as depicted
in Fig. 6. Once again we insert arrows to denote the loops
which enter the sum with a positive sign. Note that this
structure is odd under both reflection through the com-
mon vertex and under arrow reversal. Hence it is the ap-
propriate structure for the 1 color state. By applying
B' to this expression and combining the structures of
Figs. S and 6, we obtain 32 combinations of two-plaquette
products which enter into the definition of the basic unit
in the pseudoscalar wave function. The contraction of the
color indices follows the basic rule

g ( A, '),) ( A,')k ——25; 5jk ——', 5; 5k (4.3)

I

I

I

I

I

I

I

I

l
I

II
II
II
II
l I

II
~~~ll

I I

II
I I

I I

II
U L

I

I

I

I

I

I

I

J

FIC'r. 6. Operating with E on the scalar state H 0) results in
the sum of terms given in Eq. (4.2) over eight plaquettes which
share a common vertex and direction as shown here.

which implies that we can rewrite it as a sum of configu-
rations of closed loops. In addition to this contraction we
have to sum over the three space directions and all
translations to construct the appropriate 0 + state with
zero momentum.

We have given this explicit construction as a key to the
general definition of any glueball wave function. It
should however be clear from the discussion in Sec. III
that it is not necessary to go through this construction to
form a candidate for a wave function. In particular, it
may suffice to use one component of a given construction
in terms of electric and magnetic fields to obtain the ap-



35 GLUEBALL CALCULATIONS WITH THE t EXPANSION 2829

propriate quantum numbers of a state that one looks for.
An appropriate example is again the pseudoscalar state.
The last term of Eq. (4.3) tells us that we can construct a
0 + state with pairs of two closed plaquettes (i.e., pairs of
tr U~ operators) as long as they are taken in the particular
combination and phases implied by the combination of
Figs. 5 and 6.

V. COMPUTATIONAL TECHNIQUES

The calculation of the 0++ glueball is different from all
the other ones. The reason is that the scalar state belongs
to the same quantum-mechanical sector as the vacuum.
Therefore it is necessary to ensure that the state of the
glueball excitation is orthogonal to the one that we use to
contract onto the vacuum. Rather than using the state

I

S & of Eq. (3.1) we employ a Gram-Schmid procedure in
which the Hamiltonian is used to generate the excitations.
This results in Eq. (2.9). For particles which have quan-
tum numbers different from the vacuum, we use the
strong-coupling state as a new

I $0& in our calculation
and subtract from its energy the vacuum energy to obtain
a prediction for the mass.

We have been careful to choose particle states that car-
ry zero momentum. Their wave functions are therefore
spread all over the infinite lattice. One can use the
translational invariance of these states to bring the calcu-
lation into a format in which the t expansion for the mass
of any particular excitation is an explicit volume-
independent expression. This was explained in Ref. 5
where the calculation for the axial glueball was carried
out. It can be generalized for any other state. The princi-
pal idea is to start from some geometric unit on the lattice
which carries all the symmetry ingredients of the state.
Representing the wave function as a sum over such units
on the lattice

which serves the same purpose as (2.8) for the vacuum. In
fact, subtracting from Eq. (5.3) the vacuum-connected
matrix elements, one obtains the coefficients for the t ex-
pansion of the mass of the particle represented by the
state

I P &. All the relevant diagrams for these coefficients
involve geometric forms which are attached to the special
unit at i =0.

Once the diagrams are calculated we are faced with the
choice of what functions to analyze and how to carry out
the analysis. Since we are looking for functions which
should include information relevant for QCD in the con-
tinuum, we investigate ratios of physical quantities of the
same dimension. Our hope is that the t expansion is car-
ried out to an order which is large enough to exhibit the
scaling behavior which should set in for such ratios in the
weak-coupling regime. The ratios that we look at are ei-
ther R of Eq. (2.12) or the ratios of two masses. Each
such expression is given by a power series in t which we
have to fit with some Pade procedure. Our standard
method is the D-Pade one' wherein we perform a nondi-
agonal Pade analysis of the t derivative of the power
series and then integrate it out to t = oo. There is no Pade
fit carried out over the y dependence of our expressions.
However, we allow ourselves the liberty to perform the
D-Pade analysis on the y derivative of the function and
afterwards to integrate the approximant over y. Clearly,
if the series is long enough, this y procedure should not
give an answer different from the application of D-Pade
to the original series. However, in practice, the answers
may be different. If such difference occurs, we use the
version which seems closest to scaling, i.e., the one which
develops a plateau beyond the crossover from strong to
weak coupling.

VI. DISCUSSION OF RESULTS

(5.1)

we may utilize translation invariance and single out the
geometric unit near the origin (i =0) to express any mo-
ment of the Hamiltonian in an asymmetric fashion:

(5.2)

The basic geometric unit for single-plaquette wave func-
tions is a cube. This is further simplified for the axial
state of Eq. (3.2) because only a single plaquette is in-

volved in every cube. The two-plaquette states of Fig. 2
still have a single cube as the basic geometric structure.
This is also true for the wing diagrams of Fig. 4; however,
the window diagrams of Fig. 3 need a cross built out of
four plaquettes to accommodate on it the structure of Eq.
(3.4).

The connected-matrix formulation can be applied to ex-
pressions of the form of Eq. (5.2). Thus we may define

(5.3)

The analysis of the vacuum energy density to order t
and the scalar glueball mass to order t was carried out in
Ref. 3 and that of the axial glueball to order t in Ref. 5.
From the specific heat behavior we know that the cross-
over from strong to weak coupling occurs around

y =2/g =1.6. In the region of y & 1.6 we look, there-
fore, for scaling results.

We have redone the analysis for the 0++ and 1+
states and corrected some errors which we have
discovered in the old calculation. The qualitative results
remain the same as in Refs. 3 and 5. The ratio R for the
0++ state has several D-Pade approximants which tend to
a constant value around y =2, these are shown in Fig. 7.
They point at a value of R =9 in the region of y =2. Us-
ing v o =420 MeV this leads to the estimate of M =1.3
CxeV. For the 1+ we find that all D-Pade approximants
lead to consistent results however they do not seem to
scale. The averages of the approximants which are based
on the t series of orders 5, 6, and 7 all show an increase
beyond y =1.5. This is displayed in Fig. 8. It is interest-
ing to note that we find here that the 3-3 diagonal Fade
has the same behavior as the other curves below y =1.5
but it drops towards zero beyond this point. There are
two possible interpretations of this behavior. One is that
the true R curve should indeed increase and reach its scal-
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25. 30.

23. 29.

21. 28.
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x0 17.
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27.

0
26.
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C
X 24.

23.

21.

I I I I I I I

.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

20. I I I

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Y

FIG. 7. The D-Fade approxirnants for the ratio M /cr of the
scalar glueball which lead to scaling results are displayed vs

y =2/g . The highest curve is the 1-4 and the lowest is the 1-3
D-Pade approximant. The second from bottom is the average of
the 1-5 and 2-4 D-Fade {both represent information from a t
series) and the second from top is the diagonal 2-2 Pade evaluat-
ed at asymptotic t.

FIG. 8. The R =M /cr curves for the 1+ state show a dif-
ferent behavior from the scalar ones. The highest curve is the
average of all D-Pade approximants of the t series, and the
next two represent the averages of the t and t' D-Pade approx-
imants. The lowest curve is the 3-3 diagonal Pade of the t
series evaluated at asymptotic t.

ing value for higher y. The second is that the scaling
behavior will set in only for much higher series but we
may use the extremum of R =23 observed in Fig. 8 as an
educated guess of the final asymptotic value. This would
lead to a mass which is 1.6 times heavier than the scalar
one, in agreement with the conclusion of Kogut, Sinclair,
and Susskind which was based on a Pade analysis of the
strong-coupling series.

The axial glueball calculation was the simplest that
could be carried out for the single-plaquette states because
it involved only a single plaquette per cube. This is also
intimately connected to the fact that it is an odd charge-
conjugation state. Similarly we find that for two-
plaquette states the combinations corresponding to odd
charge conjugation involve the smallest number of dia-
grams that have to be calculated. Nonetheless we end up
evaluating more than 200 connected matrix elements in
our analysis of 0 and 1 states to order t . We gen-
erate the first state by diagrams of the type of Fig. 2, and
the second from the window diagrams of Fig. 3. Operat-
ing on the odd charge-conjugation combinations corre-
sponding to Fig. 3 we find that to this order of the calcu-
lation we have only two nonvanishing diagrams which
connect two perpendicular planes. Hence our results can-
not distinguish between the two possible values of c in Eq.
(3.4), and the series of the 1 state of representation T~
is practically degenerate with the one for the 2 state of
T2 ~

In the new cases which we present here we find that all
D-Pade approximants give consistent results. The curves
in Fig. 9 represent their averages for the 0 and 1

glueballs. In both cases we show also the 3-3 diagonal
Pade which coincides with the other curves in the neigh-
borhood of y =2. These curves have much higher values

than those of the scalar glueball in Fig. 7 but they have
very similar trends. The ratio of the average of the curves
in Fig. 8 to that of Fig. 7 is a slowly varying function.
Using the square root of this ratio we obtain numbers for
the ratio of Mp /Mp++ and M, /Mp++ These ra-

tios start out as 2 and 1.75, respectively, at y =0 for the
type of wave functions which we have used. At y =2 we
find them to be about 2.2 and 1.9, respectively. It is in-
teresting to contrast this small deviation with the different
behavior of the axial state. The R curves of the 1+
displayed a characteristically different behavior from
those of the 0++. The effect of the high-order diagrams
in the 1+ led to completely different characteristics of
these curves and to an increasing ratio of M&+ /Mp++
(which started out as 1 for y =0). In the 0 and 1

cases the high-order diagrams lead to a stabilization of the
R curves. Nonetheless, the scale of these curves is strong-
ly influenced by the leading y

' behavior, i e., the
strong-coupling ratios prevail.

The glueball states are, of course, only part of the ha-
dronic spectrum of the flavor-singlet mesons. The other
part is given by bound states of quarks and antiquarks. In
reality the two different kinds can mix in channels with
identical quantum numbers, but the total number of states
will remain invariant. The interference between the dif-
ferent kinds of structures with the same quantum num-
bers may also lead to observable effects. This argument
was the origin of an early suggestion for searches of vec-
tor glueball states in the mass region above the open-
charm threshold in e +e annihilation.

It is interesting to note that our prediction for the vec-
tor mass is quite high, of the order of 2.5 CxeV. Both new
states which were calculated here lie near the edge of the
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FIG. 9. R curves for the 0 and 1 states. In each curve
we show the averages of the D-Pade fits to the t' and t series
as well as a diagonal 3-3 Pade which has a slightly different
shape and tends to increase at high y. The general shape is

quite similar to the scalar case leading to mass ratios which are
not very different from the strong-coupling limit. The 2
state is degenerate with the 1 state in this order of the calcu-
lation.

two-scalar-glueball cut. One could therefore argue that
both may be interpreted as pure cut effects, which this
calculation cannot distinguish from resonances. However,

judging from the known hadronic spectrum, we may ex-
pect to find many resonance states above the cut. In any
case, it seems remarkable that we did not find a scaling
result much lower than this cut.

All the negative charge-conjugation states which we
have calculated need more than two gluonic fields for
their description in the continuum field-theoretic formula-
tion. This can be used as a reason for expecting them to
lie higher than the scalar state which is bilinear in the
gluonic fields. ' Our results are in agreement with this ar-
gument although our calculation is based on a completely
different formulation. So far we do not have any other
source with which we can compare our results. An exper-
imental verification of these glueball states is still lacking,
and Monte Carlo calculations of lattice QCD have not yet
produced a description of this part of the spectrum.
Hopefully all will converge in the future to form a clear
prediction and confirmation of the spectrum in the pure-
glue sector.

ACKNOWLEDGMENTS

One of us (D.H. ) would like to thank the theory groups
of LBL and SLAC for their kind hospitality during the
period when most of this work was done. One of
us (C.P.D.) would like to thank the theory group of
TRIUMF for its kind help. We are grateful to SLAC and
TRIUMF for making it possible to complete the work re-
ported here. This work was supported in part by the
U.S.-Israel Binational Science Foundation.

D. Horn and M. Weinstein, Phys. Rev. D 30, 1256 (1984).
2D. Horn, M. Karliner, and M. Weinstein, Phys. Rev. D 31,

2589 (1985).
C. P. van den Doel and D. Horn, Phys. Rev. D 33, 3011 (1986).

4J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
5C. P. van den Doel, D. Horn, and A. Klatchko, Phys. Lett.

172B, 399 (1986).
R. C. Johnson, Phys. Lett. 114B, 147 (1982).

7J. Kogut, D. K. Sinclair, and L. Susskind, Nucl. Phys. B114,
199 (1976)~

8J. E. Mandula, G. Zweig, and J. Govaerts, Nucl. Phys. B228,
109 (1983).

Y. Dothan and D. Horn, Nucl. Phys. B114,400 (1976).
V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Nucl. Phys. B191,301 (1981).


