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We present density-matrix elements and single-spin correlations for the reaction p,p ~p ~+n at
1 ~ 18, 1.47, 1.71, and 1.98 GeV/c, using both longitudinal and transverse beam polarizations. For
the p,p ~5++n subprocess we find quite different energy dependence for the helicity- —, and

helicity- ~
6++-production asymmetries. The helicity- ~ asymmetry has pl, b dependence similar to

the polarization in p,p~w+d, while the helicity- 2 asymmetry changes sign between 1.18 and 1.47

GeV/c. By fitting the production angle dependence of the spin correlations, we obtain joint rno-

ments which are easily related to the partial-wave structure. We have carried out a partial-wave
analysis with the moments data. We find that the production wave intensities are qualitatively con-
sistent with the elastic phase-shift analyses, and the phases vary smoothly with pl, b. From the ab-

sence of Breit-Wigner phase behavior, we conclude that the dinucleon resonances seen in the pp elas-

tic waves are not true coupled-channel Briet-Wigner states in NN and NA.

I. INTRODUCTION

Medium-energy nucleon-nucleon interactions have been
the focus of renewed interest in recent years, largely due
to the observation of resonancelike structures in the
proton-proton elastic waves. ' These "dibaryon reso-
nances, " which appear as half loops in the Argand plots,
seem to occur only in channels which have strong inelastic
couplings (the 'D2 and F3 channels, in particular). Con-
sequently, clarification of the nature of these "resonances"
requires systematic studies of the inelastic reactions at in-
termediate energies. In this paper we describe experimen-
tal results from such a study; we present a complete set of
density-matrix elements (DME's) and single-spin correla-
tions (SSC's) for the reaction

p,p ~p~+n,

together with the results of a partial-wave analysis.
The experiment was carried out with the Effective

Mass Spectrometer (EMS), using the polarized proton
beam from the Argonne Zero-Gradient Synchrotron
(ZGS). Data were taken at 1.18, 1.47, 1.71, and 1.98
GeV/c, corresponding to kinetic energies of 0.57, 0.81,
1.01, and 1.25 GeV; the results are based on statistics of
200000, 758000, 742000, and 686000 events, respective-
ly, at these energies, and include both longitudinal and
transverse spin correlations. Similar data, restricted to

forward b, ++ production ( —t ( 1.5 GeV ), were obtained
in a companion experiment from 3 to 12 GeV/c (Ref. 2).
Together these data describe the evolution of the quasi-
two-body reaction

p,p ~A++n (2)

from the "resonance" region to the high-energy domain.
A complete description of p,p~p~+n, including non-

b, + + contributions (from nonresonant S- and I' wave-
prr+ isobars), requires a total of 18 DME's and SSC's for
each bin in M + and O~, where O~ denotes the center-

P1T

of-mass (c.m. ) production angle for the pm+ system.
Therefore, the EMS experiment was designed to cover a
broad range in 6++ mass and decay angles, and 0 to 180'
in O&. The full O~ coverage is especially important be-
cause it permits expansion of each of the DME's and
SSC's in functions of cosO~. The resulting expansion
coefficients ("joint moments") give an economical descrip-
tion of the data, and are simply related to products of par-
tial waves.

Previous bubble-chamber experiments ' have obtained
cross sections and DME's for pp~pvr+n in this energy
range, albeit with limited statistics. In addition, high-
statistics data have recently become available on one- and
two-spin correlations, but these data tend to cover lim-
ited kinematical ranges and do not permit isolation of a
complete set of SSC's and joint moments. Although these
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measurements have been compared with theoretical pre-
dictions with varying degrees of success, it is our view
that a more systematic approach, leading to a phenomeno-
logical partial-wave expansion, is needed both to isolate
the behavior of the "resonant" waves and to facilitate
more comprehensive theoretical comparisons.

Regarding the goals of a partial-wave analysis, we re-
mark that the effects of a dibaryon resonance should be
quite spectacular and easily identifiable in p,p~pvr+n.
Specifically, if the dibaryons behave like coupled-channel
Breit-Wigner resonances, then (1) they must couple
strongly to the b,N channel by unitarity and (2) they
should give rise to —180 phase advances in the pp~b, N
waves. The first property signifies that they should be
clearly visible in pp ~AN; the second implies easily
detectable effects in the energy dependence of the reso-
nance candidates, which we take to be the 'D2 and F3
waves. Of course, the dibaryons need not behave like
coupled-channel Breit-Wigner resonances; they may be
due to threshold effects in pp~hN or to virtual AN
bound states. Theoretical interpretations have been ad-
vanced both with' ' and without' explicit coupled-
channel resonances.

To justify these two expectations —the dominance of
AN couplings and the 180' phase advance —in a little
more detail, consider the hypothesis of Breit-Wigner
behavior for the 'D2 or F3 waves. First, the elastic
phase-shift analyses (PSA) suggest I,(/I"„,-0.2 for
these waves, and as a result the inelastic resonance cross
sections pp ~dibaryon —+NNm ~ - . must be several
millibarns for a Breit-Wigner parametrization. In that
case, given the known cross sections for pp ~NN~,
pp ~AN, and pp ~NN~m. , consistency with unitarity
would require the dominant couplings to be to the AN
channel. We note that at lower energies the reaction
pp ~de+ could account for a substantial share of the 'D2
inelasticity. However, it is clear from both energy and
spin dependence (see below) that deuteron formation
occurs as a final-state interaction from the pp~NNm. and
pp~hN channels. Thus the important physical partial-
wave amplitudes are those for the dominant pp~hN pro-
cess, irrespective of whether the final-state nucleons are
free or bound.

Retaining only the pp and AN channels, the 'D2 and
F3 waves can be approximated by the familiar unitary

parametrization

to develop broad peaks near 600 and 800 MeV, respective-
ly, which together account for 50 to 60% of the total in-
elastic rate. The third parameter in Eq. (3), 5~~, cannot
be obtained from the elastic PSA, but can only be deter-
mined by measuring the phase of the transition amplitude.
In particular, it can be shown that in the case of a two-
channel Breit-Wigner plus background parametrization,
the transition phase is given by

B B5pp+4N 4'R +5pp+5hx (4)

where (()~ [=arctan(M& I /Mz —M )] is the Breit-
Wigner phase and 5' and 5gz are phase shifts describing
possible nonresonant background amplitudes. ' The 180
phase advance in Pz should be reflected in a 180' advance
in the transition phase. Since 5' is known to vary by
only a few degrees over the 'D2 and F3 "resonances, " any
strong energy dependence in the transition phase would
have to come from 5~~, for a Breit-Wigner parametriza-
tion, the —180 phase advance in 5&~ would be consistent
with the constraint noted above that I ~~ accounts for
most of the resonance width. In the absence of two-
channel Breit-Wigner behavior, for example, if the di-
baryons are due to threshold effects or virtual bound
states, both 5~& and the transition phase would be expect-
ed to vary little with energy or even decrease over the
"resonance" width. We conclude that in the absence of
experimental information on 5&&, and with only the PSA
data on g and 5', it is a priori impossible to distinguish
between conventional and Breit-Wigner resonance inter-
pretations of the dibaryons. On the other hand, because
of the dominance of the AN couplings, we can expect 5~&
to behave quite differently for these two kinds of interpre-
tations. Thus, the unknown phase behavior in pp~hN
forms the central motivation for our study.

In the remainder of this paper we present the measured
DME's and SSC's, together with the formalism needed to
carry out partial-wave analysis. The organization of the
paper is as follows: Sec. II summarizes the experiment
and data analysis; Sec. III covers the density matrix and
joint moments formalism, Sec. IV reviews the measured
DME's and SSC's as functions of M + and eq', Sec. V is

a digression on the empirical relation between pp~p~+n
and pp~m. +d, and also on effects of proton-neutron
final-state interactions; Sec. VI reviews the behavior of the
joint moments, Sec. VII summarizes the results of
partial-wave fits to the joint moments; and Sec. VIII con-
cludes with a summary; additional formalism detailing
our pion-exchange fits and b, +-5++ isobar interference
are relegated to Appendices A and B.

(3)
II. EXPERIMENT AND DATA ANALYSIS

The off-diagonal elements in Eq. (3) describe the pp ~AN
transitions 'D2~ $2 and 'F3~ P3 (we ignore smaller
transitions with D and F wave final states). -Two o-f the
parameters in Eq. (3), g and 5~~, are in principle known
from the elastic PSA. In particular, from the behavior of
1 —q, the inelastic 'D2 and F3 cross sections are known

The Effective Mass Spectrometer, shown in Fig. 1, has
been extensively described elsewhere. For the present
experiment, the salient aspects include the polarized beam
transport system, which effectively allowed all three
Cartesian components for the beam proton spin vector,
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used; this was calibrated with the transverse data.
For the parallel and antiparallel running, the spin orien-

tation was not precisely longitudinal at the hydrogen tar-
get. The deviation from longitudinal, expressed as a rota-
tion angle in the horizontal plane, was calculated from the
beam-transport geometry to be 25.4', 13.7, 3.6', and
—8.5, respectively, at 1.18, 1.47, 1.71, and 1.98 GeV/c.
The longitudinal spin correlations presented below have
been corrected for this effect using appropriate combina-
tions of parallel and transverse spin correlation measure-
ments. The transverse correlations themselves are, of
course, not affected by this complication.

B. Triggering and event selection

FIG. 1. Experimental plan view with typical p~+n event to-
pology overlaid.

and the spectrometer itself, which included a large-
aperture magnetic detector for forward tracks and a recoil
detector for wide-angle tracks. The forward spectrometer
used magnetostrictive spark chambers for track finding,
while the recoil detector used proportional mode readout
which was available at the trigger level. The recoil detec-
tor has been described elsewhere, and its performance in
other EMS experiments has been documented. We
proceed to summarize in turn the polarized beam, the
trigger and event selection, and the extraction of
acceptance-corrected angular distributions. More details
on this experiment and analysis may be found in Ref. 35.

The information recorded by the EMS for each event
included (1) the incident beam direction, using eight
proportional-mode readout planes upstream from the tar-
get, (2) the direction and momentum of forward tracks
(e.g. , those with production angles from 0' to -45') which
traversed all or part of the spectrometer magnet, (3) the
direction of "recoil" tracks (e.g. , with production angles
from —30 to —160') which traversed the recoil detector,
and (4) additional tagging information from scintillation
counters which surrounded the target and lined the
upstream half of the spectrometer magnet; the target box
provided a crude calorimeter to differentiate recoil
charged particles, y rays, and neutrons. Typical resolu-
tions on the track measurements were 1 mrad on the beam
direction, 1 mrad on forward-track directions, 0.5% on
6p/p, and +15 mrad on the recoil direction.

The trigger scheme was designed to select two-prong
events from the possible reactions

A. Polarized beam
pp pp ~

pp ~77 (5b)

The beam-transport system allowed both transverse and
longitudinal spin directions at the hydrogen target. Pri-
mary beam protons, with polarization along the vertical
direction, were extracted into the secondary beam line
with a septum magnet, at a typical rate of 10 per 1-sec
beam spill. A superconducting solenoid in the secondary
beam line, in combination with the dipole bending mag-
nets, could be used to obtain spin parallel or antiparallel
to the beam direction at the hydrogen target, depending
on solenoid polarity. Thus, the data taking involved a se-
quence of transverse (solenoid off), parallel, and anti-
parallel running. In addition, the proton spin was flipped
on alternate accelerator cycles before injection into the
ZGS; this rapid spin reversal minimized systematic errors
in comparison of spin-up and -down counting rates.

The triggers included elastic scattering along with the
inelastic events of interest. The left-right elastic asym-
metries, measured during transverse running, were com-
pared with existing elastic data to obtain the beam po-
larizations: (56+6), (77+6), (77+6), and (76+7) %%uo,

respectively, at 1.18, 1.42, 1.71, and 1.98 GeV/c (the er-
rors are dominated by systematic uncertainties in the
analyzing powers at these energies). To monitor the beam
polarization during parallel and antiparallel running, a
relative polarirneter located in the primary beam line was

pp~pf Tr,+(n),

pp ~p, Trf+(n ),
(Sc)

(5d)

(5e)

where we distinguish "fast" and "slow" like-charged
tracks in the final states of interest (5c) and (5d). In addi-
tion, the two-prong triggers included background events
from the reactions

pp ~pn m+~, pp~ ~,nn ~+~+,d~+ sr

and leakage from the four-prong topology

pp ~pp 7T 'IT

(6)

(7)

Bubble-chamber surveys indicate that for 1.18, 1.47, and
1.71 GeV/c the two-pion background contaminations are
negligible (less than 0.5% of the total cross section). At
1.98 GeV/c, reactions (6) make up —2.5% of the total
cross section; the four-prong reaction (5b) makes up
—1.4% of the total, but can be suppressed in software us-
ing the tracking and scintillation-counter information.
Thus, we ignore the two-pion final states in the following
discussion, keeping in mind that they may represent a
few-percent background in the 1.98-GeV/c data.
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The two-prong trigger made use of fast anode signals
from the recoil detector, and scintillation signals from the
40-element hodoscope downstream from the magnet (see
Fig. 1). In addition, all triggers required a good beam def-
inition (based on beam-line aperture counters) and were in
anticoincidence with a downstream beam-veto counter,
which suppressed spurious triggers. Three coincidences
were obtained from these trigger components: namely,
two hodoscope hits, one hodoscope and one anode hit, and
only one hodoscope hit. A countdown circuit was used to
suppress the single hodoscope trigger. Each coincidence
was designed to cover certain parts of phase space and to
provide monitoring capability for possible biases in the
other triggers. After event reconstruction the two-prong
triggers consisted of two broad categories: (A) events with
two forward momentum-analyzed charged tracks (mostly
from triggers with two hodoscope hits), and (B) events
with a single momentum-analyzed track and one wider
angle track having only directional information (mostly
from triggers with one hodoscope and one anode hit).

The events with two momentum-analyzed tracks ("type
A") came almost entirely from reactions (Sc)—(5e); the
correct hypothesis was easily obtained from a one-
constraint fit. For example, the missing-mass resolution
for pp~p~n. 2 (x) was +20 MeV or better on M„,depend-
ing on energy. A very small fraction of these type-A
events could be attributed to the de+ final state [reaction
(Sb)]; this gave a four-constraint fit, which was useful in
checking the spectrometer alignment and energy-loss cal-
culations. The type-A pp~pm+(n) e.vents also served to
calibrate the behavior of recoil neutrons in the target scin-
tillator box.

The majority of the events of interest, the "type-B"
events having only one momentum-analyzed track, corre-
sponded to a zero-constraint fit for the one-pion produc-
tion reactions (Sc)—(5e). These events would be useless at
higher energies, due to backgrounds from the multipion-
production reactions. However, for the relatively low en-
ergies of this experiment, the two-pion final states are
negligible in the cross sections, whereas the p~+n final
state of interest happens to account for a very large frac-
tion of the inelastic cross section (e.g. , -76% at 1.47
GeV/c). In order to utilize the pm+n events, it is .neces-
sary first to reject the copious pp~pp and pp~m+d
events (Sa) and (5b), using kinematical constraints on
missing mass and coplanarity; second, to reject the ppm
final states (Se) using a simple kinematical cut; and third
to resolve possible ambiguities between the pfm;+(n) and

p, mf+(n) final states (Sc) and (Sd) of interest. We proceed
to summarize these three steps.

Figure 2 shows the missing-mass-squared distribution
for the type-B events at 1.98 GeV/c for the hypothesis
pp~p(x). A missing-mass cut, M„2—M&2&0. 15 QeV2,
was used at all energies to separate the inelastic candidates
from the tail of the elastic peak (the M„resolution is of
course better at the lower energies). Note that the M„
spectrum for the higher-mass inelastic events looks more
or less as expected: a small peak associated with the ph+
final state, together with a smooth spectrum due mainly
to 6++n events. The separation of pp~m+d events was
easily accomplished with cuts on missing mass for the
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FIG. 2. Missing-mass spectrum for pp ~p (x) at 2 GeV/c,
showing the elastic peak at M„—M~ =0 and the inelastic con-
tinuum. The event rate is scaled up by a factor of 10 for
M Mp )0.28 GeV for illustrative purposes.

a =4(M„—~p& ~

cos 8),
b =4(M3 —Mz —M„)

~ p& ~

cos8,

c =4M„Mp —(M3 —Mp —M„)

(9a)

(9b)

(9c)

Here M„is the missing mass for pp~x &(x), and 8 is the

pp~d(x) hypothesis, together with the two angle con-
straints on the recoil charged track; this identification
problem has been discussed elsewhere as part of a study of
the pp —+m+d reaction. We verified by Monte Carlo
studies that the loss of genuine pm+n events due to this
antiselection on elastic and d~+ final states was entirely
negligible.

We note that both the pp~pp and pp~m+d reactions
were invaluable in monitoring the experiment. Both
served to provide alignment constants for the spectrome-
ter and the recoil detector, to calibrate the performance of
the target scintillator box with recoil protons and pions, to
monitor the efficiency of the recoil detector and the fast
anode trigger with recoil protons and pions, and to moni-
tor the reconstruction probability for "nonsense" tracks
(i.e., unphysical extra tracks in the recoil detector or the
magnetostrictive wire chambers).

The rejection of ppm final states depended on the prop-
erties of the zero-constraint fit. Consider the hypothesis
pp~x~x2(x3), where x, is momentum analyzed, x2 is
direction analyzed only, and ~3 is the undetected neutral
particle. For mass assignments M~, M2, and M3 the gen-
eral solutions for the track-2 momentum take the form

b+(b 4c)a'—~—
2a
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FIG. 3. Distribution of the radicand for the zero-constraint
fits at 1.47 GeV/c for the hypotheses (a) pp~p&~2+(n), (b)

pp ~p~p2(m ), and (c) pp~@.~+p2(n).

opening angle between particles (1) and (2). There is no
physical solution to Eq. (8) for the case (b 4ac) &0,—and
this is the basis for rejection of ppm final states. Figure 3
illustrates the selection process. Figure 3(a) shows
(b 4ac) for the—P&~z (n) hypothesis at 1.47 GeV/c;
essentially all events satisfy (b —4ac) &0. Figure 3(b)
shows the same for the P&pz(m. ) hypothesis; there is a
jump in the distribution above b —4ac =0 due to produc-
tion of genuine pp~ events, superposed on a broad back-
ground of pm+n events. By cutting on (b 4ac) &——1.5
GeV, we retain -90% of the genuine Pm. +n events,
while rejecting essentially all of the pp~ contamination
(the cuts were optimized by Monte Carlo studies).

After rejecting the pp, ~+d, and pp~ final states, 90 to
95 % of the remaining events satisfy the hypothesis
x&x2x3 ——p&vr2 n but not m& p2n; for these events the for-
ward momentum-analyzed track is unambiguously a pro-
ton. It also turns out that for these events there is a
unique solution to Eq. (8): namely, only the plus sign in
Eq. (8) gives

I pz ~

&0. The remaining 5 to 10% of the
events are ambiguous in that they satisfy both p &~z n and
~~ pzn. Figure 3(c) shows the normalized quantity
(b 4ac)/4a for —the m&pzn hypothesis for all events
after antiselection on pp, m+d, and ppm. final states.
There is a clear jump in this distribution at (b —4ac) =0
threshold, corresponding to production of genuine m~ p2n
events over a s~all background of p&mz n. This signal
can be enhanced somewhat using the tags from the target
scintillator box and magnet counters, and also by requir-

ing —b/2a &0 in Eq. (8). Monte Carlo studies indicate
that with these extra requirements the contamination of
p, mz+n events in the 7r~ Pzn signal is less than 10% [cut on
(b 4a—c) &0 for rr~ pzn] .Unfortunately, the small sam-
ple of vr& Pzn events suffers a quadratic ambiguity, in that
Eq. (8) yields two physical solutions with

~ pz ~
& 0.

About 35% of these ambiguities can be resolved by range,
since protons with small

~ pz I
cannot escape the 2-in. -

diam. hydrogen target (the range cutoff was calibrated us-
ing elastic events). The remaining m~ pzn events have two
solutions for ~Pz ~, with momentum values which differ
by 100 to 200 MeV/c. The kinematics are such that these
ambiguous events occur for center-of-mass production an-
gles e~&0, and the ambiguity is equivalent to having
poorer resolution on O~. We have included the ambigu-
ous events by appropriately weighting both solutions. In
addition, we have verified that exclusion of the ambiguous
events from the analysis (with appropriate modification of
the acceptance) does not alter the DME's and spin corre-
lations within the statistical errors.

Additional selections were used to help reduce possible
multipion backgrounds. Specifically a small fraction of
events was rejected due to the presence of extra tracks in
the recoil detector or the upstream spark chambers, or due
to inconsistent hit patterns in the target-scintillator box
(as noted above, these cuts were calibrated with the
PP~PP and Pp~n+d reactions). By repeating the full
moments analysis with and without these additional selec-
tions we verified that the DME's and spin correlations
were insensitive to these cuts; of course the overall cross
section was sensitive to the inclusion of background (these
cuts reduced the measured cross section by —S%%ua at 1.98
GeV/c, and much less at the lower momenta). Overall
corrections were calculated for trigger inefficiency (5%),
pion decays, recoil detector inefficiency (5—10%), spec-
trometer reconstruction inefficiency ( —2%), and losses
due to secondary interactions (5—10%). These correc-
tions were included with the geometrical acceptance in the
efficiency calculations, and we estimate an overall nor-
malization uncertainty of +10% associated with these
corrections.

d4o-

dM +d cosO~d Q
= g AL~ Re Yl (g, p)

L,M

+P„BLMIm Yl (g, p)

+P~CI.M ReYI (g 4)

+P.DI.M lm Yi (g, W), (10)

where Q=(g, p) gives the proton direction in the Per+ rest

C. Acceptance corrections and moments analysis

The prr+n events were binned in M + (20-MeV bins)
and cosez, (28 bins altogether), where e~ is the c.m. pro-
duction angle of the p~+ system. The events in each bin
were fitted to the most general parity-conserving moments
expansion:
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P„=Pising,

P» =Pi cosg,

(I la)

(I lb)

where Pi is the transverse polarization and P is the az-
imuthal orientation of the spin vector (vertical laboratory
axis) with respect to the production normal. The geome-
trical acceptance at any point in phase space can be de-
fined by an allowed range in the angle g:

(12)

The allowed f range was defined analytically by fiducial
cuts, which were imposed on the events to obtain the
spin-averaged coefficients ALM. It is easy to show that
once the AL~ are determined, the coefficients BL~, CLM,
and DLM can be obtained without reference to the accep-
tance and without imposition of corresponding fiducial
cuts on the events. Note that small additional corrections
are needed in Eq. (12) to account for nongeometrical
losses (pion decays, secondary interactions, and detector
inefficiencies), and these can be included either directly in
Eq. (12) or as weighting factors in the events.

We used several slightly different methods to obtain the
acceptance corrected ALM with equivalent results. The
most useful method involved binning the events further in
the angles 8 and P. The problem then reduced to fitting
the observed bin populations to obtain ALM, using the re-
lation

n, =F g AIM ReYI (8;,p; ) e(8;,p;)dM d coseadQ,
L,M

(13)

where F is the incident flux (in events/mb).
The corresponding maximum-likelihood analysis in-

volves minimizing the quantity

ln(L) =g (n; Inp; —p;), (14)

frame (RF). The Cartesian components of the beam po-
larization refer to a system of axis with z parallel to the
beam direction and y along the production normal defined
by pb„Xp +. The coefficients ALM were obtained byP77

spin averaging the data in each bin; DLM were obtained by
comparison of spin-parallel and antiparallel data, with
corrections to account for the spin alignment as noted in
Sec. IIA above; BLM and Cl~ were obtained from spin-
up and -down transverse data, using the relations

where

is the expected bin population for bin i given by the
right-hand side (RHS) of Eq. (13). An equivalent result
can be obtained by a least-squares fit to Eq. (13).

The spin correlations were also obtained by binning in 0
and P, this time separating the spin-up and -down sam-
ples. Consider the determination of DLM, assuming equal
fluxes for spin up and spin down, and ignoring, for sim-
plicity, the aforementioned angle offset in the spin-
parallel running. In each 8;,P; bin, the event populations
can be fitted to the expression

n;( t, I ) =F g AL~ Re YL( 8;,p; )

+P, g DIM Im Yl (8;,p; )

&& e(8;,P; )dM d cosead Q .

The logarithm of the likelihood function takes the form

In(L, L, )= g [n;(t)lnp;(t) —p, (y)]
i(f)

(16)

where

is again the expected bin population for spin up or down,
given by the RHS of Eq. (15). If ALM are fixed in Eq.
(15) from the previous fits, then the geometrical accep-
tance e(8,$) drops out in minimizing Eq. (16) for DrM.
This is a generalization of the fact, familiar from elastic
scattering, that the spin dependence in principle involves
only ratios of spin-up and -down event rates, in which the
acceptance cancels.

The above discussion is oversimplified for purposes of
illustration. To obtain the transverse correlations BLM
and CLM, it was necessary to record not only sums of
events in each (8;,p;) bin [e.g. , n;(I, J, ) in Eq. (16)], but
also sums over sing, cosg, sin P, sing cosf, and cos g;
these are needed to separate the P and P~ dependence
once the expression (11) for P„and P» is substituted into
Eq. (10). Furthermore, for the spin "parallel" analysis, it
is necessary to make the substitution in Eq. (15)

+P, +DIM ImYI (8;,P; ) +P~~ g [sinacosPBIM Im YL (8i 4)—»na»nPCLM ReYI (8;,P;)

+cosaDIM Im YL (8;,P;)], (17)

where a is the angle offset of the parallel spin vector in
the horizontal laboratory plane, and PI~ is the average
parallel polarization. Since BJM and CzM can be deter-
mined separately from the transverse data, it is straight-
forward to solve for DLM, making the substitution (17) in
the likelihood function of Eq. (16).

The Pauli principle imposes an important constraint on

I

the spin-averaged AIM. We used an s-channel coordinate
system in fitting the moments, so that (8,$) refer to the
proton direction in the pm. + RF, with y along the produc-
tion normal and z along the direction p + in the overall

P77

c.m. (equivalently, along —p„in the pm (RF). The de-
cay angles (8,$) are defined by
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sin0 sing =p~.y,
sin0 cosP =p~. (y Xz),
cos6 =pp 'z ~

The Pauli principle then requires

cr(6a, 0,$ ) = cr(n 6I„—0,p+ Ir ),
and consequently

(18a)

(18c)

(19)

matrix, to satisfy positivity. Similar checks were per-
formed with the polarization coefficients, but these were
not corrected to ensure positivity. Consequently, for a
few bins ( & 1%), the transverse or longitudinal spin corre-
lations were larger than the unpolarized cross sections, but
this would be expected given the size of the measured
asymmetries and the statistical errors on the coefficients.

III. FORMALISM
A M(Ir —6II) =( —1) A (6a) (20)

in Eq. (9). In our analysis of the AIM, we folded the data
and the acceptance about e~ ——90', consistent with Eq.
(19). We then checked the fit predictions against the mea-
sured event-rate projections in 0 and p for each bin in
M + and e~. The fits were satisfactory for both for-

p7T

ward and backward production in cose~, except for small
systematic discrepancies which were clearly associated
with the trigger topology. In particular, the events which
were reconstructed with a forward momentum-analyzed
pion in the spectrometer and a recoil proton seemed to
have a systematically low ( —80%) recovery efficiency
compared with the more common topologies involving
forward protons. Although the effect was not completely
understood, once a consistent set of ALM are determined,
the spin correlations should be insensitive to small sys-
tematic errors in the efficiency calculations.

We note that the ALM moments were checked for posi-
tivity; that is, in each (cos6&,M +) bin, the cross section

pal
was checked for positivity over a fine grid in 0,$. In a
very few bins where negative cross sections were obtained
(these coincided with regions of zero acceptance in 0,$)
the ALM were pulled, consistent with the statistical error

In this section we summarize the formalism needed to
interpret the spherical harmonics expansion of Sec. II.
First we recast the spherical harmonics in a density-
matrix representation (III A), and then in the joint-
moments representation (IIIB). In IIIC we enumerate
some key relations involving helicity and partial-wave am-
plitudes and develop the numerical coefficients relating
joint moments and partial-wave products. In IIID we
discuss the isobar contributions to the p~+n final state.
Further details on pion-exchange and isobar interference
effects are included in the Appendices.

A. Density-matrix expansion

The higher L (L )3) coefficients in the spherical-
harmonics expansion turned out to be negligible for
M + (1.3 GeV, except for kinematical regions close to

p 77

threshold for the final-state proton-neutron system, as dis-
cussed in Sec. V. The absence of L) 3 terms is, of
course, consistent with the dominance of S- and P-wave
p~+ isobars, as might be expected for low p~+ masses.
We can replace the L (2 spherical harmonics expansion
with a density-matrix representation:

d40-

dM +d cose&d 0
d o 1

dM +d cosO~ 4'
pK

X [ (p„+P~p„)(3cos'0+ 1)+ (p,3+P~p33)(3 sin'0) —(p»+ P~p3I )(4' sing cos0 cosp)

—(P p31 +P p31 )(4' s1110cos0 sing ) —(p3 I +P~p3 I )(2M3 sIII 0 cos2(5 )

(P„p3 I+P,p3 —1)(2u 3 sin 0si 2')+(p, +PI~p„)(4c s0o)

+(p, I+P~p, )(4Ii s0 nscpo)+(P p, I+P,p, I)(4sin0sinp)] . (21)

The nomenclature for the spin-averaged DME's p&~, p33,
p3~, and p3 &

is standard. The spin correlations are desig-
nated by the symbols P;peak,

. these refer to the spin depen-
dence of the angular distribution for 100% polarization
for Cartesian component P;. The terms involving p, &

and
p, &

allow for interference of S- and P-wave pm+ isobars.
Since pII+p33 —

p integration over 0 and p yields two ob-
servables: the cross section, d cr jdM +d cose~, and the

p77
integrated left-right asymmetry

Ay ——2Pyp, )+2Pyp33 . (22)

While the cross section and Az are frame invariant, the
numerical values of the DME's and SSC's are in general
different for the s- and t-channel frames, both bemuse of
the different definitions of the decay angles 0 and P, and
because the beam polarization components P and P,
refer to different axes. The s-channel frame is convenient
for partial-wave analysis and also because the Pauli prin-
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ciple has a simpler expression in the s channel [Eq. (18)].
However, the unpolarized DME's turn out to have
smoother behavior in the t channel. For reference, we de-
fine the s- and t-channel z axes for the four "particles" in

pzpr +(pn—.+ )n in Table I. The y axis is common for the
four particles and is frame invariant (y =pb X p + ).

PK
Thus, the t-channel (0,$) angles are defined as in Eq. (17),
with z, replaced by z„'the beam polarization components
P„and P, are likewise referenced to the beam proton axes
listed in Table I.

do 0
P;pjk ———g aM~(P;peak )dM~(cosB~) . (23a)

d cosOq ' 2

The differential cross section itself is expanded as

d 0 0' I. dc'
aoO

d cosOq 2 i d cosO~
d (cosB ), (23b)

where the normalization
aoo(doldcosB&) =1 and

do0= d cosOg—] dcosO&

1s specified by

(23c)

The joint moments depend, of course, on the M + inter-
P77

val.
The indices ( M, N) in the moments expansion are

specific to each DME. The index L takes on only even
values for the unpolarized DME's because of the Pauli
principle [Eq. (18)]; for the spin correlations L can take
all values consistent with the indices (M, N). Each joint
moment can be expressed as a sum of partial-wave prod-
ucts. For the unpolarized DME's these sums take the
orm

aM~(p;J. )=g C~~p—Re(S Sp)+C p Re(T Tp), (24)

where S ( T~) are partial waves for singlet (triplet) initial
proton-proton spin states. For the polarized DME's these
sums take the form

B. Joint-moments expansion

At low energies, it is convenient to further expand the
individual DME's and SSC's in functions of the p~+ c.m.
production angle O~. We have used the general expres-
sion

a—M&(P;pjk) =g C p Im(S Tp) (25a)

or

abr~—(Ppjk) =g C p Im(T Tp ),
2 ~ p

(25b)

P„p,(cosB =+1)=~P„p,(cosB =+1), (26a)

P,p, ~(«sB&=+1)=+P„p, ~(cosBg =+1) . (26b)

With these constraints, the spin dependence from these
SSC's behaves like P~ cos(P+g) near cosBq ——+1, where

P is defined by Eq. (11). Unlike P alone, the angle (P+g)
is defined for cosO~ ——+1; it is the azimuthal orientation
of the pm+ decay normal with respect to the spin vector.
This kind of correlation is exactly what would be expected
from off-shell m. +p, ~~+@ elastic scattering. We have
not imposed the constraints implied by Eq. (26) on the
measured joint moments.

C. Amplitude relationships

depending on whether L is even or odd. For example, for
the integrated asymmetry A», the singlet-triplet (ST) in-
terferences contribute to odd L and the triplet-triplet
( TT) to even L; since (M, N) =(1,0) for the A» expansion,
the ST terms give Ay symmetric in cosO~, and the TT
terms give A„antisymmetric. The same symmetry rela-
tion holds for A» in pp~m. +d. In general, depending on
the spin correlation, ST terms can correspond to either
even or odd L, with the opposite relation for TT terms.
Table II provides a breakdown of the (L,M, N) values al-
lowed for each pjk and P;p~k, the correspondence between
even and odd L and ST and TT terms, and the cosO~
symmetry of the ST and TT series.

We digress to clarify the behavior of the DME's near
cosO~ ——+1. From the moments expansion it is clear that
some of the spin correlations, for example, Ay, Pyp&&, and
Py p33 vani sh at cosO ~——+ 1 because of angular-
momentum conservation, as do the unpolarized DME's
p3&, p& &, and p, ~', these DME's give explicit cosP depen-
dence, and P is undefined for cosB&——+1. However, the
correlations PyP3] y P~P3], PyPs ] and P~P, ] have
(M, N)=(0, 0) in the moments expansion and so need not
vanish at cosO~ ——+ I. This may seem paradoxical since
these SSC's are also associated with P dependence in the
DME expansion [Eq. (21)]. In fact, the amplitude struc-
ture imposes the constraints

TABLE I. Definition of s- and t-channel z axes (z„z,) for
the four "particles" in pp~(pm. +)n; the subscripts refer to
beam proton, target proton, pa+ isobar, and recoil neutron,
respectively (b, t, pm+, and n). The momentum vectors are
evaluated in the rest frame of the respective particles.

Consider the s-channel helicity amplitudes for produc-
tion of any pm. + isobar; we label the p~+ isobars by in-
dices j and 1 (total and orbital angular momentum, respec-
tively). We use lower case j and I deliberately, reserving J
and L to label the production waves. We adopt the nor-
malization

Particle

Beam proton

p~+ system
Target proton
Recoil neutron

zS

—ps
—Pn
—Pb
—P +

zf

—p +

+Pb
—Pn

+Pr

2

dM d cosB (27)

where k is the initial proton-proton c.m. momentum, and
M, A,b, A,„andA,„arethe helicities for the p~+ isobar and
the beam, target, and recoil nucleons, respectively. Parity
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TABLE II. For each observable we list the d functions used in the joint-moments expansion and the
allowed L values. We also indicate the parity of these functions (even or odd) under reflections about
e&——90. For the unpolarized DME's there is only one series; for the spin correlations we list the
singlet-triplet and triplet-triplet series separately.

Observable d function (Singlet-singlet + triplet-triplet)

do. /d cos6q

p»
p33

P31

p3 —]

Ps]

Ps —1

d 00

d 00

dpp
L

dp]
L

d02

d QQ

L
dp]

L =0,2,4
L =0,2, 4

L =0,2,4
L =2,4, 6

L =2,4, 6

L =0,2, 4

L =2,4, 6

(even)

(even)

(even)

(odd)

(even)

(even)

(odd)

Ay

Py pl]
Py p33

Py P31

Py P3-1
P P31

P p3

P.P31

P.p3

Py P, ]

Py p,
P„p,
P, p,

d ]p
Ld 10
Ld 10

d 00
L

dpi

d QQ

L
dQ]

L
dp]

L
d02

Ld ]Q

d QQ

d QQ

L
dp]

(Singlet-triplet)

L = 1,3, 5 (even)

L =1,3, 5 (even)

L = 1,3, 5 (even)

L = 1,3, 5 (odd)

L =1,3, 5 (even)

L =0,2, 4 (even)

L =2,4, 6 (odd)

L =2,4, 6 (odd)

L =2,4, 6 (even)

L = 1,3, 5 (even)

L = 1,3, 5 (odd)

L =0,2, 4 (even)

L =2,4, 6 (odd)

(triplet-triplet)

L =2,4, 6

L =2,4, 6

L =2,4, 6

L =0,2,4
L =2,4, 6

L =1,3,5

L =1,3,5

L =1,3, 5

L =3,5, 7

L =2,4, 6
L =0,2, 4

L =1,3, 5

L =1,3, 5

(odd)

(odd)

(odd)

(even)

(odd)

(odd)

(even)

(even)

(odd)

(odd)

(even)

(odd)

(even)

conservation in production gives the constraint

MA,
b M+A, +'jt,b+A, MA, , (29)

The helicity amplitudes can be expanded in a partial-
wave series:

~, ", (e,)= g d,'„(e,)w(Jj, l, L;,s;,Lf sf)
J,L, Lf,S;,Sf

where

JJL.S.LfSf+ CMA.
b A,„A,] (30a)

(28)

where gj ——( —1)'+' is the intrinsic parity of the pm+ sys-
tern, and j+—, is the spin sum over the four "particles"
participating in the reaction. The Pauli principle imposes
the symmetry

tal initial- and final-state orbital momenta and spin (L; I
and S;~), and p~+ isobar (j, I). Expansion (30) automati-
cally satisfies the Pauli principle and parity conservation

L, +S,with the obvious restrictions that ( —1) ' '=+1, and
L, +Lf+I+1

( —1) ' I =+1. In applications we will use stan-
dard terminology for the amplitudes W(J, . . . ), namely,
2S;+1 2Sf+1 1 5(L;)QJ+)~ (Lf)QJ+, (for example, D, ~ S2,
'F3~'P3, etc).

Integrated over the production angle, Eqs. (27) and (30)
imply the normalization

(2J+1)
~
W(Jj, l,L;,S;,Lf Sf)

dM + k JL SJ'1
(31)

For pp~A++n, the partial-wave amplitudes can presum-
ably be factorized in the limit of small I & into a produc-
tion wave and a mass-dependent 6++ Breit-Wigner line
shape, e.g. ,

W(Jj, l,L;,S;,LI,S&)=W„(Jj,l,L;S;,LI,SI)FJI(M +),
(32a)

where

)& (JM
~
SfMLf0) (SfM

~
JM 2

—k„)
x (2L;+ 1.2LI + I )'~ ( —1) " (30b)

and where k =A.b
—A,„p=M —A,„.The partial waves

W(Jj, l, L;,S;,LF,SF ) are labeled according to total J, to-

1= dM I'; M (32b)

In that case, the normalization of Eq. (31) is consistent
with the optical theorem for pp~pp elastic scattering; in-
tegrated over M +, the total cross section for pp~h++n
would take the form
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o(pp~b, ++n)= g (2J+1) Wz(Jj, l,L;,S;,Lf Sf)
~

J,L, S,1j
(33)

exactly analogous to the expression for cr(pp~pp) F.or a
two-channel S matrix involving pp and AN, we would
have

Wp(Jj, l,L(S;,Lf,Sf ) = 3
4

2 ]/2(1 —g ) is~~+6~~

2

(34a)

( —,
' )'~2 takes care of isospin conservation

[g.(g+)= —,g.(g++pg)]. fhe corresponding elastic waves

normalized as in Eq. (33) would take the form

2i5

W'(J, L;,S; ) =
2l

(34b)

(35a)

where

gj11/2 + l

gqi —&a=( —1) +'
(35b)

(35c)

guarantee parity conservation in the pm+ isobar decay.
The phase conventions implied by Eq. (35a) for the T am-
plitudes are such that the final-state proton and neutron
have their helicities Ap and A,„quantized along z axes in
the pn. +n three-body plane, with common y axis given by
the normal to this plane (for the A amplitudes A.„refers to
the production helicity frame). The full angular distribu-
tion can then be expressed as

d4o

dM d cose dA

AbyAbyA pA pkt

I

(T I ~ ~ T ~ b') 2j+1

(36)

The beam spin-density matrix is given by

~''=('+P )«
b b b b

(37)

The formalism can be extended to include other spin ob-
servables; for example, the target density matrix p' can be
inserted in Eq. (36) to generate spin-spin correlations.

By comparison of Eqs. (21), (30), (35), and (36), we can
Mkb

expand each DME in terms of helicity amplitudes A~ ~n t

or partial-wave amplitudes W(Jj,l,L;,S;,Lf,Sf ). We
have displayed the helicity-amplitude expansion in Ref. 2.

The extra factor of 2 in the optical theorem of Eq. (33) is
required by the Pauli principle for pp~pp and pp~AN
(see Ref. 40).

To obtain the dependence on the pm+ decay angles 0
and P, we write the associated helicity amplitudes

Ab MAb I (M —g )P ~T;, (e,, e,y) =&~, , (e, )e " dj„(e)g,«,

Table III gives the expansion of some of the joint mo-
ments aM&(P;pjk ) in terms of partial-wave products. This
table is abbreviated to include only the most prominent
pp~A++n transitions expected at low energies; more ex-
tensive tables, including non-A++ isobars, are available
from the authors. Note that in this discussion we have
considered only pm. + isobars, so that the coefficients in
Table III are independent of M + (any M + dependence

pter

P 'tT

must be inserted in the partial-wave amplitudes). For use
in Sec. VII we have displayed some of the spin-spin corre-
lations as well; for those observables we use common
x, y, z axes for beam and target proton, with z along the
beam momentum and x=y&&z. [Note that for the helici-
ty expansion of Eq. (36), the target proton z axis is oppo-
site the beam momentum. ]

D. Isobar contributions

Although the previous formalism is quite general, we
will consider only the l =0 and 1 p~+ isobars; we desig-
nate the nonresonant j = —,

' — isobars by s and p (1=0
and 1), and j = —, by h. Again, we reserve S,P,D upper
case labels for the production waves (L; or Lf). In the
mass range of interest, we expect the production waves to
be much larger for A than for s,p waves, and consequent-
ly we expect A-A, s-A, and p-A interferences to be much
more important than s-s, s-p, or p-p contributions. The
s-A interferences are isolated in the correlations p, &, p,
P„p, &, P„p, ~, and P,p, &. The p-A interferences are
mixed with the A-A terms in the remaining twelve observ-
ables and cannot be separated without a model.

Figure 4 illustrates the pion-exchange production mech-
anisms. Charged-pion exchange [Fig. 4(a)] would result in
direct production of s, p, and A isobars in proportion to
the corresponding m+p elastic waves. Neutral-pion ex-
change (Fig. 4(b)] would result in direct production of b, +

and also I = —,
' ~+n isobars via virtual ~ p~~+n; these

in turn would contribute to the s, p, and A isobars in the
p~+ system. The A+ production component is expected
to be the dominant ~ -exchange contribution, and this is
examined further below. The I = —,

' vr+n isobars are ex-

pected to be quite small relative to the A++/A+ ampli-
tudes or the I = —, s- and p-wave pm+ isobars from
charged-pion exchange. This is because (1) the phase
shifts 6(S»), 5(P»), and 5(P») are quite small in the
relevant m

+ n mass range, and (2) these isobars are
suppressed by an isospin factor of —,', as compared with
the pm. + isobars. Consequently we ignore I = —,

' ~+n pro-
duction altogether.

We have used a version of the Williams model ' (WM)
to describe the charged-pion-exchange contributions of
Fig. 4(a). Details of the WM are summarized in Appen-
dix A, and fit parameters at each energy are listed in
Table IV. The model has been shown to work fairly well
at higher energies and low momentum transfers. Howev-
er, the WM assumes relatively real production amplitudes,
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TABLE III. Expansion of the joint moments (cr/2)aM&(P; p~k) in partial-wave products as defined by Eqs. (24) and (25). The
columns labeled W and W'* list the partial-wave amplitudes. For each W, W'* entry, the columns to the right list the expansion
coefficients C p in Eqs. {24) and (25); multiplying C p by the partial-wave product gives the corresponding contribution to the observ-
ables (cr/2)aM~ which are indicated by the column headers (for brevity the columns are labeled simply by aM&). %e have separated
singlet-singlet (SS), triplet-triplet ( TT), and singlet-triplet (ST) partial-wave entries as indicated. For brevity we have included only
the first three moments for each P; pjk, and we have retained only the most important 5-production waves corresponding to initial
states 'So, 'Po

~ z, 'Dz, 'Fz 3, 'G4, and Hs. Also for brevity, we have listed only the pI& and p33 observables for the two-spin correla-
tions. The zero- and two-spin coefficients are for Re( WW'*), while the single-spin are for Im( WW'*). To simplify the normaliza-
tion, we have extracted a factor (elk )[(2J+1)(2J'+1)]' from each coefficient ( J,J' refer to the total J for waves W, W', respec-
tively). Each coefficient should be multiplied by this factor before performing the expansions of Eqs. (24) and (25).

0
aoo

pI i(SS)
2

aoo
4

aoo
0

aoo
p»(SS)

2
aoo

2a 01

p„(ss)
4

aol
6

ao&
2

aoz
p3 i(SS)

4
aoz

6
aoz

'So~'Do 'So~'Do
'So~'Do 'Dz~'Sz
'D S 'D 'S
'So 'Do 'G4 'D4

~ Dz~ Sz G4~ D&
1 s 1 s

'G4 D4 'G4 Dg

0.500
1.000

0.250 0.250
1.604

1.031 0.573
0.321 0.383 0.338

0.250 —0.250

0.573 —0.573
0.179 0.128 —0.063

0.354
0.354

0.518
0.162 0.739
0.180 0.291 0.304

0.707
—0.354

0.732
0.324 —0.523

—0.361 —0.274 —0.192

pi~(TT)
0 2

aoo a 4
aoo

p»( TT)
0 2

aoo aoo
4a

p3)(TT)
2 4

aol aol
6

aol
p3 i( TT)

2 4
aoz aoz

6
aoz

'Po 'Po 'Po 'Po
3p 3p 3p 3p

P$~ P) Pz —+ Pz

Po~ Po Pz~ P

Pz~ Pz Pz~ Pz
Pz~ Pz Pz~ Pz
Po~ Po Fz~ Pz

'Pz~'Pz 'Fz~'Pz
'Pz~'Pz 'Fz~'Pz
Fz~ Pz Fz~ Pz
po Po Fz Pz

Pz~ pz Fz~ Pz
Pz~ Pz Fz~ Pz
Fz~ Pz Fz~ P
Fz~ Pz Fz~ Pz
P~ ~ P] F3~ P3
pl ~ pl F3~ p3
Pz~ Pz F3~ P3

'Pz 'Pz 'F3
Fz~ Pz F3~ P
Fz~ Pz F3~ P3
F3~ P3 F3 —+ P3

Pz~ Pz Hs —+ Fs
Pz~ Pz Hs~ Fs
Fz~'Pz 'Hs~'Fs
Fz~ Pz Hs~ Fs

Hs —+ Fs Hs~ Fs

0.500
0.125
0.335
0.425

0.275

0.063
0.168

—0.088
0.894
0.290
0.390
0.238

—0.290
—0.390

—0.150 —0.075
0.075 0.038

—1.095
0.237
0.318

—0.166
0.026

0.275 0.271

1.107
0.333 0.364

—0.237
—0.318

0.026
—0.026

—0.150 —0.086
0.075 0.043

—0.383
—1.029
—0.148

0.148
—0.121

0.121
0.300 0.257

—0.630
—0.210

0.129

—0.210
0.210
0.086

—0.043
—0.287

0.129
—0.371

0.371
—0.303

0.303
0.043

—0.472
—1.338
—0.244

0.244
—0.199

0.199
0.443
0.252

0.375 0.188
—0.335 —0.168

0.075 0.038

0.871
—0.390

0.225 0.113

0.290
—0.130

0.150 0.075
0.425 —0.388

0.712
—0.318
—0.079
—0.026

0.225 0.129

0.237
—0.106
—0.026

0.271
0.150 0.086
0.425 —0.443

0.383
—0.171

0.148
0.544
0.121
0 AHA

0.200 0.043

0.553
0.167 0.136

0.630
0.210

—0.129

0.210
—0.210
—0.086

0.043
0.287

—0.129
0.371

—0.371
0.303

—0.303
—0.043

0.472
—0.211

0.244
0.650
0.199
0.531

—0.037
0.021

0.237
—0.106

0.474
—0.411

0.367
0.106
0.158

—0.274
—0.306
—0.177

0.212
—0.581
—0.335

0.300
—0.074

0.062
0.121

—0.194
—0.224
—0.250

0.062
—0.148
—0.202

0.242
—0.429
—0.374
—0.227
—0.262
—0.186
—0.214

0.182

0.130
0.129

—0.813
—0.271

0.166

—0.271
0.271
0.111

—0.055
—0.371

0.166
—0.479

0.479
—0.391

0.391
0.055

—0.518
—0.368
—0.354
—0.339
—0.289
—0.276

0.329
0.163

—0.491
0.220

—0.532
0.532

—0.435
0.435

0.091

—0.265
—0.237

0.159

0.411
0.184

—0.159
—0.632
—0.137

0.674
0.389
0.053

0.335
0.150
0.111

—0.136
—0.182

0.775
—0.112

0.550
—0.136
—0.037

0.444
0.061
0.090

—0.323
0.280
0.210
0.229
0.171

—0.273

0.326
—0.321

0.575
0.192

—0.117

0.192
—0.192
—0.078

0.039
0.262

—0.117
0.339

—0.339
0.277

—0.277
—0.039

0.172
—0.501

0.334
0.401
0.273
0.327

—0.273
—0.192

0.311
—0.139

0.337
—0.337

0.275
—0.275

—0.072
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'S D
'Dz~ Sz
1g 5D

So~ Do
'Dz ~'Sz
lG SD
'S D
'D, ~5S,
'G4 ~'D4
Sp~ Dp
'Dz~ Sz
'G4 'D4
'Sp~ Dp
'Dz ~'Sz
1G 5D

So Do
'Dz~ Sz
'G4~'D4
Sp~ Dp
'Dz~ S
1G 5D

Sp Dp
'D 'S
l G 5D

Pp~ Po
Po~ Pp

3p 3p
3p 3p

3p 3p
3p 3p

3p 3p
3p 3p

3p Sp

Pp~ Pp
3p 3p

Pz Pz
Fz~ Pz

3p 3p
3p Sp

Fz~ Pz
3F sP
3p 3p
3p 3p
3p Sp

Fz~ Pz
3F sP

3p 3p
3p 3p
3p 3p

Pl~ Pl
3p Sp

'pz~'Pz
'Pz
3p Sp

'Pz~'Pz

'Fz~'Pz
'Fz~'Pz
F P

'Fz 'Pz
Fz ~'Pz

'Fz 'Pz
F3~'P3
F3~ P
F3~ P3

HS —+ FS
Hs~ Fs

3p 3p

Pz Pz
3p Sp

'Pz~'Pz
P Pz

Fz Pz
'Fz 'Pz
'Fz 'Pz
Fz Pz
Fz~ Pz

'Fz
'Fz 'Pz
Fz~ Pz
Fz~ Pz

Fz Pz
F3~'P3
F3~ P3

F3~ P3
Hs ~'Fs
H5~ F5
Hs~ FS

STUDY OF THE REACTION p,p —+pm. +n WITH POLARIZED. . .

TABLE III. ( Continued ).

Py P3 l (ST)
1 3 5

aoo aoo a
Py Pll(ST)

1 3 5a lo a lo a lp

Py p33( ST)
l 3a lo a 10

5a 10

0.375
0.075

—0.100
0.300
0.256

0.184 0.300
0.334 0.423

—0.184 —0.300
—0.334 —0.423 0.445

—0.168—1.095
0.466 —0.134

0.926 —0.189
0.082 0.134

0.149 0.189
—0.034 —0.134
—0.134 0.065 —0.199

0.290
—0.142 —0.232

—0.259 —0.327
0.142 0.232

0.259 0.327
0.232
0.198

0.058
—0.078

0.097
0.345

—0.806 0.232
—0.776 0.327

—0.142 —0.232
—0.259 —Q.327

—0.232
0.423 —0.345

0.329
0.078
0.237
0.047—0.116 —0.190

—0.211 —0.267
0.190
0.162

0.116 0.190
0.211 0.267 —0.063

0.079
0.282

—0.658 0.190
—0.634 0.267

—0.190
—0.211

1.342
0.402
0.120

—0.190—0.116 0.269
0.063—0.267 —0.2820.345

0.335
0.402
0.020

—0.112
—0.179

0.026
0.657

—0.565
0.438 —0.402

—0.314 —0.297 0.313
0.481
0.577
0.227

0.297
1.826
0.548
0.450

—0.135—0.058
—0.1440.577 —0.548

0.103 —0.125

—0.144
—0.010

1.155
0.4630.756 0.378 —0.170

Py P3l( TT)
0 2 4

aop aoo aoo
Py Pll(TT)

2 4 6a lo a lo a lp

Py p33( TT)
2 4a lo a lo

6a 10

—0.375
0.168
0.097 —0.387

0.335
—1.095
—0.237
—0.318

—0.712
0.318 —0.150

—0.129
0.112
0.150

0.032
—0.112—0.237

0.106
0.237
0.318 —0.150

0.029
0.079

—0.115
—0.316—0.894

0.290
0.390

—0.339
0.054

—0.411
0.184

0.071 0.126

0.871
—0.390
—0.161
—0.054

—0.727
—0.242

—0.704
—0.235

0.704
0.235 0.136

—0.1050.026
0.137
0.184

0.290
—0.130
—0.054 0.235

0.554 —0.235

—0.137
—0.184

—0.290
—0.390

0.054 —0.235
—0.054 0.235

—0.012
0.035

—0.242
0.242

0.184
—0.278

0.115—0.029
—0.037 —0.186

0.017 —0.045
—0.050 —0.121

—0.121 —0.166
0.121 0.166
0.148 0.203

—0.148 —0.203

0.121 0.166
0.444 —0.166

—0.148 —0.203
—0.544 0.203

—0.171
0.171
0.210

—0.210
—0.173
—0.092
—0.063

0.112
0.078

—0.020 0.055
0.149

—0.096
0.061

—0.019
—0.0040.109 0.132

0.291 —0.132
—0.134 —0.161
—0.356 0.161

—0.109 —0.132
0.109 0.132
0.134 0.161

—0.134 —0.161

—0.022
—0.013 —0.065

0.005 0.026
0.016 0.079

2681

Py P3 l(ST)
1 3 5aol aol aol

—0.106 —0.173
—0.193 —0.244

0.522 0.077
0.604 0.109

—0.082 —0.134
—0.149 —0.189

0.548
—0.192 0.134

—0.388 0.189

—0.067 —0.110
—0.122 —0.154

0.447
—0.157 0.110

—0.317
0.387

—0.232
—0.069 —0.171
—0.233 0.527

0.600 —0.316
0.071 —0.119

0.154
—0.158

0.411
—0.435
—0.041
—0.041

0.480

Py P3 l{TT)
2 4 6

apl apl apl

—0.411
—0.184

0.316
0.137

—0.184
0.283

0.503
0.225

—0.093 0.407
0.136—0.118

0.258
—0.168

0.225
—0.233 0.136

—0.1360.031
—0.283

0.456
0.096

—0.096
—0.117

0.117
0.387
0.063 0.076

—0.063 —0.076
—0.077 —0.093

0.077 0.093

—0.012
—0.070

0.014
0.086
0.118
0.105

—0.129
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TABLE III. ( Continued).

'Dz~ Sz Po~ Po
G4~ D4 Po~ Po

lS 5D 3P 3P

Dz~ Sz Pi —+ Pi
'G4~ D4 'Pi ~ Pi
'So Do Pi Pi

'So~ Do Pz~'Pz
'Dz~ Sz Pz~ Pz
'Gg~ D4 Pz~ Pz
'So 'Do Pz P
Dz~ Sz Pz~ Pz
G4~ D4 Pz~ Pz
So~ Do Fz~ Pz
'Dz~ Sz Fz~ P
G4 D4 Fz
'So~'Do 'Fz 'Pz
'Dz ~'Sz Fz ~ P
'Gg~ Dg Fz~ Pz
'S D F P
Dz~ Sz Fg~ P3
'G D F P
So Do H5 F5
'Dz~ Sz Hg~ Fg
'G4~'D4 'Hg ~'F5

P„p»(ST)
0 2 4

aoo aoo aoo

—0.168 0.335
—0.045 —0.224

0.097 —0.387
0.538

—0.097 —0.194
—0.026 —0.307 —0.133

0.032 —0.129
—0.161 0.065

0.026 —0.226
0.079 —0.316

0.044

—0.079 —0.158
—0.021 —0.251 —0.109

0.026 —0.105
—0.132 0.053

0.021 —0.184
—0.037 —0.186
—0.149 —0.075

0.060 —0.213
—0.019 —0.096

0.036

—0.205
—0.173

—0.048 —0.241
—0.108 —0.154 —0.130

—0.375
—0.125 —0.250
—0.033 —0.167 —0.401

0.168

0.306
0.448

—0.411
—0.601

0.237
0.362

—0.316
0.149

—0.079
0.217 —0.050

0.194
0.296

—0.258
—0.065

0.177
—0.456

0.091
0.314

—0.118
—0.118

0.126

0.121

—0.040

0.229
—0.387

0.132 0.076

P„pp i(ST)
2 4 6

aors aors ao&

P, pgi(ST)
2 4

aors

ao&

—0.354
—0.518

0.474
0.158

—0.145 0.033
0.158
0.158

—0.290 0.298
—0.581
—0.194

0.177 —0.040
—0.194
—0.194

0.355 —0.364

—0.316
0.181 —0.047
0.632

—0.316
0.109 —0.421

0.387
—0.222
—0.775

0.387
—0.133

0.057

0.515

P, pg, (ST)
2 4

aoz aoz

0.707
0.732

P„p„(TT)
1 3 5

aoo aoo aoo
P„pg )( TT)

1 3 5a 01 aol 01

P, pq&(TT)
1 3 5

ao& aors aors

P, pg j(TT)
3 5

aoz aoz

3P 3P

'Po~'Po
3p 3p

3p 5p

~pi~ P(
3P 5P

'Po 'Po
P&~ P

3P 5P

'Pz ~'Pz
Po~ Po
Pi~ Pi

'Fz
'Po-'Po

3P 5P

'Fz 'Pz
'Fz ~'Pz
Po~ Po

3p 3p

P,'- P,

'Pz~'Pz
'Pz 'Pz
3P 5p

'Pz 'Pz
3P 5p

'Fz 'Pz
F P

'Fz 'Pz
Fz 'Pz
Fz Pz
Fz~ Pz

3F 5P
3F 5P

'Fz ~'Pz
'Pz

F P
'F~ ~'P~

'F~ ~'P~
'F~ ~'P~
'F~ ~'P~
'F~
F)~ Pg
H5 ~'F5

0.375
—0.168

—0.134 —0.201
0.240 —0.090
0.097

—0.067
—0.030
—0.121

0.237
0.164

—0.294
0.212

—0.042
0.079
0.082
0.037
0.007
0.106

0.067
0.030
0.208

0.246
0.110
0.318
0.148

—0.037
0.064

—0.106
0.121 —0.208

—0.112 0.335

0.170
0.210

—0.208

0.030
—0.210
—0.037

—0.257 0.257
—0.058 —0.135 0.481

0.142
0.064

—0.548
—0.047

0.403
0.098

0.232
0.104

—0.077
—0.035
—0.240

—0.174
—0.078
—0.225

0.195
—0.447

0.058
—0.494

0.155
0.075

—0.098
0.158

—0.285
—0.127
—0.367
—0.171

0.095
0.042

—0.073
0.122
0.240

—0.387

—0.198 —0.035
—0.170 0.242

0.242 0.042
0.208 —0.297
0.041 0.233 —0.527

—0.411

0.142 0.232
—0.255 0.104

—0.285 —0.077
—0.445 —0.035

0.037 —0.240

0.1 16 0.190
—0.208 0.085

—0.030 0.196

—0.232 —0.063
—0.364 —0.028

0.030 —O. 196

0.024 —0.160

0.224
—0.500

0.085 —0.035
0.255 —0.104
0.069 —0.028
0.208 —0.085

—0.367
—0.164

0.122
0.055
0.379

—0.300
—0.134

—0.310

0.100
0.045
0.310

—0.354
0.791
0.055
0.164
0.045
0.134
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TABLE III. ( Continued).

3p 3p

3p 3p
3p 5p

F2~ P2

F3~ P3

H5~ F5
H5~ F5

'H, ~5F5
H5~ F5
H5~ F5
H5~ F5
H5 ~'F5

P„P31(TT)
1 3 5

aop aoo aoo

—0.013 0.228 0.043
—0.039 0.340 —0.301

0.016 —0.279 —0.053
0.047 —0.416 0.369

P„P3 1(TT)
1 3 5

apl aol aol

0.037 —0.239 —0.047
—0.298 0.330

—0.045 0.292 0.058
0.365 —0.404

P, P31( TT)
1 3 5

ao1 ao1 ao1

0.365
—0.653

0.224
0.373 —0.094
0.183
0.304 —0.077
0.215 0.191

P, I 3,(TT)
3 5a 02 a 02

—0.483
0.864

—0.283
—0.189 0.125
—0.231
—0.154 0.102
—0.476 —0.252

So~ Dp Sp~ Dp
Sp~ Do D2~ S2
'D2 ~'S2 'D2 ~ S2
Sp~ Do G4~ D4

'D2 —+ S2 'G4~ D4
'G4~ D4 G4~ D4
Sp —+ Dp P1~ P1
'D 'S P 'P
'G4~ D4 P1~ P1
D2~ S2 P2~ P2

d o./d cosO~(SS)
0 2 4

aoo aoo aoo

1.000
2.000

1.000
3.207

3.207
1.000 1.020 0.551

1a 10

—2.191
1.095

—1 ~ 897

Ay(ST)'
3a 10

2.151

5
a1o

'G D P 'P
'D2~ S2 F2~ P2
'G4~ D4 F2~ P2
Sp~ Dp F3~ P3
'D2~ S2 F3~ P3
'G4~ D4 F3~ P3
Sp~ Dp H5~ F5
'D2~ S2 H5~'F5
'G4 —+ D4 H5 ~ F5

—1.549

—2.070

—1.690
2.683

2.191
—1.757 0.239

3.651
3.464

2.268 1.132 0.651

do. /d cos0q( TT)
0 2 4

aoo aoo aoo
2

a1p

A (TT)
4

a1o

'Po~'Po
3P 'P

P1~ P1
P2 —+ P2

3p 5p

3p 3p
3p 3p

'F2 'P,
3p 5p

F2 'P2
P1~ P1

3F 5p
3F 5p

F P
3F 5p

Pp~ Po
3p 3p

3p 3p

P2 P2
3p 5p
3p 5p

F2 'P2
F2 P2
F2~ P2
F2 P2
F P

3F 5p

F3~ P3
F3~ P3

F3~'P3
H5~ F5

H5~ F5
H5~ F5 H5~ F5

1.000
1.000
1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.500
—0.100

1.789
2.324
0.700

—1.039
—0.700
—2.191

1.897
—0.490

0.800
—0.849

0.490
—0.800
—2.400

1.386
1.131
0.600

3.320
1.000

—3.098
1.789
1.461
0.811
0.545

—2.191
—1.897

0.849

—1.789
2.324

—1.000

—1.039
1.000

1.131
—1.386

0.800
—0.980
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TABLE III. ( Continued).

A„„p)i{SS)
0 2 4

aoo aoo aoo

A yy p» (SS)
0 2

aoo aoo
4

aoo

A pi i(SS)
0 2 4

aoo aoo aoo
A„,pi i(ST)

3 5a 10 10 10

So Do 'So 'Do
'S,~'D, 'D, ~'S,
'D2~ S2 'D2~ S2
So~ Do G4 D4
'D2~'S2 'G4~'D4
1G 5D 1G 5D

'D2~ S2 'Pi ~'Pi
'G4~'D4 'Pi ~'Pi
So~ Do Pi~ Pi

'D2 'S2, Pi 'P)
'G 'D 'P ~'P
'D2~ S2 P2~ P2
'G4~ D4 Pp~ P2
'D2~ S2 P2~ P2
'Gg~ D4 P2~ P2
'D2~ S2 F2~ P2
'G4~ D4 F2~ P2
'D2.~ Sp F2~ P2
'G4~ D4 F2~ P2
So~ Do F3~ P3
'D2~ Sp F3~ P3
'G4~'D4 'F3~ P3
So~ Do H5~ F5
'Dp~ S2 H5~ F5
'G4~ D4 H5 ~ F5

—0.500
—1.000

—0.250 —0.250
—1.604

—1.031 —0.573
—0.321 —0.383 —0.338

—0.500
—1.000

—0.250 —0.250
—1.604

—1.031 —0.573
—0.321 —0.383 —0.338

—0.500
—1.000

—0.250 —0.250
—1.604

—1.031 —0.573
—0.321 —0.383 —0.338

1.095
—0.466

—0.142

0.142

—0.116

0.116

—0.657
0.565

0.134
—0.926
—0.232
—0.259

0.232
0.259

—0.190
—0.211

0.190
0.211

—1.342
—0.402
—0.120

—1.155
—0.756 —0.463

0.189

—0.327

0.327

—0.267

0.267

—0.297
—1.826
—0.548
—0.450

—0.184 —0,300
—0.334 —0.423

Axx pii(T»
0 2 4

aoo aoo aoo
Ayy p& & ( TT)

0 2 4
aoo aoo aoo

A pii(TT)
0 2 4

aoo aoo aoo
A„,pii(TT)

2 4 6
lo 10 a 10

Po~'Po
3p 3p

3p 3p
3p 3p

Pi~ Pi
3~ 3pi 2~ 2

Pi~ Pi
Pi ~'Pi

3p Sp
3p 3p

3p Sp
3p 3p
3p 5p

'Fz~'P2
3p 3p

3p 5P
3F 3P

F2 P2
3p 3p

P2 ~'P2
'F2
F2 P2

'Po~'Po
3p 3p

Pj~ Pi

P2~ P2
P2~ P2

'P, 'P,

P2 P
P2~ Pz

F2~ P2
'F, ~'P,
'F,

'F2~'Pz
F2~ P2
F2 P2
F2~ P2
F2 P2
F P
F2 P
F2 P2
'F3~'P3
F3~ P
F3~ P3
F3~ P3

F3~ P3

0.500
—0.063
—0.168

0.088

0.097
0.130

—0.017
—0.097
—0.130
—0.045

0.023

0.079
0.106

—0.478
0.086
0.080

—0.079
—0.106

0.086
—0.086
—0.080

0.040
0.112
0.150
0.087

—0.087
0.071

—0.071

0.062
0.168

—0.088
0.894

—0.097
—0.130

0.109
0.097
0.130

—0.161
0.080

—1.095
—0.079
—0.106
—0.376
—0.044

0.186
0.079
0.106

—0.044
0.044

—0.143
0.071
0.176

—0.279
—0.012

0.012
—0.010

0.010

0.309

0.206
—0.103

—0.126
—0.042

0.334

—0.042
0.042
0.223

—0.111
—0.287

0.129
—0.074

0.074
—0.061

0.061

0.500
0.063
0.168

—0.088

—0.097
—0.130

0.238
0.097
0.130

—0.075
0.038

—0.079
—0.106
—0.061

0.061
0.250
0.079
0.106
0.061

—0.061
—0.100

0.050
—0.112
—0.150
—0.087

0.087
—0.071

0.071

—0.062
—0.168

0.088
0.894
0.097
0.130
0.163

—0.097
—0.130

0.075
—0.038
—1.095

0.079
0.106

—0.289
0.149
0.221

—0.079
—0.106

0.149
—0.149

0.014
—0.007
—0.176

0.279
0.012

—0.012
0.010

—0.010

—0.630
—0.210

0.129

—0.210
0.210
0.086

—0.043
0.287

—0.129
0.074

—0.074
0.061

—0.061

—0.500
0.125
0.335
0.425

0.055

—0.030
0.015

0.539
—0.147
—0.055

—0.147
0.147
0.030

—0.015

0.062
0.168

—0.088
—0.894

0.290
0.390

—0.034
—0.290
—0.390

0.011
—0.005

1.095
0.237
0.318
0.499

—0.079
—0.136
—0.237
—0.318
—0.079

0.079
0.043

—0.021
—0.383
—1.029
—0.148

0.148
—0.121

0.121

—0.309

—0.206
0.103

0.126
0.042

—0.334

0.042
—0.042
—0.223

0.111
—0.287

0.129
—0.371

0.371
—0.303

0.303

1.095
—0.237
—0.318

0.166 0.345
0.237
0.318

—0.052 0.230
0.026 —0.115
0.894
0.290
0.390

—0.068 —0.141
0.011 —0.047

—0.166 —0.345
—0.290
—0.390

0.011 —0.047
—0.011 0.047

0.052 —0.230
—0.026 0.115

0.121 0.166
—0.121 —0.166
—0.148 —0.203

0.148 0.203



35 STUDY OF THE REACTION p,p~pm+n WITH POLARIZED. . .

TABLE III. ( Continued).

3F sP 3F sP

P]~ P] Hs~ Fs
P]~ P] Hs~'Fs
Pz~ Pz Hs~ Fs
Pz~ Pz Hs~ Fs
Fz~ Pz Hs~ Fs
Fz~ Pz Hs~ Fs
F3~'P3 Hs~ Fs
H F H F

0.200
0.058
0.077
0.045

—0.045
0.037

—0.037
—0.103

0.267

—0.029
0.289
0.387
0.224

—0.224
0.183

—0.183
0.590
0.121

—0.171
0.047

—0.641
—0.085

0.085
—0.070

0.070
—0.135
—0.048

A p]](TT)
0 2 4

aoo aoo aoo

—0.200
—0.058
—0.077
—0.045

0.029
—0.289
—0.387
—0.224

0.045 0.224
—0.037 —0.183

0.037 0.183
0.103 —0.590

—0.267 —0.121

0.171
—0.047

0.641
0.085

—0.085
0.070

—0.070
0.135
0.048

Ayy p] ](TT)
0 2 4

aoo aoo aoo

1.107
0.333 0.364

A~ p]](TT)
0 2 4

aoo aoo aoo

0.300 0.257 0.043
—0.472
—1.338
—0.244

0.244
—0.199

0.199
0.443
0.252

A~ pll(TT)
2 4 6a]o a]0 a]0

0.109 0.132
—0.109 —0.132
—0.134 —0.161

0.134 0.161

A p33(SS)
0 2 4

aoo aoo aoo
Ayy p33(SS)

0 2
aoo aoo

A p33(SS)
0 2 4

aoo aoo aoo

A p33(ST)
1 3 5a ]o a ]o a ]o

'D S 'D S
'Dz ~ Sz '64~ D4
16 sD 16 sD

'Dz~ Sz P]~ P]
16 sD 3P 3P

'Dz~ Sz P]~ P]
'D4 'P]

'Dz~'Sz Pz~ Pz
'64~ D4 Pz~ Pz
'Dz~'Sz Pz~ Pz
64~ D4 pz~ Pz
'Dz~ Sz Fz~ Pz
64~'D4 Fz~ P

'D, 'S, 'F, -'P,
'64~'D4 Fz~ Pz
'Dz ~'Sz F3~'P3
]6 sD 3F SP

'Dz~ Sz Hs~ Fs
]6 sD 3H sF

—0.250 0.250
—0.573

—0.179 —0.128
0.573
0.063

—0.250 0.250
—0.573

—0.179 —0.128

—0.250 0.250
0.573 —0.573 0.573
0.063 —0.179 —0.128 0.063

0.184

—0.082

0.142

0.806

0.116
0.267

0.658

—0.438
0.314 0.297

0.548
0.125

—0.577
—0.378 —0.103

0.300
0.334 0.423

—0.134
—0.149 —0.189

0.232
0.259 0.327

—0.232
0.776 —0.327
0.190
0.211

—0.190
0.634 —0.267
0.402

p»(TT)
0 2 4

aoo aoo a
Ayy p3 3 ( TT)

0 2
aoo aoo aoo

p]](TT)
0 2 4

aoo aoo aoo
A„p33(TT)

2 4 6a 10 a 10 a 10

3p 3p
3p 3p

3p sp

P]~ P]
3p sp

3p sp

P]~ P]
3p sp

3P sP

Fz Pz
P P

3p sp
3F 3P

Fz Pz
3p 3p

P P

3p sp
3p sp

Pz Pz
Pz~ P

'Pz 'Pz
3p sp
3p sp
3p sp
3p sp

Fz Pz
Fz Pz

'Fz~'Pz
F P
Fz Pz

3F sP
'Fz 'Pz
Fz Pz
Fz Pz
Fz~ Pz
Fz Pz

3F 5P
3F sP
3F sP

0.188
—0.168

—0.188
0.168

—0.038
0.290

—0.130
0.068
0.097

—0.043
0.045
0.328
0.237

—0.106
—0.257
—0.086

0.120
0.079

—0.035
—0.086
—0.159

0.080
0.360

—0.112
0.050

—0.087

0.038
—0.290

0.130

—0.097
0.043
0.161 —0.206

0.103—0.430
—0.237

0.106
0.126
0.042

—0.334

0.131
0.044
0.214

—0.079
0.035
0.044 0.042

—0.042
—0.223

0.111
0.287

—0.129
0.074

0.201
0.143

—0.471
—0.176

0.079
0.012

0.241 —0.309

0.188
—0.168

0.038
—0.290

0.130
0.113

—0.097
0.043
0.075
0.013

—0.237
0.106

—0.184
—0.061

0.150
—0.079

0.035
—0.061
—0.674

0.100
0.150
0.112

—0.050
0.087

—0.188
0.168

—0.038
0.290

—0.130
—0.113

0.097
—0.043
—0.075
—0.013

0.237
—0.106
—0.446
—0.149
—0.021

0.079
—0.035
—0.149

0.884
—0.014
—0.193

0.176
—0.079
—0.012

0.630
0.210

—0.129

0.210
—0.210
—0.086

0.043
—0.287

0.129
—0.074

0.375
—0.335

0.075

0.045

0.030
0.085

0.441
0.147

—0.045

0.147
0.833

—0.030
—0.085

0.309

0.206
—0.103

—0.126
—0.042

0.334

—0.042
0.042
0.223

—0.111
0.287

—0.129
0.371

0.187
—0.168

0.038
0.871

—0.390
—0.016

0.290
—0.130
—0.011

0.055
0.712

—0.318
0.236
0.079

—0.064
0.237

—0.106
0.079

—0.814
—0.043

0.221
0.383

—0.171
0.148

—0.712
0.318
0.079

—0.237
0.106
0.052

—0.271
0.871

—0.390
—0.032
—0.011
—0.079

0.290
—0.130
—0.011

0.111
—0.052

0.271

—0.345

—0.230
0.115

0.141
0.047
0.345

0.047
—0.047

0.230
—0.115

—0.121 —0.166
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TABLE III. ( Continued).

w' W„„p»(TT)
0 2 4

aoo aoo aoo
Ayy p33( TT)

2
aoo aoo

4
aoo

W„p»(TT)
0 2 4a oo aoo aoo

3„,P33( TT)
2 4 6

10 10

P2 P2
F2 P2
F2~ P2
F3 P3

3p 3p

'P2~'P2
'F2 'P2
'F.-'P,
'F3~ P
'Hs ~'Fs

F P
F3~'P3
F3~ P3
F3~ P3

'Hs ~'Fs
Hs~ Fs
Hs~ Fs
Hs~ Fs
Hs~ Fs

'H, 'F,
'Hs~ Fs
'Hs ~'Fs

—0.260 0.334
—0.071 0.010
—0.212 0.273

—0.171
-0.058 —0.289

0.026 0.129
—0.045 —0.224
—0.075 —0.373
—0.037 —0.183
—0.061 —0.304
—0.120 —0.049

0.067 —0.121

—0.074
0.061

—0.061
0.171

—0.047
0.021
0.085
0.630
0.070
0.515

—0.182
—0.134

0.260
0.071
0.212

0.058
—0.026

0.045
0.075
0.037
0.061
0.120

—0.067

—0.334
—0.010
—0.273

0.171
0.289

—0.129
0.224
0.373
0.183
0.304
0.049
0.121

0.074
—0.061

0.061
—0.171

0.047
—0.021
—0.085
—0.630
—0.070
—0.515

0.182
0.134

0.200

0.167

0.544
0.121
0.444
0.043

0.553
0.136

—0.371
0.303

—0.303
—0.043

0.472
—0.211

0.244
0.650
0.199
0.531

—0.037
0.021

—0 444 0 166
0.148 0.203
0.544 —0.203

—0.109 —0.132
—0.291 0.132

0.134 0.161
0.356 —0.161

ih Iexcept for the s, p, and 6 isobar phases given by e
thus, it allows only Ims*b, and Imp*A contributions to
the spin correlations and predicts A~ =0. As shown
below, this model is clearly inadequate to describe the
large values of the spin correlations (including A» -40%)
observed in the experiment, and a more complex phase
structure for the 6 production waves is required. Howev-
er, the WM should provide an adequate description of the
smaller amplitudes of Fig. 4(a), including the s- and p-
wave isobar and the high-partial-wave b production. The
WM also serves as a benchmark to estimate the number of
waves needed for partial-wave analysis. It is worth noting
that the WM correctly predicts dominance of the low-
energy cross sections by the 'Dz, F3, and P2 partial
waves, simply as a consequence of the helicity structure of

(a)

the pion-exchange amplitudes. The latter explains the
strong correlations between the singlet ('D2, 'Gq. . . ) and
uncoupled triplet ( F3, Hq, . . . ) waves that are required
by the elastic PSA.

We have not explicitly included the pp~A+p ampli-
tudes of Fig. 4(b) in the pion-exchange model or in our
partial-wave analysis. These contributions are potentially
important because of the strong kinematical overlap be-
tween 6+p and 6++n final states in the p~+n Dalitz plot
at low energies. In Appendix 8 we show how to compute
the 6+p contributions, using Wick transformations, as a
series of s,p, 6, . . . ,p ~ isobar waves. This analysis is
independent of any specific model for 6 production and
requires only isotopic spin and angular-momentum con-
servation. Our numerical calculations indicate that the
6+p and 6++n contributions to any given production
wave are effectively in phase near the 6++ mass. As a re-
sult, provided the observables are averaged over the 6++
mass, we find that simply extending the WM to include
6+p and 6++n isobars cannot generate significant spin
correlations (e.g. ,

~ A» ~

(2%, averaged over the 6++
band). Thus, large spin correlations require a nontrivial
phase structure in the 5++n production waves, and can-
not be obtained simply from the isobar phases implied by
Figs. 4(a) and 4(b). In partial-wave analysis using data
averaged over the 6++ mass, the 6+p waves need not be
included explicitly; their contributions are included impli-
citly in any empirical expansion in s, p, and 6 p~+ iso-
bars.

IV. MASS AND PRODUCTION-ANGLE DEPENDENCE
OF THE OBSERVABLES

FIG. 4. Diagrams for (a) charged and (b) neutral-pion-
exchange Born terms.

In this section we survey the dependence of the observ-
ables on cosO~ and M +, and show comparisons with

P7T

the pion-exchange and joint-moments fits. As noted
above, these fits were performed with data averaged over
the 6++ band, namely, the mass intervals
1.18&M + &1.28 GeV for P] b=1.47, 1.71, and 1.98
CzeV/c, and 1.16 & M + & 1.20 GeV for p~,b

——1.18
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TABLE IV. Pion-exchange fit parameters at each energy, and values of C~ obtained from crossing
matrices evaluated at the center of the 6++ band (M + ——1.18 GeV at 1.18 GeV/c, and M + ——1.23

P7T P7T
GeV at 1.47, 1.71, and 1.98 GeV/c). The parameters are defined by Eqs. (A2) and (A6); CM are defined
by Eq. (A4) in the limit t'~0 for the s-, p-, and 6-isobar production amplitudes.

G (mb' )

8 (GeV-')
(Gev

B+ (GeV )

S

1.18
GeV/c

2.97
0.90
0.50
0.20

0.35

1.47
GeV/c

1.97
0.21

1.89
1.10

0.75

1.71
GeV/c

2.32
—0.32

4.06
2.67

0.70

1.98
GeV/c

2.25
—0.24

4.58

4.24

0.94

6
GeV/c

3.04
2.79
6.71

6.60
1.07

C3y2 (GeV )

V —1/2
)

C', (GeV
C~ I&2 (Gev

4.88
—4.85
—2.10
—3.60

3.87
—3.62
—1.41
—3.07

3.72
—3.26
—1.12
—3.18

3.70
—3.10
—0.97
—3.30

3.55
—2.65
—0.61
—3.49

GeV/c. Accordingly, we will focus on the cosO~ depen-
dence for these intervals. We remark that those observ-
ables which allow 6-6 interference contributions show
only modest M + dependence in the 5++ band.

A. Cross sections and integrated asymmetries

The differential cross sections d cr/d cos6~ and
do/dM + are shown in Figs. 5 and 6, respectively, to-

P7T

gether with the pion-exchange fits; Figs. 6(a) and 6(b)
show doldM + for two slices in cose&. namely, (a)P&
0.5 & cose~ & l.0 and (b) —0.5 & cosBq & 0.5. As expect-
ed, do/d cose~ becomes more collimated with increasing
p&,b, and do/dM + shows a strong 6++ peak at all en-

P&
ergies, although of course only the low side of the 6++
can be seen at 1.18 GeV/c. We remark that the mass
dependence predicted by the pion-exchange pararnetriza-
tion is governed by the rr+p elastic phase shifts [cf. Eq.
(A2)] and was not fitted to the data; the quantitative
agreement with the mass spectra of Fig. 6 is obviously
rather poor.

The integrated asymmetry A» [defined in Eq. (22)] is
plotted against cose~ in Fig. 7 for the 5++ band, togeth-
er with the joint-moments fits. The pion-exchange predic-
tions from our parametrization are, trivially, Ay =0,
which is clearly not the case. Since Ay reflects
Im( b *b,'+ s *s'+p *p ') interference contributions, the
large values of Ay suggest large A*A' interference and
hence a nontrivial phase structure for the 6-production
waves. Two other features of A» are noteworthy: (1) 3»
is approximately symmetric in cose& at all energies, indi-
cating a predominance of singlet-triplet interference con-
tributions, and (2) 3» changes sign with increasing p~,b, it
is positive for all cose& at 1.18 GeV/c, while at the
higher rnomenta it is negative except for very forward
cose~. This latter feature suggests either strong energy
dependence in the relative phases of the larger waves, or

strong energy dependence in the mix of waves which con-
tribute to Ay.

To illustrate the M + dependence of Ay, Fig. 8 shows
P77

Ay plotted against cose~ for 40-MeV slices in M + .
POT

The mass dependence is fairly adiabatic. Of course, some
mass dependence would be expected from the 6++-6+
interference contributions, as discussed in Sec. III E; also,

Lfsimple Q f-barrier factors might be expected to cause
some mass dependence in the singlet-triplet interferences,

4.0

1.18 ( e&/e

pp~A
"n

16.0

1.47 GeV/c

2.0 Q.O

0.0 0.0

ZO. O 30.0

&0.0 15.0

0.0
—1.0 0.0 1.0

0.0
0.0 1.0

cos 8,
FIG. 5. Differential cross sections do. /d cose~ together with

pion-exchange fits (solid curves); the cross sections are integrat-
ed over the 6++ bands, namely, 1.16& M + & 1.20 GeV (1.18

p'rr

GeV/c), and 1.18 & M + & 1.28 GeV (1.47, 1.71, and 1.98
P77

GeV/c).
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since singlet and triplet waves have different Lf values.
In any case, the gross features of A„appear to be fairly
stable over the 6++ band. 0.50

pp 6 n

1.18 GeV/c
1.47 GeV/c

B. Unpolarized density-matrix elements 0.25

As noted in Sec. IIIA, the pion-exchange parametriza-
tion takes a simpler form in the t-channel frame. Figures
9(a)—9(d) show the t-channel DME's p~~, p33, p», and

0.00

60.0

pp~p7T n

1.18 GeV/c

I I

1.47 GeV/c-

—0.25

0.25

000 1

1.98 GeV/c

—0.25

(D

0.0E

60.0
"e

I I

1.71 C eV/c ==
1.98 GeV/c-

—0.50

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

case ..
FIG. 7. Asymmetry parameter A~ plotted against coseq and

integrated over the 6++ bands as in Fig. 5. The solid curves in-

dicate the joint-moments fits.

0.0
1.2 1.3 1.3

M, (GeV)
P ff

pp~pvr n

60.0 1.18 GeV/c 1.47 GeV/c

(D

0.0E

60.0
to

1.71 GeV/c 1.98 GeV/c

0.0
1.2 1.3 1.2 1.3

M, (Gev)
PTT

FEG. 6. M + spectra, together with pion-exchange predic-
p 'tr

tions, for (a) coseq &0.5, and (b) —0.5 &coseq &0.5.

p3 ] in the 6++ band plotted against cose~, together
with the pion-exchange fits. For comparison the 3—12-

GeV/c data are also plotted (against v' —t ). Several
features are evident: (a) p» and p33 [Figs. 9(a) and (b)]
vary slowly with cose~ at the low energies, and are nearly
constant for small momentum transfers at the higher en-

ergies; (b) p3~ [Fig. 9(c)] is everywhere negative; (c) p3
[Fig. 9(d)] is close to zero for forward scattering at all mo-
menta above 1.5 CseV/c. These features follow naturally
from the pion-exchange parametrization. For example,
the condition p3 1-0 follows, schematically, from the re-
lation crp3 &

——Re(A A "+A A '*), where we indicate
only the 6++ helicity label; in the pion-exchange parame-
trization, 3 =0 in the t channel, while with B+ ——B
in Eq. (A6), Re(A A '*)=0 after summing over target
and recoil nucleon helicities. Overall, the data suggest a
very gradual evolution of the DME's with p],b.

The s-channel DME's, p11, p33 p3] p3 [, p, ], and p,
are plotted against cose~ in Figs. 10(a)—10(fl, respective-
ly, together with the joint-moments fits (solid curves).
The s-channel pion-exchange fits are indicated by the
dashed curves for the 1.71-GeV/c data (they are qualita-
tively similar at the other momenta). In the s channel, the
noteworthy features are (1) p» and p33 vary strongly with

cosea [Figs. 10(a) and 10(b)], (2) p» is positive for
cosB& & 0 [Fig. 10(c)] and is antisymmetric about

e~ ——90 as required by the Pauli principle, and (3) p3, is
nonzero [Fig. 10(d)]. The DME's p, &

and p, , shown in

Figs. 10(e) and 10(f) are given by interferences involving
Res '6, and in the pion-exchange parametrization are pro-
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1.18 Ge V/c

(a) «6O-«80 Mev
il

(b) 1180—1200 MeV

1.47 Ge V/c

(c) 1180—1220 MeV
0.2—

(d) 1220—1260 MeV (e) 1260—1300 MeV

I I li Jl
'V 'T I T

-0.2 '-
CCI-
UJ

CO

1.71 GeV/c

(f) 1180—1220 MeV

~ )

(g) 1220-1260 Me V

~0
t

(h) 1260—1300 MeV (i) 1300—1340 MeV ~

-0.4—
1.98 Ge V/c

(j) 1180-1220 MeV (k) 1220—1260 MBV (I) 1260—1300 MBV (m) 1300—1340 MeV

0 i1

-0.4
—1

E

0 0
I

1 —1

cos e
0 0

FIG. 8. Asymmetry parameter A~ plotted against cosO& sliced in 40 MeV mass intervals.

portional to cos(5a —5, ); thus they are expected to exhibit
strong M + dependence (and do), and cancellations occur

P7T

in averaging these observables over the b++ band. In
general, whereas the behavior of the DME's is somewhat
more complicated in the s channel, the joint-moments fits
provide an adequate description of the cosO~ dependence.

C. Spin correlations

Figures 11(a)—11(b) show the spin correlations that al-
low 5-6 interference terms, namely, Pyp», Pyp33 Pyp3],
Pyp3 & P&p3 } P„p3 ], P,p3 &, and P,p3 &, respectively,
plotted against cosB~. Again we display the joint-
moment fits (solid curves) and the pion-exchange predic-
tions at 1.71 GeV/c (dashed curves). Note that the pion-
exchange predictions, which include only p-6 interference
contributions, are generally too small to describe the data
well. These p-6 interference contributions are maximal in
the sense that the p and 5 isobars are -90' out of phase
in the WM near the 6++ mass. Thus, as with Ay, it ap-
pears that the bulk of the spin-correlation data must be

due to 5-5 interferences, and cannot be attributed solely
to the interference of different isobar configurations.

The energy dependence of P»pi, [Fig. 11(a)] and P»p33
[Fig. 11(b)] is noteworthy. Whereas P»p~~ is generally
positive and falls gradually with increasing p&zb Py p33
changes sign from positive to negative between 1.18 and
1.47 GeV/c. The combination of these effects is respon-
sible for the energy dependence noted above for
Ay 2PyP & & +2PyP33 This rather striking behavior im-
mediately rules out the possibility that Ay is a reflection
of the interference of two dominant waves (e.g., 'D2 and
F3 ); if this were the case, then A», P»p~ i, and P»p33

would all exhibit the same p],b dependence. The different

P~,b dePendences observed for PyP» and PyP33 suggest
that the mix of 6-production waves varies with p~,b.

For completeness we show the spin correlations which
are sensitive to s-6 interference, namely, Pyp», Pyp,
P„p, i, and P,p, &

in Figs. 12(a)—12(d), respectively, to-
gether with the joint moments and pion-exchange curves.
The pion-exchange predictions are not unreasonable for
Pyps 1 & Pxps —i, and Pzps —i, but do not describe Py ps
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well. Similar results were obtained in the 3—12 GeV/c
analysis. As noted in Ref. 2, Pyp, 1 and P~p, &

are ex-

pected to be the dominant Ims'4 interferences for small
momentum transfers in the pion-exchange model; they are
expected to be approximately mirror symmetric. Figure
13 shows these two spin correlations plotted against
cose& for 1.18 to 1.98 GeV/c, and against V t for 3 to—
12 GeV/c. The relative signs and magnitudes are in
reasonable accord with the pion-exchange predictions at
all energies. Of course, we would not expect quantitative
agreement for the s *6 interference terms, because the
pion-exchange model evidently fails to describe the 6-
production phases correctly, as evidenced by the large
values of A~. However, the model seems to describe
correctly the approximate scale of the Ims'b terms, and
so should be adequate in estimating the magnitude of the
Imp*A terms.

D. Other comparisons with 3—12-GeV/c data

In Ref. 2 we noted the following regularities at 6 and 12
GeV/c for —t & 1 GeV:

opposite signs for natural-parity interferences. Figure 14
illustrates this comparison for 6 GeV/c, plotted against
v' t, and 1.47 Ge—V/c, plotted against coseq. The pat-
terns are qualitatively similar at the two energies, again
suggesting a rather gradual p~,b dependence for the
small- t production mechanisms. We note that the
predominance of unnatural-parity interferences in the spin
correlations has a natural explanation in the additive
quark model, as discussed in Ref. 2.

Figure 15 provides a more global view of the overall en-

ergy dependence of the 6-6 interference SSC's. Guided
by the momentum-transfer dependence of the 3—12
GeV/c data, we have selected two momentum-transfer in-
tervals: —t &0.2 GeV and 0.28& —t &0.6 GeV; we
have averaged the DME's over these intervals and plotted
them against p1,b, with smooth polynomial curves to help
guide the eye. The SSC's exhibit reasonable continuity
with p~,b, although some of the individual correlations
(notably P~p» and P~p») exhibit marked energy depen-
dence, as anticipated in the discussion above.

E. Summary

P P31=—PzP3 —»
P P3-1=P,P31

(38a)

(38b)

These relations would hold if the spin correlations were
due to interferences of unnatural-parity amplitudes, for
example, ~ and B exchange. The relations would have

This survey suggests the following features. (1) The
pion-exchange model provides a fair description of the un-

polarized cross sections and DME's, and these show only
gradual p&,b dependence from 1.2 to 2 GeV/c. (2) The
pion-exchange model describes qualitatively some of the
polarization effects associated with s-6 interference, and
may therefore provide an adequate description of the
small s- and p-wave isobar production amplitudes. (3)



35 STUDY OF THE REACTION p,p~p~+n WITH POLARIZED. . . 2693

The large values of A~, and also the discrepancies between
the SSC's and the p-b, interference predictions from the
pion-exchange model, suggest the dominance of 6-6 in-
terference contributions in the SSC's. (4) The b;b, spin
correlations exhibit significant p~,b dependence at low en-

ergies, especially P~p33, nonetheless, the SSC's show
reasonable continuity from 1.2 to 12 GeV/c.

V. FINAL-STATE-INTERACTION EFFECTS

This section covers two aspects of final-state interac-
tions between the proton and neutron. The first concerns
the relationship between pp~m+d and pp ~pm. +n, as evi-
denced by the spin correlations. The second concerns the
distortions in the DME's caused by the proton-neutron
threshold enhancement in the pnm+ final state, an effect
which has been clearly seen in several other experi-
ments. ' ' We discuss these two topics in turn.
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FIG. 11. s-channel spin correlations (a) P~p», (b) P„p33,(c) P~p3&, (d) P~p3 &, (e) P„p3&,(f) P„p3 &, (g) P,p», and (h) P,p3 &
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against cose~ (6++-band cuts imposed). The solid curves show the joint-moments fits and the dashed curves the pion-exchange pre-
dictions for 1.71 GeV/c.
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FIG. 11. (Continued).

A. Relationship between p,p ~pm+n and p, p ~~+d cosL9= —1, (39a)

Deuteron formation presumably occurs through the
pn~+ intermediate state, in kinematical configurations
close to proton-neutron threshold. In terms of the
Dalitz-plot variables, the condition Mz„-2m& corre-
sponds to the constraints

2m
21M +) =—+ —mz

2 2
(39b)

where s is the total c.m. energy squared. Note that Mz„is
independent of the kinematical variables Ba and P. When
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Eq. (39) is satisfied, the proton and neutron three-
momenta are collinear and equal in magnitude, and the
m. + production angle is given by e~. If deuteron produc-
tion occurs through the p~+ intermediate state, then sub-
stituting cosO= —1 in the DME expansion of Eq. (21), we
would expect

[Pyp„(M + ) Py—p„(M + )]

[p))(M +)—p„(M +)]

where the RHS is evaluated at the mass M + satisfying
P77

Eq. (39b). The relevant values of M + are 1.193, 1.283,
1.336, and 1.437 GeV at 1.18, 1.47, 1.71, and 1.98 GeV/c,
respectively. The values at the two higher momenta are
well above the 6++ mass, where the cross section is small
and our data are statistically limited. The values at 1.18
and 1.47 GeV/c occur within the b++ band, and we
show the comparison between the two sides of Eq. (40) for
these momenta in Fig. 16. The values for the p,p~pm. +n
spin correlations [the RHS of Eq. (40)] are taken from
this experiment, averaged over the mass intervals
1.18 & M + & 1.20 GeV for 1.18 CxeV/c, and 1.26
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posed). The curves are defined in Fig. 11~
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The curves indicate the pion-exchange predictions.
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&M + &1.30 for 1.47 GeV/c; the dominant contribu-
P7T

tions to the RHS of Eq. (40) come from P~p&, and p».
The p„p~m.+d asymmetries [LHS of Eq. (40)] are taken
from Refs. 38 and 44 and are shown as smooth curves in
Fig. 16. The agreement is satisfactory. In particular,
the pp~m+d asymmetry is generally positive below 2
GeV/c and falls gradually with increasing p1,b, the same
behavior that characterizes P~p» in p,p~p~+n. Note
that P„p33 which is responsible for the rapid energy
dependence and sign change in A~(p, p~ptr+n), does not
enter into Eq. (40).

Strictly speaking, Eq. (40) is only an approximation,
and the RHS should be calculated after projecting out
those contributions to p11 and P~p1& which involve the
spin-triplet final-state proton-neutron configuration.
However, theoretical model calculations suggest that
pp~p~+n is dominated by final states with S = 1 for the
proton-neutron system. In particular, if we require
l~„=0near proton-neutron threshold, then all of the
even-parity waves (proton-proton initial states
So, D2, 64, I6, . . . ) can couple only to final states with
S&„——1 due to parity conservation, and the same is true
for all odd-parity waves which have odd J (proton-proton
initial states P~, F3, H&, . . . ). The remaining odd-parity
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FIG. 17. Normalized angular distributions for cosOp, where

Op is the s-channel polar decay angle describing 6++~p~+.
The distributions are reconstructed from the moments expan-
sion of Eq. (10) and are sliced in 20 MeV mass intervals as indi-
cated. The data are taken from the bin 0.8 &cose~ & 1.0 at 1.18
and 1.47 GeV/c.

waves ( Po 2, +24, ~q 6, . . . ) can a priori couple equally
to 1~„=0final states with S~„=Oor S~„=1 ( Po in par-
ticular can couple only to Sz„——0). Since S~„=Oand 1

amplitudes do not interfere in observables averaged over
final-state helicities, the Sz„——0 contributions are a priori
small, given the expected sizes of the Po 2, P2 4, . . .
waves. (()f course, away from proton-neutron threshold,
with l~„&0,these selection rules do not apply. ) Thus, Eq.
(40) should be a good approximation without explicit pro-
jection of the S = 1 proton-neutron final states.

B. Final-state-interaction effects

In addition to deuteron production, the proton-neutron
final-state interaction (FSI) is expected to enhance the
pp~pm+n cross sections near proton-neutron threshold.
From Eq. (39) this should result in backward peaks in the
projected cos8 angular distributions for values of M +P7T

close to M + [e.g. , 1.193 (1.283) GeV at 1.18 (1.47)
GeV/c]. Figure 17 shows the cos8 angular distributions
from the moments fits in 20 MeV slices in M + at 1.18

and 1.47 GeV/c; the expected backward peaks are prom-
inent near M + -M + at each momentum. These

P7T P7T

enhancements extend over a range in M + and cosO
P1T

which seems to be roughly consistent with the behavior of
the S& proton-neutron phase shift, assuming an FSI
enhancement proportional to sin 6( Si) (Ref. 47). Note
that in Fig. 17 we have selected the production angle
range 0.8 & cos6~ & 1.0 because this represents the worst
case; for

~
cose~

~

&0.5, the backward peaks in cos8 are
relatively smaller by a factor of 2. This 6~ dependence
reflects the fact that the FSI enhancement should be pro-
portional to the unenhanced cos8= —1 production cross
section; the latter is relatively larger near cos6~ ——+1 be-
cause of the 6~ dependence of p~ ~.

The FSI enhancements naturally result in nonzero
L =3,4 moments near M +-M + in the cost9 expan-

P /T P77

sion of Eq. (10). They also lead to a distortion in the
L =0, 1,2 moments in the same mass regions. Specifical-
ly, the FSI peak at cos8- —I naturally correlates with in-
creased p», decreased p33 and more negative p, &

in the
cos8 expansion fits. The other DME's, which vanish at
cos8= —1 and are associated with explicit P dependence,
should be less affected by the FSI enhancements. For
pi, b ) 1.47 GeV/c, these distortions in p», p33 and p, i do
not pose serious difficulties for partial-wave fits because
M + occurs well on the high side of the 6++. However,
at 1.18 GeV/c the distortions occur over a major part of
the "6++ band" and are clearly reflected in the behavior
of the DME's. For example, for

~
cose~

~

)0.8 we ob-
serve pii-0. 5 and p33-0 [Figs. 10(a) and 10(b)]. It turns
out that no physically plausible partial-wave expansion
can yield such behavior at 1.18 GeV/c; instead we would
expect p33 to go smoothly to zero at cos6~ ——+ I. %'e also
observe a correlated negative enhancement in p, i [Fig.
10(e)], and an apparent suppression of P~p33 [Fig. 11(b)],
near cos6~ ——+1. In principle, we could "correct" for the
FSI distortions by increasing p33 and Pzp33 appropriately,
as functions of cos6&, alternatively, we could explicitly
include the effects of the enhancement in partial-wave fits



2698 A. B. WICKLUND et al. 35

TABLE V. Listing of normalized s-channel joint moments QM~ for each physical observable as measured in this experiment. The
QM& are defined as coefficients of dM&(coseq) in the expansion of Eq. (23). We do not list the coefficient apo for do. /d cose&
( aoo ——1 for der ld coseq); instead we list the integrated cross section in mb, o. [cf. Eq. (23c)], under this column.

Unpolarized density-matrix elements

p1,b( GeV /c ) cr (mb) 2
Qoo

( d o./d cose&)
4 6a op aoo

8
apo Aoo

1.18
1.47
1.71
1.98

1.18
1.47
1.71
1.98

2.94%0.010
10.81+0.018
10.91+0.022
10.03+0.024

0a

0.376+0.002
0.278+0.001
0.261+0.001
0.258+0.001

0.327+0.008
0.870+0.004
1.655+0.006
2.125+0.008

2a op

0.329+0.005
0.427+ 0.003
0.651+0.003
0.753+0.004

—0.066+0.010
0.068+0.006
0.621+0.008
1.388+0.010

4a op

—0.086+0.007
0.048+0.003
0.331+0.004
0.575+0.005

(P11)

—0.069+0.012
—0.069+0.007

0.095+0.009
0.527+0.012

6a op

—0.064+0.008
—0.076+0.004

0.034+0.005
0.216+0.006

—0.049+0.008
—0.041+0.010

0.104+0.013

8a op

—0.039+0.005
—0.062+0.005

0.016+0.007

—0.065+0.008
—0.073+0.010
—0.029+0.012

10a op

—0.030+0.005
—0.071+0.006
—0.077+0.007

1.18
1.47
1.71
1.98

1.18
1,47
1.71
1.98

0
apo

0.124+0.002
0.222+ 0.001
0.239+0.001
0.243+0.002

2
apl

0.316+0.005
0.224+0.003
0.237+0.003
0.229+0.003

2a op

—0.166+0.004
0.008+0.003
0.175+0.004
0.308+0.005

4
Qp1

—0.070+0.006
0.013+0.004
0.152+0.004
0.244+0.005

4a 00

0.053+0.006
—0.013+0.003
—0.020+0.005

0.122+0.006

6
ao1

—0.065+0.007
—0.088+0.004
—0.049+0.005

0.021+0.006

(p33)

(P31)

6a op

0.033+0.007
0.041+0.004
0.010+0.006
0.041+0.007

8
ao1

—0.040+0.005
—0.100+0.006
—0.089+0.007

8
apo

0.015+0.005
0.040+0.006
0.034+0.008

10
apl

—0.005+0.005
—0.048+0.006
—0.084+0.006

10a op

—0.002+0.005
0.030+0.006
0.046 +0.007

2
Qp2

4
ao2

6
Qp2

(P3 1)

Q02
10

Qo2

1.18
1.47
1.71
1.98

1.18
1.47
1.71
1.98

—0.255+0.004
—0.130+0.002
—0.071+0.002
—0.046+0.002

0a op

—0.109+0.002
0.015+0.001
0.042+0.001
0.040+0.001

0.040+0.005
0.014+0.003

—0.031+0.003
—0.060+0.004

2
Q 00

—0.055+0.004
0.069+0.002
0.108+0.002
0.090+0.003

0.019+0.006
0.063+0.004
0.072+0.005
0.045+0.006

4
aoo

0.056+0.005
0.041+0.002
0.072+0.003
0.074+0.004

(P, 1)

0.026+0.004
0.071+0.005
0.061+0.006

6a op

0.042+ 0.006
0.022+ 0.003
0.028+0.004
0.011+0.005

—0.003+0.004
0.034+0.005
0.035+0.006

8a op

0.019+0.003
—0.014+0.004
—0.027+0.005

10a

—0.006+0.004
—0.022+0.004
—0.039+0.005

2
apl

4
Qp1

6
Qp1

(P, 1)
8

Qp1
10

Qp1

1.18
1.47
1.71
1.98

0.048+0.003
—0.055+0.002
—0.098+0.002
—0.103+0.002

0.001+0.004
0.010+0.003
0.007 +0.003

—0.057+0.004

—0.035+0.005
0.027+0.003
0.065+0.004
0.063+0.005

—0.002+0.003
0.038+0.004
0.066+0.005

—0.015+0.004
0.004+0.004
0.026+0.005

1

Q10
3

Q1p

Singlet-triplet asymmetries

(Ay)
5

Q1p
7

Q10
9

Q1p

1.18
1.47
1.71
1.98

—0.544+ 0.024
0.016+0.009
0.151+0.010
0.161+0.013

—0.200+0.053
—0.271 +0.023
—0.119+0.029
—0.012%0.039

0.030+0.061
—0.144+0.031
—0.163+0.043
—0.137+0.060

—0.014+0.035
—0.088+0.047
—0.126+0.067

—0.001+0.030
—0.016+0.036
—0.100+0.047
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PIab (GeV/c) I
Q 10

3
Qlp

TABLE V. ( Continued).

Singlet-triplet asymmetries
( Py Pl I )

5a 10
7

alp
9a 10

1.18
1.47
1.71
1.9&

—0.221+0.009
—0.104+0.004
—0.042+0.004
—0.009+0.006

—0.201 +0.022
—0.123+0.010
—0.103+0.013
—0.050+0.016

—0.030+0.023
—0.034+0.014
—0.053+0.019
—0.032+0.025

0.007+0.017
0.003+0.021
0.006+0.028

0.017%0.014
0.029+0.016
0.003+0.020

1.18
1.47
1.71
1.98

1.18
1.47
1.71
1.98

1.18
1.47
1.71
1.98

I
alp

—0.054+0.011
0.112+0.004
0.117+0.004
0.093+0.005

Ia op

0.036+0.014
—0.023+0.006
—0.035+0.009
—0.028 +0.013

I
Qpl

—0.090+0.010
—0.044+0.004
—0.039+0.004
—0.034+0.005

3
alp

0.087%0.019
—0.012+0.009

0.043+0.012
0.059+0.015

3
apo

—0.142+0.018
—0.021+0.008
—0.025+0.014
—0.010+0.023

3
Qpl

0.014+0.017
—0.042+0.009
—0.057+0.011
—0.055+0.015

5alo
( Py P33)

7alo

—0.033+0.017 —0.047 +0.018
—0.012+0.023 —0.050+0.025

(Py P31)
7a op

5a op

—0.068 +0.021
—0.008+0.009
—0.026+0.015

0.018E0.024

0.005 +0.011
—0.021 +0.016

0.017+0.021

5
Qpl

(Pyp3 I)
7

aol

0.007+0.020
—0.022+0.011
—0.015+0.015
—0.062+0.021

—0.005+0.012
—0.009+0.017
—0.048+0.023

0.022 +0.024
—0.036+0.012 —0.010+0.014

9
alp

—0.011+0.013
—0.035+0.015
—0.044+0.018

9a

0.006+0.009
—0.021+0.011

0.008 +0.012

9
aol

—0.003+0.012
—0.005+0.014
—0.011+0.017

0a op
2a op

(P p3I)
6a op

1.18
1.47
1.71
1.98

0.040+0.005
0.032+0.002
0.042+0.003
0.032+0.003

0.016+0.013
0.029+0.006
0.054+0.008
0.056+0.012

—0.017+0.017 —0.019+0.019
—0.031+0.007 —0.023+0.009
—0.008 k 0.010 0.007+0.012

0.006+0.015 —0.018+0.017
(P„p3 I)

—0.015+0.010
0.001+0.012

—0.035+0.015

1.18
1.47
1.71
1.98

2
apl

—0.066+0.011
0.018+0.006
0.020+0.008
0.005 %0.011

4
apl

0.021+0.015
0.045 +0.009
0.035+0.013
0.022+ 0.018

6
apl

0.004+0.017
0.028+0.010
0.022+ 0.016
0.036+0.022

8
Qpl

0.021+0.012
0.032+0.018
0.014+0.024

10
Qpl

—0.020%0.011
0.008+0.015
0.030+0.019

2
aol 4

apl
6

apl

(P, p3I)
8

Qpl
10

apl

1.18
1.47
1.71
1.98

0.029+0.017
0.070+0.006
0.070+0.007
0.068 +0.008

—0.029+0.024
0.000+0.009
0.058 +0.012
0.062+0.015

—0.031+0.026
—0.024+0.010

0.002+0.014
—0.009+0.019

—0.009+0.012
—0.011+0.015
—0.026+0.019

—0.008+0.011
0.008+0.012

—0.003+0.015

2
ap2

4
Qp2

6
ao2

(P, p3 I)
8

Qp2
10

Qp2

1.18
1.47
1.71
1.98

—0.056+0.015
—0.058+0.004
—0.055+0.004
—0.047+0.005

—0.011+0.021
0.027 k 0.008

—0.022 +0.009
—0.028 +0.011

0.000+0.024
0.008 +0.010
0.023+0.013
0.035+0.016

—0.001+0.011
0.040+0.015
0.042+0.019

—0.011+0.011
0.006+0.013
0.042 +0.015

I
Q 10

3
alp

5
Qlp

(Py P, I)

7
QIO

9
alp

1.18
1.47
1.71
1.98

0.025 %0.008
0.038+0.003
0.005+0.004

—0.007+0.005

—0.002 +0.019
0.015+0.009

—0.018+0.011
—0.057+0.014

0.006+0.020
—0.010+0.012
—0.00920.016
—0.044%0.021

—0.017+0.014
0.005 +0.018

—0.025+0.024

—0.001 %0.011
0.025 +0.014

—0.018+0.017
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l
app

3a op

TABLE V. ( Continued).

Singlet-triplet asymmetries
(~y P, l)

5
app

7
app

9a

1.18
1.47
1.71
1.98

0.060+0.012
0.051+0.006
0.061+0.008
0.042+0.013

—0.006+0.015
0.012+0.007
0.052+0.012
0.034+0.022

0.032+0.020
—0.016+0.008 0.001+0.010

0.002+0.013 —0.007+0.014
0.007+0.023 —0.001+0.021

(~ P, l)

0.006+0.009
—0.001+0.010

0.005+0.012

1.18
1.47
1.71
1.98

0
app

—0.026+0.004
—0.025+0.002
—0.028+0.003
—0.022+0.004

2
app

—0.029+0.009
—0.004+0.006
—0.017+0.008
—0.044+ 0.012

4a op

0.002+0.012
—0.020+0.007
—0.027+0.010
—0.012+0.015

6a op

0.022+0.014
—0.023+0.009
—0.050+0.013
—0.020+0.018

0.001+0.010
—0.020+0.013
—0.009+0.016

2
apl

4
apl

6
apl

(~ P, l)
8

apl
lp

apl

1.18
1.47
1.71
1.98

0.002+0.012
—0.043+0.005
—0.056+0.006
—0.050+0.008

0.011+0.017
—0.010+0.007
—0.036+0.010
—0.068+0.014

—0.026+0.019
0.012+0.009

—0.024+0.012
—0.038+0.017

0.011+0.010
—0.026+0.013
—0.033+0.018

—0.013+0.009
—0.020+0.011
—0.015+0.013

2
Qlp

4
Q lp

Triplet-triplet asymmetries
(~ )

6
Q lp

8a lp
10

Qlp

1.18
1.47
1.71
1.98

0.012+0.041
—0.094+0.017
—0.095+0.020
—0.055+0.026

0.005+0.060
—0.050+0.027
—0.134+0.037
—0.140+0.051

—0.049+0.059
—0.019+0.033
—0.081+0.047
—0.142+0.067

—0.021+0.035
—9.039+0.047
—0.073+0.065

0.003+0.026
—0.023+0.030
—0.020+0.037

2
Qlp

4
Qlp

6
Qlp

(~y p»)
8

Q lp
10

alp

1.18
1.47
1.71
1.98

0.051+0.016
—0.019+0.007
—0.014+0.009
—0.017+0.011

0.035+0.026
—0.028+0.012
—0.052+0.016
—0.039+0.021

0.000+0.024
—0.028+0.016
—0.070+0.020
—0.089+0.028

—0.015+0.016
—0.042+ 0.021
—0.052+0.027

—0.003+0.011
—0.023+0.012
—0.008+0.015

1.18
1.47
1.71
1.98

2
alp

—0.038+0.016
—0.029+0.007
—0.034+0.008
—0.020+0.010

4
Qlp

—0.015+0.022
0.001+0.011

—0.013+0.015
—0.055+0.020

8
Q lp

0.014+0.013
0.032+0.018

—0.014+0.025

—0.004+0.014
0.021+0.019

—0.011+0.025

(~y P3l)

( ~y P33)
6

Qlp

—0.017+0.024

10
alp

—0.001+0.013
0.010+0.014

—0.019+0.016

1.18
1.47
1 ~ 71
1.98

0
apo

—0.013+0.006
0.003+0.003
0.008+0.003

—0.001+0.005

2a op

0.034+0.016
0.029+0.007
0.032+0.012
0.002+0.019

4a op

0.024+0.020
—0.027+0.008

0.015+0.014
—0.003+0.024

6
app

0.021+0.022
—0.034+0.011
—0.017+0.015
—0.029+0.023

8a op

—0.010+0.010
—0.010+0.012
—0.022+0.015

2
apl

4
apl

6
apl

(~y P3
8

Qpl
10

apl

1.18
1.47
1.71
1.98

—0.006+0,014
—0.016+0.007
—0.014+0.008

0.033+0.010

0.025+0.019
—0.003+0.010
—0.001+0.014

0.010+0.019

—0.016+0.021
0.021+0.011

—0.012+0.016
0.003+0.023

0.010+0.013
—0.019+0.017
—0.011+0.023

0.003+0.012
—0.007+0.013
—0.008+0.015

l
app

3
Qpp

5
Qpp

(& P3l)
7

app
9

aoo

1.18
1.47
1.71
1.98

0.017+0.010
0.015+0.005

—0.014+0.006
—0.012+0.008

0.011+0.015
—0.012+0.007
—0.019+0.009

0.012+0.014

0.023+0.018
0.017+0.008
0.021+0.011
0.024+0.016

0.014+0.010
0.027+0.013
0.070+0.017

0.010+0.010
0.000+0.011
0.030+0.014
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P1 b («&/C) 1

Qo1
3

Qo1

TABLE V. ( Continued).

Triplet-triplet asymmetries
(P P3-1)

5
Qo1

9
Qo1

1.18
1.47
1.71
1.98

—0.002+0.008
—0.013+0.004
—0.023 +0.005
—0.025+0.006

0.024+0.014
0.019+0.008
0.029+0.011

—0.026+0.015

—0.029+0.017
—0.012+0.010

0.043+0.014
0.025+0.021

—0.022+0.011
—0.005+0.016

0.001+0.023

0.007+0.011
—0.014+0.015

0.009+0.020

1

ao1
3

apl
5

apl

(P, P31)
7

Qp1
9

ao1

1.18
1.47
1.71
1.98

0.043+0.011
0.033+0.003
0.019+0.004
0.014+0.004

3
ao2

0.049+0.021
0.058+0.008
0.036+0.010

—0.005+0.012

5
ao2

0.022+0.025
0.053+0.010
0.052+0.013
0.041+0.017

(P, P3 1)
7

ao2

0.038+0.011
0.033+0.015
0.057+0.019

9
Qp2

0.011+0.011
0.005+0.013
0.024+0.016

1.18
1.47
1.71
1.98

—0.028+0.018
—0.059+0.006
—0.046+0.007

0.004+0.008

—0.040+0.023
—0.049+0.009
—0.059+0.011
—0.044+0.014

—0.010+0.010
—0.048+0.014
—0.041+0.018

0.006+0.011
—0.016+0.013
—0.031+0.016

2
Q1o

4
Q 1p

6
Q lp

(Py P, 1)
8

Q 1p
10

Q lo

1.18
1.47
1.71
1.98

—0.002+0.014
—0.002+0.006
—0.003+0.007
—0.004+0.010

—0.011+0.022
0.004+0.010

—0.008+0.014
—0.005+0.018

—0.030+0.020
—0.002+0.013
—0.025+0.017
—0.027+0.024

0.006+0.013
—0.012+0.018
—0.008+0.023

0.007+0.009
—0.013+0.010

0.000+0.013

0a op
2a op

4a op

(Py P, 1)
8a op

1.18
1.47
1.71
1.98

—0.002+0.006
0.001+0.002

—0.001+0.003
0.006+0.005

—0.019+0.014
—0.016+0.007
—0.041+0.011

0.000+0.018

—0.024+0.018
—0.012+0.007
—0.041 +0.012
—0.004+0.023

—0.024+0.020
0.010+0.009
0.008+0.014
0.001+0.022

—0.004+0.010
0.017+0.012
0.014+0.015

1

aop
3a op

5a op

(P P, 1)
9a op

1.18
1.47
1.71
1.98

0.008+0.007
0.009+0.005

—0.009+0.007
0.001+0.009

—0.008+0.011
0.008+0.006
0.009+0.009

—0.006+0.014

—0.011+0.014
0.001+0.008
0.023+0.011

—0.035+0.017

0.006+0.010
0.034+0.013

—0.019+0.018

0.002+0.010
0.016+0.012

—0.005+0.014

1

Qp1
5

ao1

(P, P, 1)
7

Qp1
9

ao1

1.18
1.47
1.71
1.98

0.037+0.008
—0.001+0.003
—0.002+0.003
—0.015+0.004

0.007+0.015
0.018+0.006
0.018+0.008
0.004+0.011

0.024+0.018
0.008+0.008
0.043+0.011
0.001+0.015

—0.005+0.009
0.026+0.013

—0.001+0.017

—0.004+0.009
0.015+0.011
0.011+0.014

to the raw data. We have done neither, but have instead
allowed for larger systematic errors on p33 and P~p33 at
1.18 GeV/c.

VI. FEATURES OF THE JOINT MOMENTS

In this section we survey the behavior of the joint mo-
ments averaged over the 6++ band, in particular for the

DME's and SSC's that arise from 6-5 interference. Re-
call that the moments aM&(P;pjk) are defined as the
coefficients of dM~(cose~) in the expansion of
da/d cose~P;pjk [Eq. (23a)]; recall also that we have nor-
malized the moments at each energy so that aoo ——1 in the
expansion of der/d cose~ [Eq. (23b)]. Table V provides a
numerical listing of the fitted moments for all DME's and
SSC's.
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A. Unpolarized moments

Figure 18(a) shows the integrated cross sections o [Eq.
(23c)], which provide the overall normalization at each en-

ergy. For comparison, we also show the results of Shim-
izu et al. corrected for the cut on the 6++ band. Fig-
ures 18(b)—18(f) show the joint moments a oo in the expan-
sion of d o./d cos6~, together with the corresponding
coefficients from Ref. 3. Shimizu et al. reported Legen-
dre coefficients of order I, (6, and so no comparison is
made for app and app, also, we fixed app ——0 and app=08 10. ~ 8 10

in the 1.18-GeV/c fits, as indicated in Figs. 18(e) and (f).
Overall the agreement with Shimizu et al. seems satisfac-
tory; we remark also that the t-channel DME's presented
in Ref. 3 are consistent with our data in Fig. 9.

The leading moments for the unpolarized DME's p»,
p33 p3 1 and p3 1 are shown in Fig. 19, together with
curves based on partial-wave fits as described in the next
section. Since the unpolarized DME's do not include
singlet-triplet interference terms (cf. Table II), they are
generally more sensitive to the partial-wave intensities
than to relative phase behavior. The gross features of the
moments, for example, the relative signs of the p» and

p3 1 terms, are indicative of large 'D2 and F3 cross sec-

~ This Experiment

(a) P (mb) (b) a

a Shimizu et al.
1.5 ( ) 4

00

10— 1.0—

5— 0.5—

C)
UO

0.5 —
(d) 6

OO

l 0

02 —
( ) 8

~ Y

(f) a"00

0 0.1—

I 0

I —0.1 I I 0 1

2.0 1.0 1.5 2.0 1.0

la b (Ge V/c)
1.5 2.0

FIG. 18. Integrated cross sections (a) and angular distribu-
tion moments (b)—(f) for d o./d cos6& plotted against pl, b

(6++-band cuts imposed). The solid (open) points are from this
experiment (Ref. 3).
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tions, as can be read off from Table III. Of course, our
pion-exchange model reproduces these features by con-
struction, and requires partial-wave intensities more or
less as predicted by the elastic PSA.

B. Spin-correlation moments

Figures 20—23 show the joint moments for the 6-6 in-
terference SSC's; we have displayed separately the
singlet-triplet (Figs. 20 and 22) and triplet-triplet (Figs. 21
and 23) contributions. The curves are results of partial-
wave fits described in Sec. VII. We also show the joint
moments for p]p~n+d together with a]0(P~p]]) in Figs.
20 and 21; these were obtained from Eq. (49), ignoring the
p, &

contributions, using the relations

a ]0(pp rr 1)= —v L (L + 1)goo(p]])
L + 0 bL

a .pp~n+d

(41)

Here ao and bL on the RHS are Legendre and associated
Legendre coefficients for pp~vr+d from Ref. 44, and

aoo(]o]]) are the moments for pp~pm+n shown in Fig.
0

19. As anticipated in Sec. VA, the large singlet-triplet
moments are reasonably consistent for pp~pm. +n and
pp~m. +d (Fig. 20); the smaller triplet-triplet terms are
not in good agreement at the lower momenta (Fig. 21).

The rapid p&,b dependence noted earlier in Ay and
Pyp33 is evident in the singlet-triplet coefficients of Fig.
20; while the a ]o(P~p») vary smoothly with p],]„aIO(A~)
and a lp(P&p33) change sign above 1.2 CseV/c, and
a]o(A ) and a]Q{Pyp33) develop minima at 1.5 GeV/c.
The singlet-triplet moments for P;p» and P;pq &, show
some energy-dependent structures (Fig. 22). The triplet-
triplet moments of Figs. 21 and 23 are generally small.
A11 moments show reasonable continuity as functions of
p lab.

As noted in Sec. IVC, the rapid p~, b dependence of the
singlet-triplet moments in Fig. 20 cannot be explained by
the interference of only two waves, because of the
disparate behavior of Pyp» and Pyp33 Suppose, for ex-
ample, that the singlet-triplet moments were dominated
by 'Dz F& interfe-rence. Then from Table III, the mo-
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ments for P~p» and P~p33 would take the form

~ID(p p„)=—,
' g', 0(p p33)=0.66Im('Dz F3 ), (42a)

Q )o(pyp) ) ) = a )0(pyp33) —0 40 Im( Dz F3 ) . (42b)

The first relation (42a), requiring like signs for a &o(p&p»)
and alo(p~p33), may be satisfied at threshold, but is
strongly broken by the sign change in aIO(p~p33) above
1.18 GeV/c; the second relation (42b) is satisfied in sign
but clearly not in magnitude nor in p~,b dependence.
Thus, it is clear that 'D2- F3 interference alone cannot ac-
count for the spin correlations.

Consider next a more complicated picture in which all
of the moments have a smooth p~,b dependence given by
various "background" contributions, together with some
specific structure near threshold due to enhanced 'Dz- F3
interference. Assuming Im('Dz F3 ) &0 for concreteness,
we would then expect negative threshold enhancements in
the moments a &0(p~p»), a &o(p~p»), a,o(p~p33),

1 3 1

0 OQ (Pyp3& ), a o& (P~p3 & ), and a o& (P„p3,); likewise, we
would expect positive enhancements in a &o(p~p33),

& IIO(p&p3~ ), co~ (P&p3 ~ ), and a 00(p„p»). Except for
aoo(p„p3&) in Fig. 22, this pattern seems qualitatively to
match the data. Note that (cf. Table III) there are no
'D2- F3 contributions to P,p3& or P,p3

Thus, we conclude that the p~,b dependence of the SSC's
suggests a threshold enhancement in Im( 'Dz F3 ), supple-
mented by additional contributions from other partial-
wave interferences. Given the apparent complexity of the
DME's and SSC's, further progress requires a more gen-
eral amplitude analysis as described in the next section.

VII. PARTIAL-WAVE ANALYSIS

This section summarizes our partial-wave fits to the
joint moments. We also compare the partial waves for the
free ( pp ~p~+n ) reaction with those from similar
analysis of the bound (pp ~n +d) reaction. In our
partial-wave analysis (PWA) we explored several ways of
incorporating constraints on the partial-wave structure
from the elastic PSA and the pion-exchange model, all of
which led to generally similar solutions; we present
representative results from the different fitting strategies.
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A. Preliminaries

We used the pion-exchange model to estimate the com-
plexity needed for an accurate partial-wave expansion for
p&,b &2.0 GeV/c. Table VI lists the 59 partial waves
which we retained, organized into four categories: (1) 10
"low partial waves" (LPW's), taken to be complex in the
fits; (2) 18 "high partial waves" (HPW's), taken to be real;
(3) 13 "very high partial waves" (VHPW's), also taken tn
be real and fixed by the pion-exchange model; and (4) 18
non-5++ isobar waves, also fixed by the model with the
isobar phases of Eq. (A2b). Only the b, -b, and p-6 in-
terference moments were used in the fits, not the P;p, &

or
P;p, j moments; thus, the fits were insensitive to the
behavior of the s-wave p~+ isobars. Although only the
b, ++-production waves (LPW's and HPW's) were varied
in the final fits, we verified that the results were insensi-
tive to reasonable variations of the p-wave (j = —, ) pm'+

isobars. We also verified that relaxing the phase con-
straint on the larger HPW's ('6& and H5) did not alter
the results; these waves took on -0' and —I80 phases
when varied freely. We did not explicitly include the b+p

isobar waves in the fits, for reasons given in Sec. III and
Appendix B. The reflections of these waves contribute
mainly to the LPW's and HPW's, which were freely
varied anyway in the fits; their contributions to the fixed
waves (VHPW's and p-wave isobars) are expected from
the Wick transformations to be small.

One of the more critical assumptions in our analysis is
that the HPW's should be approximately real. Given

p +4,Nunitarity phase factors e ~~ for the transition ampli-
tudes, this assumption implies that 6zz should be small for
the relevant proton-proton initial states. This happens to
be true for all the HPW's listed in Table VI, except for the
transition P j ~ F&. Setting this wave to zero did not
alter the fit results significantly. Several of the p-isobar
transitions, involving 'So, Po, and P

&
initial states, also

violate the requirement 5~~-0'; however, as noted above,
these small non-5++ waves had little effect on the fit re-
sults.

Since we have used the pion-exchange model and the
PSA predictions as a guide in finding reasonable solu-
tions, it is useful to compare these directly with one
another. Figure 24 shows the relative intensities of the
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TABLE VI. Listing of transition amplitudes according to type as specified in the text: LPW's (low

partial waves), HPW's (high partial waves), VHPW's (very high partial waves), and s/p j =
2 isobar

production waves. Also listed are the fractions of the total cross sections for each collection of waves,

as determined by the fits; the fractions are listed for both solutions as PSA (OPE).

LPW

'D2~ S
Pp ~3PQ
Pl Pl

P2~ P2
F P

3F 5P

F3~ P3
SQ DQ

HPW

'D2~ D2
'D2~ D2
3P, 5F,
P2 F2

3p 5F
3F 3F

F3~ F
3F 5F

F4~ F4
1G 5D

H4~ F4
H4~ F4
H5~ F5
lI 5G

'H, 'H,
H6~ H6

VHPW

lD 56
'G4~'G4
lG 56
'F3 ~'H3
F4~ H4
F4~ H4
H4~ H4
'H4~ H4
H5~ H5

J6~'H6
J7 —+'H7

s/p isobars

Sp~ Pp (s)
Pp~ Sp (s)
Pl ~ Sl (s)

'D2 —+'P2 (s)
Pl ~ Dl (s)
P2~ D2
P2~ D2
F2~'D2 (s)
F2~ D2 (s)
F3~ D3 (s)
'S,-'S, (p)
Pp~ Pp (p)

3p lp (p)
'pl~'Pl (p)
'P2 P2 (p)
F2 P2 (p)

'D2~'D2 (p)
'D2~'D2 (p)

(GeV/c)

1.2
1.5
1.7

LPW

0.937 (0.831)
0.816 (0.804)
0.597 (0.610)

Cross-section fractions
HPW

0.035 (0.142)
0.142 (0.155)
0.345 (0.332)

VHPW

0.001 (0.001)
0.004 (0.004)
0.010 (0.010)

s/p isobars

0.027 (0.026)
0.038 (0.036)
0.048 (0.047)

leading production waves as functions of p~,b, labeled by
initial-state quantum numbers J, S;, and I.;. The PSA
predictions from Ref. 24 for the total inelastic cross sec-
tions are indicated by dashed curves, while our pion-
exchange fits over the pp —+ b, ++n mass interval are
shown as solid curves. Both descriptions predict ap-
proximately the same ranking for the different waves, and
require the 'Dz, F3, and 'Pz cross sections to dominate at
low energies. The disagreements between the PSA and
pion-exchange intensities shown in Fig. 24 are comparable
to those reported in other comparisons between theoretical
model inelasticities and the Amdt et al. PSA (Refs. 46,
51, and 52); there are discrepancies in the relative contri-
butions of 'Dq and I'i, and also in some of the smaller
waves, especially H4 5 6 and Fz. Given these discrepan-
cies, we would not want to constrain the HPW's to agree
precisely with either model, but we would expect the same
approximate ranking of intensities in any viable solution.
We remark that neither the pion-exchange predictions of
Fig. 24, nor any of our PWA fits reported below, violate
unitarity constraints on the partial-wave cross sections [cf.
Eqs. (33) and (34)].

Finally, we note that small systematic uncertainties
were included in the joint-moments fits. These were
meant to reflect the uncertainties in the fixed p-isobar
contributions; they were also meant to allow for coherence
effects due to possible wave-to-wave differences in M +p7T

dependence (our moments are averaged over M +). We
P77

note also that we tested all solutions for continuity by in-

terpolating the joint moments in p„band refitting in 100-
Me&/c p~,b intervals; this is the basis for the continuous
fitted curves in Figs. 19—23.

B. Fitting strategies

We concentrate on two general fitting strategies, re-
ferred to as "PSA" and "OPE" (one-pion-exchange) fits.
In the PSA fits, the LPW intensities ('So, Po i i, 'Dz, and
Fi waves) were constrained loosely to agree with the PSA

of Ref. 24, as displayed in Fig. 24. The HPW s were ini-
tially taken from the pion-exchange model, after rescaling
the 'G4, 'I6, F4, and H456 pion-exchange waves to
agree with the PSA intensity predictions; these HPW
starting values were optimized separately from the
LPW's, and then smoothed to be monotonic functions of
p&,b. The resulting HPW's used in the PSA fits are plot-
ted in Fig. 25; for comparison, the original pion-exchange
values for the HPW's are shown in Fig. 26. The relative
phases (0' or 180 ) are generally similar for the two sets of
waves and refiect the pion-exchange helicity structure.
The continuity test for the PSA solutions is illustrated in
Fig. 27, which shows the real and imaginary parts of the
LPW's in 100 MeV/c intervals. We note that the
'So~ Do transition (not shown) turned out to be small
and poorly determined; it was set to zero in the final PSA
fits. Also, we performed the PSA fits only for p&,b & 1.7
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FIG. 26. Real parts of high partial waves for pp~A++n
from the pion-exchange model.

GeV/c, where the elastic PSA constraints are expected to
be reliable.

The second class of solutions, the OPE fits, did not uti-
lize the PSA intensities directly. Instead, estimates of
Ao.L and Ao. T for pp~hN were included in the fits to
help constrain the partial-wave cross sections. We discuss
the determination of Ao.L and hoT from the elastic PSA
and p,p, ~vr+d data below (Sec. VII D). We note here
that Ao.L T depend only on the partial-wave intensities, ex-
cept for interference contributions associated with
coupled-triplet waves ( Pz Fz, F~ H4,—etc.). We-
have used PSA estimates of the coupled-triplet terms as
separate constraints in the OPE fits. Since these con-
straints are model dependent and (unlike total herl T) not
subject to direct measurement, we have performed fits
with and without the coupled-triplet constraints (OPE and
OPE-2 fits, respectively).

In the OPE and OPE-2 fits, the HPW's were varied
freely along with the LPW's, and no attempt was made to
smooth the HPW's except that the large 'G4 and Hq
waves were fixed by the pion-exchange model. The fitted
HPW's showed some scatter, but were qualitatively simi-
lar to the PSA results. The overall intensity breakdown
for LPW's, HPW's, VHPW's, and non-6 contributions for

the OPE and PSA fits are compared in Table VI. The
HPW cross section for the OPE fits is larger at 1.2 GeV/c
than would be expected from either the elastic PSA or the
pion-exchange model; despite this, the LPW's turned out
to be fairly similar for the OPE and PSA solutions at all
energies. As a further variant, we repeated the OPE-2 fits
using the HPW's fixed by the pion-exchange model (cf.
Fig. 26). These fits (OPE-3) gave worse X 's but the
LPW's turned out to be quite similar to those of OPE-2.

Figure 28 compares the relative intensities of the lead-
ing waves for the OPE (data points) and PSA (smooth
curves) solutions. Within errors the results are quite simi-
lar for the two solutions. If anything, the agreement is
better than the theoretical comparison shown in Fig. 24
between pion-exchange and PSA intensity predictions. As
in the PSA fits, the 'So wave (not shown) turned out to be
small (&1% of the total) in all of the OPE fits. The
OPE-2 fits, with no coupled-triplet constraints, gave sys-
tematically lower F3 and higher F2 intensities than the
OPE values shown in Fig. 28.

We note that in both OPE and OPE-2 solutions, the
'D2 and F3 fractional intensities fall smoothly for
pI,b) 1.5 GeV/c, compensated by increasing P2, 'G4,
and H4 5 intensities. We would expect to obtain larger
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from the higher-energy Saclay-Geneva elastic PSA {Ref.
25) were imposed on the fits.

Figure 29 shows the LPW phases for the PSA and OPE
solutions. The solid curves depict the results of the
continuity-test fits. The only major differences between
the OPE and OPE-2 results occurred in the 'D2 and P2
phases, and the behavior of these OPE-2 phases are shown
as separate dashed curves in Fig. 29(j) and 29(o). As noted
above, the OPE-3 results (using pion-exchange values for
the HPW's) were very close to those shown in Fig. 29 for
OPE and OPE-2. Although some of the waves (especially
F2) tend to be poorly determined, the behavior of the

larger waves is similar for the PSA and OPE solutions.
In particular, the 'D2, F3, and Po ~ 2 phases are generally
stationary or clockwise rotating. with increasing p~,b.
Near threshold, the phases are somewhat different for the
PSA and OPE solutions, with the 'D2 wave executing a
stronger clockwise phase variation above 1.2 VeV/c for
the OPE solutions.

Table VII lists the fit X 's for the various PSA and
OPE solutions. The solid curves in Figs. 19—23 illustrate
the OPE solutions for the joint moments.

0 4 j i j I l l I I

1.2 1.6 1.2 1.6

PI h (GeV/'C)

FIG. 27. Real and imaginary parts of low partial waves in
pp~h++n obtained in "PSA" fits in 100 MeV/c intervals us-
ing p1,b-interpolated moments for continuity testing; normaliza-
tion is consistent with Eq. (33).

C. Ambiguities and overall phase behavior

To search for discrete ambiguities, we experimented
with random LPW phases in the starting values for the
fits. At the 1ower energies we can generally obtain one
variant solution for each fitting strategy; the differences
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proton initial states for "PSA" fits (smooth curves) and "OPE'*
fits (data points) plotted against p1,b.

FICx. 29. Phases for low partial waves obtained in "PSA"
(a)—(i) and "OPE" {j)—(r) fits. Solid curves depict the continuity
test results in each case. The dashed curves in (j) and (o) indi-
cate phases from *'OPE-2" solution, obtained by relaxing the
constraint on the coupled-triplet spin correlation.
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TABLE VII. Values of g per degree of freedom for "PSA" fits and three variants of "OPE" fits
described in text. The P refers only to the joint-moments contributions; the number of degrees of free-
dom includes the subsidiary constraints imposed on the different fits. For the "PSA" solutions we have
not counted the HPW's as parameters; these were optimized by separate fits as described in the text,
then fixed in fits for the LPW's.

P lab

(CxeV/c)

1.2
1.5
1.7
2.0

"PSA"

85/51
49/68
87/68

c4OPE%$

32/28
28/45
68/45
68/45

ccOPE

No coupled-
triplet

constraint

30/27
24/44
52/44
67/44

"OPE-3"
HPW
fixed

126/47
138/64
141/64

lie mainly in the behavior of the Pz~ Pz and Fz~ Pz
phases near threshold and are roughly comparable to the
differences between the PSA and OPE results for these
waves in Fig. 29. We would therefore regard the thresh-
old behavior of these (small) waves as poorly determined.
Otherwise we do not find viable solutions which differ
significantly in the behavior of the larger waves.

To understand better the sensitivity of the fits to the
overall phases, we repeated the OPE fits at each p&,b, fix-
ing the 'Dz~ Sz phase at discrete values and fitting the
remaining waves as functions of the phase, P('Dz). We
verified that the behavior of fit X vs P('Dz) was con-
sistent with the errors on the 'Dq~ S2 phases shown in
Fig. 29. These fits generated a continuous family of solu-
tions at each energy characterized by the values of P('Dz).
We noted above that the PSA solution gives a lower value
for the 'Dz~ Sz phase at 1.2 GeV/c than any of the
OPE solutions. It turns out that the PSA solutions at 1.2
GeV/c (both the LPW and HPW values) lies very close to
the OPE family of solutions, with the lower value of

Figure 30 shows the best fit results for the 'D2~ 52
phases versus p1,b for the PSA and OPE, OPE-2, and
OPE-3 solutions. The error bars at 1.2 and 1.5 GeV/c in-
dicate the 95% confidence limits (bX =3.84) on P('Dz)
from the OPE solutions. Also shown is a hypothetical
Breit-Wigner phase, based on 'D2 resonance parameters
suggested by Yokosawa' (M =2. 155 GeV, 1 =0. 1 GeV).
Setting P('Dz) to the Breit-Wigner value at 1.5 GeV/c in-
creases the OPE fit 7 by 22 for one degree of freedom. It
is clear that none of the solutions suggest Breit-Wigner
behavior. In the case of the PSA and OPE-3 solutions,
one might argue that the 'D2~'S2 phase is constrained
by the model dependence of the HPW's. In the OPE and
OPE-2 solutions, the assumptions made on the HPW's are
fairly minimal (they are taken to be relatively real) but the
solutions for P( Dz) still exclude Breit-Wigner behavior.

200

150

100—
V3

50
OPE —3
OPE —2—

PSA
OPE

1.2 1.6

Pl b (GeV/'C)

III, would be desirable for the PWA, and measurements
have been reported at very low energies. For our analysis
we used values of inelastic b,err T predicted by the PSA of
Ref. 24; we corrected these explicitly for pp~~+d contri-
butions, using available A„,A„~,and 3 data from Refs.
54—56 and differential cross section data from Refs. 3
and 57. To use the corrected b.o.L T in our fits, we made
the assumption that the ratios Ao.L T/o. should be the
same for the 5++-band p~+n final state as for the total
XX~ final state. The first Legendre coefficients of Table

D. Use of haL, and Ao. T constraints

We comment briefly on the use of Ao.L and Ao. T con-
straints in the OPE fits. In principle, a complete set of
spin correlations for p„p,~p~ n, as classified in Table

FKJ. 30. Phase of 'D2~'52 vs p~,b for "OPE" (lower solid),
"OPE-2" (upper solid), "OPE-3" (upper dot-dashed), and
"PSA" {lower dashed) solutions. Double solid curve depicts
nominal Breit-Wigner behavior. Error bars indicate 95% confi-
dence limits from "OPE" fits at 1.2 and 1.5 GeV/e.
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III can then be related to b,err r/oas.

kol /o = —8[aoo(A p»)+aoo(& p33)],

b,oT/cr= —4[aoo(& p~~)+aoo(~ p33)

+aoo(A p„)+a (& pp, )] .

(43a)

(43b)

Our estimates for the various Ao.l T components are listed
in Table VIII, together with the OPE-fit results. Similar
estimates below 1.2 CreV/c have been given by Aprile-
Giboni et al. The estimates given by Auer et al. for
inelastic AaL are systematically higher than ours, but are
not inconsistent with our fit results.

The elastic PSA also predict the coupled-triplet in-
terference contributions to b,o L and b o T involving
P2 —F2 and F4 —H4 waves. In the notation of Arik

and Williams, these interferences can be expressed in
terms of parameters IJ",

bo T =2 +IJ",
J

herl ———4 g IJ,
J

where

(44a)

(44b)

I2 —— [J(J+1)]'~ g( Pp~i)( F~~i)",
k~

(44c)

and so on for J=4,6, . . . . The IJ can be separated fur-
ther into elastic and inelastic pieces, corresponding to the
final states i, in Eq. (44c). The PSA also predict the total
IJ by unitarity, viz. ,

Iz —— , [J(J+1)]' Im('P2~ F2)pp pp .
k

(45)

The PSA predictions for inelastic IJ then follow by sub-
traction of elastic [Eq. (44c) with i = proton-proton] from
total [Eq. (45)]. The inelastic contributions to b,o.l T from
pp~AN can be deduced from Eq. (44) or equivalently
from the first Legendre moments involving P2 F2 in-—
terferences in Table III. The results for the Pz F2-
waves are given in Table VIII for PSA predictions and fit
results. With no coupled-triplet constraints, the OPE-2
fits differ markedly from the PSA predictions at 1.5 and
1.7 CxeV/c. With (loose) constraints, the OPE fits agree
with the PSA within reasonable systematic uncertainties.
We note that the PSA predictions depend sensitively on

several fine details, notably the P2 and F2 inelasticities,
the mixing angle e, and the phase-shift sum

5( P2)+5( F2); our OPE-2 fits indicate somewhat dif-
ferent inelasticities for these waves than the PSA.

E. Comparison of pp ~pm. +n and pp ~m.+d partial waves

We turn lastly to comparison with the pp~~+d partial
waves reported by Bugg. ' Bugg's analysis utilized high-
quality data on single-spin asymmetries A~, and iT» and
two-spin correlations A~ Ayy Azz and A~, . A priori,
we would not expect the relative intensities of the dif-
ferent partial waves to be identical in pp ~hN and
pp~m+d, for reasons given in Sec. VA; however, we
might expect the dependence of a given partial-wave
phase on p&,& to be similar for the bound and free nucleon
final states.

That the partial-wave intensities differ for the two reac-
tions can be inferred from the gross behavior of hoL/o.
and b,o T la. in Table VIII. The ratios Aol Tlcr are bigger
for the n.+d final state then for the remainder of the in-
elastic cross section, suggesting a stronger singlet com-
ponent in ~+d than in AN. This is consistent with the
PWA results; the D2 intensity is —40%%uo at maximum in
our pp~hN fits, compared with -60% for pp~m+d.
This difference is more or less as expected. First, the
angular-momentum selection rules favor singlet states in
pp~m+d, as discussed in Sec. VA. Second, deuteron
production requires M + in Eq. (39b) to be close to the

P7T

upper kinematic limit, where L/ ——0 (e.g. , 'D2~ S2) tran-
sitions should be enhanced. In this connection, we note
that A~ Ayy and A~, reported by Shypit et al. for
p,p, ~pm+n at lower energies, tend also to approach ex-
trema (A = —1) near the M + kinematic limit.' P7T

Similarities in the phase behavior for pp ~m+d and
pp~AN might be expected with the following caveats.
First, some explicit M + dependence may be expected in

P77

the pp~A++n partial-wave phases, for example, from re-
flections of the 6+p isobars; this would affect deuteron
production through the kinematical condition on M + of

+ P77

Eq. (39b). Second, the s-wave pnisobar .contributions,
which are isolated in pp —+p~+n through the p, ~,p, ~

ob-
servables, cannot be separated in pp~~+d; they are ex-
pected to be most important for the P& transitions, which
allow overall LF ——0 for the (p~+), n isobar —pairing.
Despite these caveats, the comparison of A», (pp~m. +d)
and P~p„~ (pp~bN) in Sec. I V suggests qualitative simi-
larities in the phase behavior of the larger waves.

In the pp~m. +d PWA (Ref. 61), it has been customary
to include explicitly the 6++~p~+ Breit-Wigner phase

TABLE VIII. Values of Ao.L, T and ho/o. used in PWA fits for inelastic (in), pp~m d, and pp~NNm", values of hoL T/o in

parentheses show "OPE" fit results. Also listed are the coupled-triplet contributions to AoT/o(2I2/cr) used in fits; values in

parentheses refer to OPE and OPE-2 fit results obtained, respectively, with and without the coupled-triplet constraints.

p lab
in ho. 'T" md g md

(CseV/c) (mb) (mb) (mb) (mb)
KdoL ao T' XNw

OL
NNm.

oT 2Ip

1.2
1 ' 5
1.7
2.0

3.2
—6.7
—4.0
-0

8.0
5.0
4.8
4.5

2.7
-0.2
-0
-0

3.7
—1.0
-0.5
-0

0.87
-0.25
-0
-0

1.19
—1.25
—1.0
-0

+ 0.06 (0.09)
—0.34 ( —0.28)
—0.20 ( —0.04)
+ 0.02 (+0.17)

+ 0.53 (0.50)
+ 0.20 (0.18)
+ 0.22 (0.23)
+ 0.21 (0.26)

—0.03
—0.07
—0.07
—0.08

(+ 0.02, + 0.13)
( —0.04, + 0.16)
( —0.02, + 0.09)
( —0.06, —0.02)
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appropriate to the AN intermediate state, so that all
pp~~+d waves are assigned a looping behavior on the
Argand plots. In our pp~A++n PWA, we have shown
production wave phases (i.e., without the common
b, ++~pm. + decay phase). Thus, to make comparisons
between the two reactions it is convenient to compare rel-
ative phases using the 'D2 as a reference wave. In Bugg's
analysis seven LPW's were fitted (ao, . . . , a6 ——'So, P&,
'D2, P&, 'P2, F-2, and F3); the HPW and the phase of
'Dz were constrained by theory. Figure 31 compares the
relative phases for F3, P &, P2, F2, 'G4, and H5 for
Bugg's analysis and our PSA solution, using 'D2 as a
reference in each case. In this comparison we have (a) ro-
tated all odd-parity pp~hN waves by 180 to accommo-
date the phase conventions of Ref. 52, and (b) rotated
a3 ——3P& by 180'.

There are inherent ambiguities in this comparison in
that the P&, P2, and F2 waves allow two lowest orbital
final states in pp~hN (Sf ——1,2) compared with one in
pp~7r+d (Sf——1). For P2 and F2 this ambiguity is
resolved by noting that the Sf——2 pp~hN transitions
contribute mainly to helicity- —, 5 production and are

—Ay, -Im'D2 F3

A, -Re'D& F3

(46a)

(46b)

therefore not important as intermediate states in
pp~~+d. For P& we have simply displayed all four
waves: P, ~ S, (a~) and P, ~ D, (a4) for pp~vr+d,
and P& ~ ' P1 for pp ~A++n.

Figure 31 indicates that the relative phases of the larger
waves vary slowly with p~,b for both the AN and ~+d fi-
nal states. An exception to this is the clockwise motion of
the P& phase in pp~~+d above threshold, a behavior
which Bugg ' attributes to the p~+ s-wave isobar contri-
bution expected for this wave. Overall the level of agree-
ment between the two solutions is fairly good.

The combination of AN and m+d data extends the di-
baryon study from threshold to above the F3 peak. Also
important is the fact that the pp~~+d PWA is con-
strained by two-spin correlations, especially A„,. The Ay,
and A, correlations are closely related, as indicated in
Table III (cf. P~p~~ and A„,p~~). For example, with only
'Dz and F3 waves we would have
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so that comparison of Ay, and A„,would help to deter-
mine more precisely the quadrant for the F3 —'D2 rela-
tive phase in the absence of other waves. Experimentally,
Ayo and A are generally opposite in sign for pp ~m. +d
above 1.1 GeV/c (Refs. 54, 56, and 62) indicating like

signs for Im'D2 F3 and Re'Dz F3. Also the ratio

~
A„,/A~,

~

generally increases with p~, b, suggesting an
asymptotic limit of —180 for the F3 —'D2 relative phase
(0' with Bugg's phase conventions in Fig. 31). Both of
these features emerge naturally in our pp~A++n solu-
tions without benefit of A„,data. The asymptotic phase
behavior is consistent with the pion-exchange model;
unnatural-parity exchange at high energies requires 180
relative phase between the singlet and uncoupled triplet
waves ( D2 ——F3, G4 ——Hq, etc.).1 3 1 3

F. Summary
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FIG. 31. Phases of low partial waves relative to 'D2 wave for
pp~~+d from Bugg (Ref. 61, open points) and pp~A++n
("PSA" solution, solid points). The P l phases in (c) refer to a

&

(open squares), —a 3 (open diamonds), P
&
~ P

&
(solid squares),

and PI~ PI (solid diamonds). The pp~~+d phases in (e)
refer to 'G4 (open squares) and 'H

& (open diamonds); for
pp~A++n, the 'G4 and H5 relative phases are identical (solid
squares). In (b) and (d) the pp~A++n phases refer to 'P2~'P2
and F2~'P&, respectively.

We have presented PWA solutions for pp~A++n us-

ing the joint moments from this experiment and con-
straints based on the elastic PSA and Ao.L and Ao.T. The
behavior of the relative phases of the larger partial waves
appears to be similar to pp~p~+n and in pp~~+d; the
relative phases vary only slowly with p~,b and do not sug-
gest Breit-Wigner behavior in any single wave from below
the 'D2 to above the F3 peaks. The absolute phases in
our solutions depend on the treatment of the HPW and
are less well constrained close to threshold. However, all
of the larger waves rotate clockwise in our solutions,
whether we constrain the HPW's to be smooth functions
(PSA and OPE-3 solutions) or allow the HPW's to vary
freely (OPE and OPE-2 solutions). We find no evidence
for the counterclockwise phase motion expected for
coupled-channel Breit-Wigner resonances.

VIII. SUMMARY

We have presented density-matrix elements and single-
spin correlations for p,p ~p~+n from 1.18 to 1.98
CxeV/c based on total statistics of 2.4&&10 events. We
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have focused on the two-body process pp~b, ++n, al-
though our analysis allows for non-b, ++ backgrounds.
The description that we have used is kinematically corn-
plete in that it separates explicitly the dependence on pro-
duction (6~) and decay angles (8,$) for pp~b, ++n. We
have displayed the DME's and SSC's directly as functions
of production angle and I +, and in a compact form us-

P77

ing joint moments which summarize the 6~ dependence.
The joint moments can be conveniently related to the
partial-wave expansion, and we have presented forrnalisrn
and numerical relations needed to interpret 0-, 1-, and 2-
spin correlations. We have used the joint moments, aver-
aged over 5++ mass, as input to partial-wave analysis.
Our results, combined with similar analysis on pp~m+d,
allow model-independent conclusions on the nature of the
"dibaryon resonance" candidates.

In conjunction with small- t measurements on

p,p~b, ++n made with the same apparatus from 3 to 12
GeV/c (Ref. 2), our data provide a detailed picture of
pp~b, N from threshold to high energies. Over this ener-

gy range the spin-averaged observables show only gradual

p&,b dependence, and the features of the DME's at small r

are similar to those in other reactions dominated by ab-

sorbed pion exchange. The single-spin asymmetries, on
the other hand, show some dramatic energy dependences.
The overall production asymmetry A~(p„p~b, ++

n) is

substantial at all energies; at maximum, Ay varies from
+ 40% near threshold to ——35% above 1.7 GeV/c,

remaining generally negative up to 12 GeV/c. Using the
SSC's to separate helicity- —, and helicity- —, 6 production,
we find that the helicity- —, component of Ay falls gradu-
ally with p~,b, going from generally positive below 2
GeV/c to negative at higher energies; the low-energy
behavior mirrors the production asymmetry in

p,p~~+d, as expected on kinematical grounds. We find
that the helicity- —', production asymmetry changes sign
between 1.2 and 1.5 GeV/c and remains negative at high
energies; this component tends to dominate Ay for large
production angles. The SSC's also project out various
helicity- —, and helicity- —, interference terms, all of which
appear to evolve smoothly with p&,b from threshold to
high energies.

We have considered several mechanisms which can lead
to nontrivial amplitude phases, and hence to nonzero spin
correlations. For example, the different isobar phases
(given approximately by the mN elastic phase shifts) are
expected to lead to interference effects between the dif-
ferent final-state configurations pp~b++n, pp~A+p,
and pp~(pm+, J = —,

—)n. However, we find that the
magnitudes of these effects are small and that the bulk of
the spin dependence must be attributed to interference of
different production waves for pp~5++n. Overall, the
behavior of the SSC's seems to require a fairly complex
phase structure in the pp ~AN waves.

We have explored several approaches to partial-wave
fits, obtaining similar results in all cases. Our solutions
incorporate features which are expected on physical
grounds. (1) The high partial waves are constrained to be
relatively real and serve as a phase reference; their relative
signs are generally consistent with absorbed pion ex-

change, as required for unnatural-parity-exchange domi-
nance of the helicity amplitudes at small t. (2) The inten-
sity distributions of the large waves are similar to predic-
tions from the elastic PSA. Also the fitted values of in-
elastic Ao.L and ho. z-, which are sensitive to the partial-
wave intensities, are consistent with the PSA and with ex-
perimental spin-correlation data. (3) The relative phases
obtained in our PWA show similar p&,b dependence as
found in pp~m+d (Ref. 61); we would expect the larger
pp~bN transition phases to be similar for free and
bound pn~+ final states.

The main results of the PWA fits are that the low par-
tial waves, involving S- and P-wave AN final states, gen-
erally rotate clockwise with increasing p~,b (in a sense op-
posite to Breit-Wigner behavior). Similar clockwise phase
variation also characterizes those S and P waves that have
large phase shifts in elastic nucleon-nucleon scattering,
namely 'So, S&, Po, 'Pl„and P~. Thus, our results sug-
gest at least a generic similarity between the large waves
in NN —+NN and NANNA. Neither the absolute nor the
relative phases suggest Breit-Wigner behavior in any of
the large AN waves. In particular, we conclude that the
'D2 and F3 waves do not involve coupled-channel Breit-
Wigner resonances; if anything, the behavior of these
waves may indicate hN virtual bound states, which would
account for the resonancelike phase variations observed in
pp~pp. While these conclusions are generally consistent
with conventional dynamical interpretations of dibaryons,
more detailed understanding of the pp-AN coupled waves
will require high-statistics data, including two-spin corre-
lations, over a finer grid in p~,b.
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APPENDIX A

We have developed a parametrization based on the Wil-
liams model ' to describe the pion-exchange amplitudes of
Fig. 4(a) at higher energies. In this model the production
amplitudes are relatively real except for the s, p, and 6

i5-(
isobar phase factors given by single '. The rnode1 de-
scribes the spin-averaged DME's from 3 to 12 GeV/c
fairly well with seven parameters; it also predicts the
larger s -6 interference spin correlations Py p, &

and

P„p, &
correctly. It does not explain the large values of

Ay and other spin correlations because it allows only
Ims*h and Imp*A interferences and ignores Imp*A con-
tributions, due to the assumption of relatively real
production phases.

We have extrapolated the parametrization to lower en-
ergies and have carried out five-parameter fits at each en-

ergy to the DME's p», p33 p3] and p3 &. The model
correctly predicts that the partial waves 'D2, F3, and P2
should dominate the low-energy cross sections, as a conse-
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quence of the helicity structure of the pion-exchange am-
plitudes. Although the model is clearly a very crude ap-
proximation, it may be adequate to describe the smaller
amplitudes, namely the s- and p-wave isobar production
and the high partial waves for b production.

The parametrization is described in Ref. 2. Briefly, we
decompose the helicity amplitudes used in Eqs. (27)—(30)
into Born terms and absorptive corrections:

MA'b MA'b MA. b
Az z =Az z (Born)+. A~ z (abs) . (A 1)

The Born terms take a simple form in the t-channel
frame:

which can be calculated from the crossing matrices. At
high energies, the Williams model gives the s-channel ab-
sorptive corrections in Eq. (Al) as

A~~~z~~ ~~z~(s-ch abs)=C(3/z)e F(M +),(3/2)(1/2) Bt'

A~ &&z~~~~z~(s-ch abs)=C~ »z~e F(M +) .( —1/2)( 1/2) Bt'

(A5a)

(Asb)

Our parametrization is a little more flexible and amounts
to the ansatz

A~&&z~~»z~(Born)= z
e F(M +),(1/2)(1/2) Bt'

( r+m—') P1T
(A2a) A, ', (abs) —gA ',

&, (abs) =e r SCMF(M + ),
n t n t

(A6)

with

F(M +)=G
2 ' Mm~ kk' p„+V2g+1

sin5JI e
2~s ~q 2

(A2b)
' 1/2

3.60 mb
277mN

(A2c)

Mkb g g MAb
(A3)

where g= —1 for the Born terms (/=+1 for natural-,
—1 for unnatural-parity exchange).

The Born terms do not allow M =+ —, in the t channel
and consequently predict p33 —p31 —p3 1

—0 in the t chan-
nel, contrary to experiment. The t-channel M = —, ampli-
tudes are provided by the absorptive corrections in Eq.
(Al). In the Williams model these corrections ~ive rise to
nonvanishing s-channel amphtudes A (1/2)( 1/2) and

~ ~ (3/2)( /2)

1/2)(1/2) at t'=0; these amplitudes satisfy angular
momentum conservation but would vanish in Born ap-
proximation. For small t', the s-channel Born terms for
these amplitudes have the approximate behavior

Here B and G are taken as free parameters; t'=t t;„;—k
( k') are initial- (final-) state c.m. momenta for
pp~(pm+)n; q is the momentum of the final proton in
the p~ c.m. ; s is the total c.m. energy squared; and 5~I
are the n.+p elastic phase shifts. The other helicity ampli-
tudes are obtained by parity conservation [Eq. (28)] and
by the naturality relation

where B& ——B+ are slope parameters for the natural- and
unnatural-parity exchange amplitudes defined by Eq.
(A3), and S is a scale parameter. The helicities M and Ab,
refer to t-channel helicities while k'„and A, ', refer to
s-channel helicities; Eq. (A6) applies specifically to ampli-
tudes with (M, A,b,k„,k, )=( —,, —,, —, , ——, ) and
( ——,, —,, ——,, —, ) only. For t'=0 the second term on the
LHS of Eq. (A6) vanishes, and with S =1 the ansatz is
equivalent to Eq. (A5). Finally, in order to satisfy the
Pauli principle, the combined amplitudes in Eq. (Al) are
folded about 90' using Eq. (29):

MA.

n b

(A7)

The fitted parameters G, S, B, B+, and B are listed
in Table IV for 1.18, 1.47, 1.71, 1.98, and 6 GeV/c. The
fits used the DME's p», p33 p31 and p3 1 integrated over
the b, ++ band, given by 1.15—1.34 GeV (6 GeV/c),
1.18—1.28 GeV (1.47, 1.71, and 1.98 GeV/c), and
1.16—1.20 GeV (1.18 GeV/c). The crossing factors C3&z
and C 1/2 were evaluated at the center of each mass in-
terval and were not explicitly averaged over M +. We

p&
find reasonable continuity in the fitted parameters with
energy. However, as might be expected, the fit quality is
poorer at the lower energies than for the 3—12-GeV/c
data.

A~~~zw ~~z~(s-ch Born)(3/2)(1/2)
APPENDIX B

= C(3/2) eBt F(M )—t +me. P IT
(A4a)

A~ ~~z~~~~z~(s-ch Born)( —1/2)(1/2)

C( 1/2)
t'

e 'F(M +),—t+mw P tT
(A4b)

where CM are slowly varying functions of t and M +P77

In this appendix we consider interference contributions
between b, ++n and b, +p final states [Figs. 4(a) and 4(b)].
These contributions can be calculated using the Wick
transformation and isotopic spin conservation, without
reference to any specific b-production model. The com-
putations are involved and we only sketch the derivation
here. Our numerical calculations indicate that the single
spin correlations, averaged over the 6++ mass, do not in
fact receive significant 6+-6++ interference contribu-
tions.
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Consider a specific pp~A++n transition amplitude
~~=W~(Jj = 2,1=1,L;,S;,Lf Sf) in the notation of
Eq. (32a). Isotopic spin conservation gives

W(pp~h++n) = Wq(M +),

W'(pp~b+p) = (M +) .

(8 lb)

(8 la)
Combining Eqs. (30) and (35), the associated helicity am-
plitudes for this single wave take the form

A, A, b eJ JjL.S.L STi ~ (pp 6++n)= Wj EDAM i (O, Ba,g)d~i, (8)Fji(M& +)gjii CMg„'g j
M

(82a)

MM'X' X'

D' ~ (0,6,$)D*, „,(0,6,0)dj, (8).

JjL,s, Ljs& qp ~p ~+
Xd~ i (&, )di i (~p)Fjl(M +)g ii CMi

1/2

(82b)

Here j= —', , 1 =1, A, =A,b
—A., ; qz (q„)is the proton (neu-

tron) momentum in the pm. +
( nm+) RF; 6 is the rotation

in the three-body plane that takes the z axis from p + to
p

p +, 0 is the rotation angle in the nm+ RF between p„
and p +, and g„and Xp are Stapp rotations that ensure
consistent helicity axes for Az and X„in (82a) and (82b).
Both amplitudes have formally similar dependence on Ba
and P, which specify the orientation of the three-body de-
cay plane. The variables 8, 0, 7„,Xp, and M + in Eq.
(82b) are "internal" variables in that they can be reex-
pressed as functions of M + and 8 used in Eq. (82a);

p7T

M + and 8 may be regarded as the two independent
Dalitz-plot variables. The Jacobian factor ( qz Q + /p p~+
q„g +)'~ in Eq. (82b) is included to ensure consistency
with Eq. (36); it allows expression of the cross section as
d a/dM +d cos8 rather than do/dp (p being the invari-

p7T

ant phase space associated with the Dalitz-plot variables).
We can recast the pp~h+p amplitudes of Eq. (82b) as

a sum over pp~(pm. +)n isobars of the form of Eq. (82a).
Given an appropriate Breit-Wigner form for F(M +),
the "refiected" waves can be written as

(83)
The reflection coefficients R are complex functions of
M + and can be calculated by comparing (82b) and thep&
general form of (82a). The amplitude on the LHS of Eq.
(83) is the M +-dependent partial wave amplitude for
pp~(pm. )n as used in Eq. (30a); note that L, L;, and S;

p

are the same for the 6+p wave and the (pm. +)n reflec-
tions, but j', 1', LI, and SF for the (pm+)n reflections can
take all values consistent with parity and angular-
momentum conservation.

As an aside, there is inherent ambiguity in the choice of
angles X„,Xz, and 8 in Eq. (82b); an error of 2n. in any of
these would change the overall phase of the b, +p contribu-
tion by 180. We resolve this ambiguity by considering
first the reaction pp~pp~, which has two possible 6+p
final states. For this process, the ambiguities are resolved
by the Pauli principle, which requires even values of
L+S for the final-state protons. We then use isotopic
spin conservation to relate the pp~pp~ isobar contribu-
tions to the desired pp ann. + final states.

We have calculated the reflection matrix as a function
of M + for the hX waves which are expected to be large

p7T

at 1.18 and 1.47 GeV/c (e.g., Lj ——0 and 1 waves). For
kinematical reasons, the relative phase of the b++ and
6+ contributions goes through zero near the center of the
b, ++ band for all waves (we define the center of the b.++
band as 1.23 GeV at 1.47 GeV/c, and 1.18 GeV at 1.18
GeV/c). As a result, Im(b, +'b, ++) contributions to the
spin correlations average to very nearly zero over the 5++
band, although they give small contributions which oscil-
late about zero as functions of M +. For example, we

p77

used the pion-exchange parametrization to specify the rel-
ative real production waves for pp~AN, and computed
the b, +-b, ++ interference contributions to the SSC's; the
values of A~ were less than 2%%uo over all cosBa, averaged
over the 6++ band, and the other SSC's were correspond-
ingly quite small. This result is insensitive to the precise
values assumed in the production waves.

We conclude that the relative Breit-Wigner phases of
the 5++n and b, +p final states cannot by themselves ex-
plain the large spin correlations observed in the data.
Therefore we simply regard the 6+p contributions as
phenomenological backgrounds in the s, p, and
pp~(pm+)n isobar configurations; also, we focus on ob-
servables averaged over the 6++ band so as to minimize
the effect of b, +-6++ interferences.
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