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The covariant oscillator quark model, which was extended recently to include one-gluon-exchange
effects, is applied to investigate the mass spectrum of light-quark mesons. In the meson rest frame
our effective potential due to one-gluon exchange is given as the sum of a Coulomb-type, orbit-
orbit-like, spin-orbit, and hyperfine interaction, and has similar general features as in the standard
nonrelativistic quark model. However, there are essential differences between them. First, our
scheme is manifestly covariant and the potential is concerned with the squared masses of hadrons.
Second, our effective one-gluon-exchange potential is greatly modified due to the covariant nature
and the retardation effect. Owing to these modifications our model reproduces quite well the experi-
mental behavior of the spectra of radially excited states as well as orbitally excited states.

I. INTRODUCTION

Recently there seems to be no doubt that quantum
chromodynamics (QCD) plays an important role as a
theoretical basis for the strong hadron interactions. Actu-
ally the success of nonrelativistic (NR) quark potential
models, being guided by QCD, have become more remark-
able than before, especially for heavy-quark systems. '

They also seem to work well even for light-quark sys-
tems, where the quark motion is highly relativistic.
However, their application should be, in principle, limited
to static problems, such as mass spectra, magnetic rno-
ments, and transition reactions between hadrons with a
small mass difference, reflecting the nonrelativistic char-
acter of the model, where the effect due to relativistic
motion of hadrons as a whole is difficult to include. This
difficulty still remains in the recent semirelativistic at-
tempts which can, by taking into account the effects of
relativistic quark motion properly, describe the spectra of
light- and heavy-quark systems in a unified way. The dif-
ficulty is most seriously seen in treating electromagnetic
processes of hadrons, where it is indispensable to get the
conserved effective currents in terms of "observable" had-
rons themselves, and in doing so the covariant description
of the center-of-mass motion of hadrons is necessary.

This point has been one of the most important motives
for the covariant oscillator quark model (COQM),
where hadrons themselves are unambiguously defined as
Fierz components of multilocal fields (which satisfy a co-
variant equation heuristically obtained), and the conserved
effective hadron currents are given explicitly.

The COQM has a long history of development. How-
ever, it has, thus far developed, such shortcomings as the
fact that (i) the equation of motion was set up quite arbi-
trarily and (ii) the treatment was limited in the symmetri-
cal case where the effects of unequal quark masses and of
one-gluon exchange (OGE) were neglected. Recently we
have improved this situation to some extent. First, by
considering a "prototype" classical mechanics for a con-

II. COVARIANT OSCILLATOR QUARK MODEL

In this section we shall review briefly the COQM so far
as required for our present application. In this scheme
the mesons of quark-antiquark systems are generally
described as a bilocal field (wave function)

N(p) (x),x2),13 (2.1)

where x) (x2) is the Lorentz four-vector representing the
space-time coordinate of a constituent quark (antiquark),
a (P) represents a spinor corresponding to the spin of a
quark (antiquark), and the flavor and color indices are
omitted for simplicity. The respective parts of the wave
function, the spin and the space-time wave function, are
covariantly extended, separately, from the corresponding
parts of the NR one. Concerning the spin part, there have
been proposed two typical ways: the Bargmann-Wigner
(BW) scheme' using Dirac spinors (a,P=1—4), and the
minimally boosted Pauli (MP) scheme" using Pauli spi-
nors (a,p=1,2 and p=1,2, which is needed only in the

fined multiquark system with unequal quark masses, we
have derived a space-time equation of hadrons with some
physical reasons. Second, we have extended the model so
as to include the OGE effects ' in a manifestly covari-
ant way. This scheme has been applied with considerable
success to the analyses of the baryon magnetic moments,
of the radiative transitions of light-quark ground-state
mesons, and of the electromagnetic form factors of
mesons and baryons.

In this paper we shall present the results ' of applica-
tion of this extended scheme to investigation of the light-
quark meson spectra. In Sec. II we give a brief review of
our COQM. In Sec. III we describe how to introduce the
OCHRE effects and give the form of the effective potential.
In Sec. IV we give our numerical results of the meson
spectra and compare them with experiment. In Sec. V we
discuss some specific features to our scheme. In the final
section some concluding remarks are given.
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where m~ (mq) is the parameter corresponding to quark
(antiquark) mass, and the potential U consists of two
parts:

U=Up+Ua . (2.3)

MP scheme). Both schemes give identical results in the
present application, where only the wave function in the
hadron rest frame is considered.

Concerning the space-time part it is supposed to satis-
fy the equation

—U(x i,xz) 4(x i,xz) =0, (2.2)
&

2m;

the very high orbitally excited states, as will be shown in
Sec. IV.

III. COVARIANT ONE-GLUON-EXCHANGE
POTENTIAL

In this section we derive our general formula for the
squared masses of mesons including OGE effects treated
as a first-order perturbation. Since there has not been
developed any established method of covariant perturba-
tion for confined bound systems, we are forced to proceed
heuristically in the following.

Our squared-mass operator of Eq. (2.6a) consists of,
corresponding to Eq. (2.3), two parts:

Here the first term Up is a confinement potential taken to
be a four-dimensional harmonic oscillator, and the second
term UG is a perturbative potential representing the OGE
effects which will be specified in Sec. III. It may be
worthwhile to note that our basic equation (2.2) is natural-
ly derived by considering the classical "prototype" relativ-
istic mechanics for a confined multiparticle system.

Equation (2.2) is rewritten, in terms of the center-of-
mass coordinates and the relative coordinates defined by

P =4(,'+64( ',
where

Mi'p ——dHp ——d — - + Up(x)
Q2

2p

5~//G ——dUG .

For the confinement potential we assume

(3.1)

(3.2a)

(3.2b)

1Xp= (m]x]p +my op)7 xp
——x]p —xpp 7

m~+m2
(2.4) Up ——C+ —,Kx (3.3)

as where C and K are flavor-dependent constants. Then the
unperturbed squared masses are given by

a2
~

—~ (x) 4(X,x)=0
ax„' (2.5) (M ) =(Mp ') +NB, (3.4)

with the squared-mass operator of the form

~ =dH =d — + U(x)
Q2

2p
(2.6a)

with

(M' ') =dC+fl,
m&+m2

Q, =d K
1/2

(3.5a)

(3.5b)

m~m2
d =2(m, +mq), p =

m~+m2
(2.6b)

m&m2

where Ã is the number of excitations and 0 ' gives the
slope of orbital Regge trajectories.

Here it is to be noted that H has a similar form to the en-

ergy of relative motion in the NR potential model except
for now using Lorentz four-vectors instead of three-
vectors.

In order to "freeze" the redundant freedom of relative
time, we suppose the definite-metric-type subsidiary con-
dition' holds for the unperturbed wave function

Ppap+=0, (2.7)

where Pz is the four-momentum of the center-of-mass
motion, and a; (ap) is the creation (annihilation) operator
for internal oscillations. As is well known, the wave func-
tion which satisfies the physical state condition of Eq.
(2.7) is normalizable and gives' the desirable asymptotic
behavior of electromagnetic form factors of hadrons.

Thus our scheme transforms the results of the NR po-
tential model for the linear masses of hadrons to the ones
for squared masses, keeping Lorentz covariance. As an
important result we get linear orbital Regge trajectories,
as is desired, for the squared masses of hadrons in the un-
perturbed limit. We shall see later that the OGE effects
change little the linearity of leading Regge trajectories.
Experimentally this linearity is known to be valid up to

A. Introduction of OGE effects

In order to take into account the OGE effects covari-
antly, we start from the corresponding effective action '

to the OGE potential:

f d'x—,d'x, C ~~, '~, (3.6)

2=d5~4'G =—I („(x))D„(x)—xp)I q (x~), (3.7)

E MI;p ——I; +I;
E / 1

~i@= ~R
2 2m- Qx

(3.8)

(3.9a)

where I;& is a quark-gluon vertex operator, D& is a gluon
propagator, and F is a flavor-dependent constant with the
dimension of mass, which is introduced so as to give the
correct dimension to Eq. (3.6) [note that the factor d in
Eq. (3.7) necessarily comes from our basic equation (2.2)].
For the vertex operator we assume, in analogy with the
conserved effective electromagnetic current of hadrons,
the form
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M A~i hM (t)I;„=—g 2 2ml
Cry'

a a
BX. (3X.

+ (3.9b)
Green's function Dz and Dz,

D(x) = , [D—tt(x)+Dc (x)]=ReDF(x) (3.10)

where the derivative operator is concerned only with + or
N, g is the effective quark-gluon coupling constant, A, '; is
the color-SU(3) matrix, and hM is a dimensionless param-
eter corresponding to the effective quark color-magnetic
moment (in the case of the normal moment, hM ——1).
There can be a large anomalous interaction' due to the
gluon self-interaction, and it may be generally flavor
dependent. ' In Eq. (3.9b) the spin matrices o„'s are de-
fined as

D(x)= — 5(x ),4~

DR(x) = — 8(xp)5(x ) = — 5(r t),—1 1

277 4~r

D~ (x)= — (9( —xp )5(x ) = — 5(r + t ),1 I

277 4nr

(3.1 la)

(3.11b)

(3.11c)

which is equal to the principal part of the Feynman prop-
agator DF. The explicit forms of these functions are

(&) (1)ot v= . [)'t, l'v ], etc. ,2l

in the BW scheme, and
(1) (1) (1) (&) (&)

~lJ ~lJk~k ~ ~i 4 Pl~i ~4i

(where p s and cr s are the Pauli matrices that are mutu-
ally commuting) in the MP scheme, respectivel~ (it should
be understood for an ant&quark o„,~—o&v, A de-(2) (2T T

noting the transpose of A), and @=%y4"y4 ' in the BW
scheme and @=@p3 in the MP scheme. Here the first
(second) term in Eq. (3.8) is just a covariant generalization
of the NR color-convection (spin) current.

As the gluon propagator D„„(x) [ =5„D(x)] we
choose' the mean of the retarded and the advanced

where r=
~

x
~

and t=xp. There are several plausible
reasons for this choice of the gluon propagator: Choosing
the Feynman propagator makes 5~G complex generally,
and the choice D(x) =ReDF(x) seems to be implied by the
gluon confinement. Furthermore, taking the symmetric
combination of Dz and Dz is natural for the physical sit-
uation of confined systems, since for such systems the rel-
ative time may not be observed [the subsidiary condition
of Eq. (2.7) is also consistent with this requirement]. It is
also shown that the invariance under particle-antiparticle
conjugation leads to the symmetric combination.

By substituting the expression of I ~, Eqs. (3.9a) and
(3.9b), into the action of Eq. (3.6) we obtain the squared-
mass operator corresponding to the OGE effects as

~~G ~~GE +~~GEM +~~GM (3.12)

5MoE = f,——' F 4m&m2

BD 0 dD+ + BD+
BX]p OX'

(3.13a)

BD
2 cd~ BX ) BX2p

d ghM
5~oEM =tfc—' F 4m~m2

(2) BD
+Opv

BX2 BX )p

$2D

BX, BX2„
(3.13b)

2 d g M (]) (2) 8 D2h 2

'F 4m "" " t)x (3
(3.13c)

where the factor f, = ——', is due to the color degree of freedom for the singlet qq system, and each term in Eq. (3.12) cor-
responds to the combination of the vertex operators in Eq. (3.8), I I, I I™,and I™l™,respectively.

B. Covariant OGE potential

The unperturbed meson wave function can be written as

4(xi,x2)=¹' ' %(x;P), (3.14)

where X&,x& are the center-of-mass and the relative coordinates defined by Eq. (2.4), respectively, P& is the center-of-
mass momentum, and N is a normalization constant for the plane wave. Then Eq. (3.6) is represented by the internal
wave function 4( Px) as

f d,d, 4( „,;P')5W '@( „,;P)=(2 ) 5'(P —P') ~X ~'d f d' q((;P')U (,B, t);P,P')qi(;P), (3.15)

where P (P') is the momentum of an initial- (final-) state meson and B„=t)IBx„.
By using the explicit forms of the vertex operator [Eq. (3.8)] and the propagator [Eq. (3.10)] in the meson rest frame

we obtain the OGE potential

with

UG UGE + UGEM + UGM (3.16)
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a, (Mo+Mo)
UGp f——, 6(x ) 2+F 4(m)+mz)

2X
Xp BXp

2a

BXp

gz

BXp
(3.17a)

+s 2 ~M
UGzM ='f (o.)+o.z) (VX V ),F 2m )m2

2
hM +- +—

UGM=f. 5(x ) [o).oz(V+ V ) —tr, .(V+ V )oz (V+ V )],' F 4m&m2

(3.17b)

(3.17c)

UG ——U~+ UQQ+ UsQ+ UT+ Uss,

where

(3.18)

(Mo+Mo)
Uc=

2
U

4(m, +mz)
(3.19a)

Uoo =—
m&m2

BU
v +

BXp

1 8 v+
Xp 4 ()X„2

m&m2
vV + — r.V+4V v

1 Bv

r Br

where a, =g /4~ is the strong-interaction fine-structure
constant and Mo (Mo) is the unperturbed mass of an
initial- (final-) state meson. In deriving these expressions
we used the facts that in our covariant spin scheme the
small component of the spin wave function vanishes in
the meson rest frame and that the relative-time wave
function is always in the ground state due to the subsidi-
ary condition Eq. (2.7).

Changing the "left" derivatives into "right" ones by
partial integration we can rewrite the OGE potential into
the familiar form

similar forms to the standard Breit-Fermi Hamiltonian.
In particular, if we take, neglecting the retardation effect,
v(v)=f, a, lr and substitute m&+mz for Mo and Mo in

Uc, then we have the usual Coulomb potential. Further-
more, if we neglect the terms concerning the relative time
in UQQ and take hM ——1 in Uso, UT and Uss, they be-
come identical with the corresponding part due to the
contribution of transverse gluons (y' 'g y'; part) in the
Breit-Fermi Hamiltonian in the Feynman gauge. The
reason why the part due to the contribution of longitudi-
nal gluons (y4"8 @4

' part) is missing, except for the Uc,
in our scheme is that the small component of our spin
wave function vanishes in the meson rest frame, as was
mentioned above. [This part may be important, giving,
for example, the spin-orbit interaction L.(S~ —Sz), which
causes the mixing between the states LJ~'LJ for non-
self-conjugate mesons. ]

Here it is worthwhile to note that, although our OGE
potential has several similar general features, as men-
tioned above, to those in the usual NR potential models,
there are essential differences between them; our scheme is
manifestly covariant and our potential is concerned with
the squared masses of mesons instead of with linear
masses.

1+
m&m2

U + —+—,(3.19b)
a' av a 1a'

Qt 3t 4 Qt2
C. Effective three-dimensional OGE potential

UT ——

1 Bv

m)m2 r Br

hM 1 Bv

12m )m2 r Br
V

S]2
Br

(3.19c)

(3.19d)

pt zlzz( r )y— (3.21)

In the meson rest frame the unperturbed internal wave
function 4 in Eq. (3.14), satisfying the subsidiary condi-
tion of Eq. (2.7), takes the form

1/4

V(x) =
2

hM
Uss = (V U)cr( oz

6m]m2

with

(3.19e)

and

U(x) =f, [5(r t)+ o(r + t)], —' 2Fr
(3.20)

L=L&+L2, L; =r; Xp;, S=S&+S2,
cr &ra.2.r

S —
2 Ol & S]2—3 —0'] 022

The Coulomb-type and orbit-orbit-like interactions, Uc
and UQQ come from UGz, the spin-orbit one Uso from
U~zM, and the tensor and sPin-sPin ones, UT and Uss,
from UGM.

These expressions for the OGE potential have quite

where 13=/pK, g(r) is the eigenfunction of the three-
dimensional harmonic oscillator and PsF is the spin-flavor
wave function, both of which are identical with the corre-
sponding wave functions in the NR harmonic-oscillator
quark model. Then the first-order squared-mass shifts
due to the OGE potential are given by

oMG (f i )=d f d x ql'~ tUGV'x', (3.22)

where X and k' represent the sets of quantum numbers for
specifying the initial and final states, respectively.

By using the expressions for UG and v in Eqs.
(3.19a)—(3.19e) and (3.20), respectively, and working out
the integral over the relative time in Eq. (3.22), we obtain

oMG (f
~

i ) =d f d r p' '*ps„' VGps„'p' ', (3.23)

where
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with

(M(x) +M(N') )2
Vc=—

3(m)+m2)

1/2
e

VG Vc+ Voo+ Vso+ VT+ Vss (3.24)

(3.25a)
G ~Mc +~Moo +~Mso +~MT +QMss (4.2)

The unperturbed squared mass (Mo ') is described by the
parameters (Mo ) and II [see Eq. (3.4)). The first-order
squared-mass shift due to the OCHRE effects 6MG is given
as the sum of

Voo =— 4a, p
3m1m2

r

1/2 2
e

—Pr

4a, hM
Vso =

3m 1m 2

Ag h~
VT ——

m 1m2

1/2

1/2

(3.25b)

1 2+ e ~" L S, (3.25c)r'

+ —pr e
—~'S„,1 4P 4

y 3y 3

+2p r.V —V +vrr5 (r) pr—
2

where 6Mc 5MOO &Mso &MT, and &Mss are the
Coulomb-type, orbit-orbit-like, spin-orbit, tensor, and
spin-s~in mass shifts and are represented, respectively, by
((Mo ),b, , Q), b, hMb„hM 6, and hM b, (the explicit
formulas of 5M~ = d ( U; ) for the relevant states are
given in Appendix B).

Thus the mass spectrum of the mesons with given
quark content is described by the four parameters

(MO ), II, hM, b, —=d5=
9~F (4.3)

All of these parameters may, in principle, depend on the
constituent-quark masses of mesons.

2(x AM p
Vss =

9m, m, ~F2

' 1/2

X 4rr5 (r)+ 4p r e—~" cr, .a~ .
y

(3.25d)

(3.25e)

A. Universality of Regge slopes and spin-spin
splittings, and fixing parameters

Experimentally it is well known that the linearity of the
leading Regge trajectories is extremely well satisfied, and
their slopes, given by 0 ', have the universal value as

A(nn )=O(ns or sn )=II(ss)=1.15 GeV~ (4.4)
Here e, and F were assumed to be independent of the spa-
tial and time separations, y and t, for simplicity. In these

p 2
expressions the factor VP/me ~" for each term of VG

comes from the relative-time wave function, and all the
terms containing p result from the retardation effect (the
factor —,

' [5(r —t ) +5(r + t ) ] in v). We note here that the
explicit potential forms from this effect completely de-
pend on the relative-time wave function.

Thus we see that so far as the mass shifts are con-
cerned, our model formally corresponds to the NR
harmonic-oscillator quark model with replacement

regardless of the quark contents of mesons. In Figs. 1—4
we have shown the Regge trajectories of p, cv, K*, and P
mesons, respectively. As was mentioned in the previous
sections, in our scheme this linearity is rigorously satisfied
in the unperturbed limit and will be shown to change little
even in the perturbed case (see the discussion in Sec. V C).
Thus we take the parameter 0 to be a flavor-independent
constant with the value given in Eq. (4.4). From Eq.

VG for 6MG dVG for 6MG (3.26)
-' M(2750)

Moreover, our three-dimensionally reduced potential VG

is greatly modified as compared with the usual one. The
modification of multiplying the factor e ~' causes our
effective potential to decrease more quickly with the in-
crease of a quark-antiquark separation. The extra terms
due to the retardation effect generally contribute compar-
ably to the usual ones. The Coulomb-type potential Vc is
dependent upon the unperturbed masses of the relevant
states. The quark-mass dependence of mass shifts will
change, reflecting the quark-mass dependence of P, F, and
d. These modifications play important roles to reproduce
the experimental behavior of meson spectra, as we shall
see later.

CL

CL
4'-

0
(f) 3

I

4 5 6

(MASS)' (GeV')
IV. COMPARISON WITH EXPERIMENT

M =(Mo ') +5MG (4.1)

According to the results in the previous sections the
squared masses of respective mesons for all the states of
given quark content are given as

FIG. 1. The p-meson trajectory. The straight line shows our
theoretical Regge trajectory in the unperturbed limit with the
values of the parameters fixed in the text. The solid (dashed)
bars represent the experimental masses of established (not estab-
lished) resonances, and their values are taken from Ref. 17 ex-
cept for M(2750) from Ref. 22.
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6+- 6+-

CC

4+
I

Z'
Q
0) 3 K' (1780)

Ct

o 4+-
I

CL
(Q 3

430) 2'- 25)

4 5 6
(MASS)' (GeV')

FIG. 2. The K*-meson trajectory. The caption is the same
as in Fig. 1 ~

3 4 5 6

(MASS)' (GeV')

FIG. 4. The P-meson trajectory. The caption is the same as
in Fig. 1. The line represents the trajectory for pure ss systems.

(3.5b) this implies that the oscillator constant K in Eq.
(3.3) has the quark-mass dependence

m )m2K=
4(m)+m2)

(4.5)

M (1 Si ) —M (1 'So) =4hM b (4.6)

and the value of

M [p] M[~]=M —[K*]—M [K]=0.563 GeV, (4.7)

Also known is the empirical regularity that the spin-
spin splittings of ground-state mesons M (1 S& )
—M (1 'So) are nearly a flavor-independent constant, at
least for the light-quark mesons as is shown in Table I.

Thus, from the formula

4(m (+mp)
(4.8)

where A is the flavor-independent constant with the di-
mension of (mass) .

According to the above considerations, all the meson
mass spectra of the light-quark systems are described by
the six parameters II, hM, b, (Mo ') (nn ), (Mz ') (ns or
sn), and (Mo ') (ss). We have already fixed two (0 and
hM b, ) of them. As input to determine the remaining four
parameters we take the mass values

dent. The constancy of b, implies from Eq. (4.3),
neglecting the flavor dependence of n„ that F has the
same quark-mass dependence as K:

we fix the parameter hM 6 to be a flavor-independent
constant of the value 0.141 GeV . In the following we
simply assume h~ and 6 to be separately flavor indepen-

M(1 'So , nn ) =M[n']=140 MeV,

M(2 S&', nn) =M[p(1600)]=1600 MeV,

M(1'So, ns or sn)=M[K]=494 MeV,

M(1 S&,ss ) =M[/(1020)]=1020 MeV .

(4.9)

K
4+

Z
CL
K 3

This gives our parameters the values

b,=0.0493 GeV (hM-1. 69),

(Mo ') (nn)=0. 592 GeV

(Mo ) (ns or sn)=0. 849 GeV

(Mo ') (ss)=1.116 GeV

(4.10)

2+-

3 4 5 6
(MASS)' (GeV')

FIG. 3. The co-meson trajectory. The caption is the same as
in Fig. 1. The line represents the trajectory for pure nn systems.

where we have chosen positive sign of h M in order to give
the favorable fine structures to the orbitally excited multi-
plets.

Now, using these values of parameters, we can calculate
the masses of all light-quark mesons. In the following we
shall concentrate our investigation on the "center of gravi-
ty" of the respective multiplets, the spectra of S-wave
mesons and of several orbitally excited-state mesons.
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TABLE I. The universality of spin-spin splittings of the ground-state mesons with various quark
content.

Flavor
composition

nn (I =1)
ns or sn
nc or cn
sc or cs
nb or bn

CC

M (1 S] )-M (1 So)

P
K -K
D ~2-D2
F*2 F2

j/$2 ~ 2

Experiment' (GeV )

0.5664—0.5765
0.5514—0.5567
0.5408—0.5624
0.491—0.647
0.4789—0.6381'
0.6680—0.7408

'From Ref. 17, unless otherwise noted.
Reference 18.

'Reference 19.

B. Center of gravity of multiplets
and general feature of our fitting

To see general features of our scheme in comparison
with experiment we first examine for all the meson states
the center of gravity (COG), or the spin-weighted average,
of the respective multiplets with a definite value of the
principal quantum number N (=2n+L —2) and of the
orbital angular momentum L, which is concerned only
with the confinement potential, and the Coulomb-type
and orbit-orbit-like interactions:

M (n, L)=(Mo ) +5Mc +5Moo (4.1 1)

We have given the calculated values of Mo, 6MC,
6MQQ, and M of the multiplets with X(6 for the nn, ns
or sn, and ss systems, respectively, in Tables II—IV,
where the experimental candidates belonging to the
respective multiplets are also given for comparison. An
overall view of the status of our fit may be obtained from
the corresponding figures, Figs. 5—8, to these tables. In
Tables II and IV (correspondingly Figs. 7 and 8) we have
simply neglected the possible flavor mixings of the iso-
scalar mesons. Furthermore, we have omitted the experi-
mental candidates for scalar mesons from these tables and
figures, because their interpretation is controversial.

By inspecting the tables and figures given above we see
that our scheme reproduces the general feature of the
meson spectra.

C. S-wave states and spin-spin splittings

To compare more clearly our predictions with experi-
ments we examine the S-wave states. Their masses are
determined from the confinement potential and
Coulomb-type, orbit-orbit-like, and spin-spin interactions,
neglecting the possible mixing between the S

&
and D

&

states due to the tensor interaction, as

M2(~ 2s+1L
) (M(x) )2+ 5M 2+ 5M 2+ 5M 2 (4 12)

(X=2n —2). We have given the calculated values of
mass M and 6Mss of these states with X(6 for each qq
system, together with the present experimental mass
values in Table V. The values of Mo, 5Mc, and 6MQQ
were already given in Tables II—IV. The situations are
also shown in Figs. 9—11.

From these tables and figures we may say that our
scheme is satisfactory as far as the present experiments,
even though poor, are concerned.

D. Several orbitally exited states,
and fine and hyperfine splittings

+&MT'+ ass' (4.13)

where we have neglected the possible mixing due to the
tensor interaction. Here it is to be noted that in our
scheme the "asymmetric" spin-orbit interaction, which is
responsible for the mixing between non-self-conjugate
mesons, is missing, as was mentioned in Sec. IIIB. On
the other hand, it is to be noted that in our scheme the
contribution of the spin-spin interaction exists for orbital-
ly excited states, reflecting the retardation effect. We
have given the calculated value of the mass M, 5MsQ
5MT, and 6Mss for the states of 1P, 1D, 2P, 1F, 2D,
and 3P multiplets for each qq system, together with the
mass value of the present experimental candidates, in
Table VI.

We find that the predicted mass of Po states is much
lower than that of other members of the same multiplets.
Although the interpretation of the known scalar-meson
resonances is controversial, it is interesting that our
predicted mass of the scalar meson with nn components is
quite close to that of 5(980) and/or S(975). From this
table it seems that our predicted sign and order of magni-
tude of the spin-orbit and the tensor interactions are con-
sistent so far as the present experimental data are con-
cerned.

V. SOME SPECIFIC FEATURES OF OUR SCHEME

In this section we discuss some specific features to our
scheme.

We now turn to the investigation of the fine and hyper-
fine structures of orbitally excited multiplets. These
structures are determined by the spin-orbit, tensor, and
spin-spin interactions. The mass of the states belonging
to these multiplets is given by

M (n +'LJ)=(MO ) +5Mc +5Moo +5Mso
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TABLE II. The centers of gravity of the nn-meson multiplets. The unperturbed squared masses and the Coulomb-type and orbit-
orbit-like squared-mass shifts are also given. The experimental candidates of the isovector mesons and the isoscalar ones (with mainly
nn components) are listed on the upper and lower sides, respectively.

Level
Mo

(aeV2)

0.592 —0.076

6Moo
(ueV')

—0.074

M
(MeV)

665

1L

137.3+2.3

548 ~ 8+0.6

Experiment' (MeV)
Lr L 3L

p(770)
769+3
co(783)

782.6+0.2

1P 1.742 —0.075 —0.099 1250 B(1235)
1234+ 10
0(1190)
1190+60

A(1270)
1275+30
D(1285)
1283+5

~,(1320)
1318+5
f(127O)
1274+ 5

2S 2.892 —0.310 —0.259 1520 w(1300)
1300+ 100
9(1275)
—1275

p(1600)
1590+20

1D 2.892 —0.050 —0.059 1670 2 (1680)
1680+30

g(1690)
1691+5

co(1670)
1668+5

4.042 —0.190 —0.217 1910

1F 4.042 —0.030 —0.034 1990 A(2050)
2080+ 40

6(2040)
2037+ 5

A(2030)
2027+ 12

3S 5.192 —0.495 —0.410 2070 ~(1770)
1770+30

p(2150)
-2150

5.192 —0.121 —0.134 2220 A (2100)
2100+ 150

p(2250)
-2250

1G 5.192 —0.017 —0.019 2270 p(2350)'
-2350

3P 6.342 —0.300 —0.326 2390

2F 6.342 —0.075 —0.082 2490

6.342 —0.009 —0.010 2510 5(2450)
2450+ 130

r(2510)
2150+30

4S 7.492 —0.655 —1.202 2370

7.492 —0.005 —0.006 2740 M(2750)
2747+ 32

'The experimental masses, which are taken from Ref. 17, unless otherwise noted, are shown under the respective particle names.
This meson is a strongly mixed state of the nn and ss components.

'There is another candidate for the 1 'G& state; see Ref. 21.
Reference 22.
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TABLE III. The centers of gravity of the ns- or sn-meson multiplets. The unperturbed squared masses, the Coulomb-type and
orbit-orbit-like squared-mass shifts, and the experimental candidates are also given.

Level

1S

Mo
(CseV )

0.849

Mc'
(Cev')

—0.109

5Moo
(QeV )

—0.074

M
(MeV)

816

1L

K
495.7+2.1

Experiment' (MeV)
L LL 3LL+1

K*(892)
894+3

1P 1.999 —0.086 —0.099 1350 Q(1400)
1406+ 10

Q(1280)b
1270+ 10

K*(1430)
1425+5

2S 3.149 —0.337 —0.259 1600 K(1400)
—1400

K (1650)
—1650

1D 3.149 —0.054 —0.059 1740 L(1770)'
—1770

K *(1790)"
1786+ 12

L(1580)'
—1580

K*(1780)
1780+ 10

2P

1F

4.299

4.299

—0.203

—0.032

—0.217

—0.034

1970

2060 K (2060)
2060+30

3S 5.449 —0.519 —0.410 2130 K(1830)
—1830

2D 5.449 —0.127 —0.134 2280 K(2250)'
2247+ 18

1G

3P

5.449

6.599

—0.018

—0.312

—0.019

—0.326

2330

2440

2F 6.599 —0.078 —0.082 2540 K(2320)'
2324+25

1H 6.599 —0.010 —0.010 2560

4S 7.749 —0.678 —1.202 2420

7.749 —0.005 —0.006 2780

'See footnote a of Table II.
These mesons are mixtures of the 'P~ and P, states

'These mesons are possibly mixtures of the 'D2 and D2 states.
Reference 23.

'This meson is possibly a mixture of the 'F3 and 'F3 states.

A. Spin-spin splittings

We have already discussed in Sec. IVA that the re-
markable experimental regularity of flavor-independent
spin-spin splittings of the ground-state mesons is incor-
porated naturally in our scheme. We can derive another
interesting flavor-independent sum rule between the spin-
spin splittings of the ground states and their first radially
excited states as

M (2 Si)—M (2 So)
2 3 2 1M (1 S, ) —M (1 'So)

(5.1)

which is related mainly with the nature of unperturbed os-
cillator functions at the origin. Our spin-spin potential

consists of the two parts of the pointlike interaction and
the interaction due to the retardation effect [see Eq.
(3.25e)]. If we neglected the latter, the second and third
term in Eq. (3.25e), the ratio R would become equal to —,,

and the retardation part gives a positive contribution with
the size of about 10% relative to the pointlike one. Ex-
perimentally we know the ratios for the isovector and iso-
doublet mesons, respectively, as

R ( )= =1 47 ' (0 46+0 20)
P —7T

(5.2)K" (1650)—K (1400)R, &z ns or sn =
K* —K
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TABLE IV. The centers of gravity of the ss-meson multiplets. The unperturbed squared masses and the Coulomb-type and orbit-
orbit-like mass shifts are also given. As for their experimental candidates the isoscalar mesons with mainly ss components are simply
given.

Level

1S

Mo
(GeV )

1.116

Mc
(GeV )

—0.143

6Moo
(GeV )

—0.074

M
(MeV)

948

lL

g'(958)
957.57+0.25

Experiment' (MeV)
L L 3LL+1

(t (1020)
1019.5+0.1

1P 2.266 —0.097 —0.099 1440 E(1420)
1418+10

f '(1525)
1525+5

2S

1D

3.416

3.416

—0.366

—0.059

—0.259

—0.059

1670

1820

P(1680)
1685+10

4I(1850)
1853+10

2P 4.566 —0.215 —0.217 2030

1F 4.566 —0.034 —0.034 2120

3S 5.716 —0.545 —0.410 2180

2D 5.716 —0.133 —0.134 2330

1G 5.716 —0.019 —0.019 2380

3P

2F

6.866

6.866

—0.325

—0.081

—0.326

—0.082

2490

2590

1H 6.866 —0.010 —0.010 2620

4S 8.016 —0.701 —1.202 2470

8.016 —0.005 —0.006 2830

'See footnote a of Table II.
See footnote b of Table II.

which are close to our prediction. However, we need the
further confirmation of the existence of K(1400) and
K*(1650) and of the qq assignments for these reso-
nances. In the case of the NR harmonic-oscillator quark
model we derive a similar sum rule for linear masses,
where the ratio R is equal to —, because of no retardation
effect. However, in this case the prediction seems to con-
tradict the experimental values given in the respective
parentheses of Eq. (5.2).

There is another interesting feature that our spin-spin
potential contributes to the splittings of orbitally excited
states due to the retardation effect. This contribution is
positive and negative for spin-singlet and spin-triplet
states, respectively, in contrast with the case of S-wave
states. Its size is as small as a few percent or less of the
unperturbed squared masses, as is seen from Table VI,

and does not affect the general feature of the mass spec-
tra.

B. Coulomb-type and orbit-orbit-like splittings

As was mentioned in Sec. III C, our Coulomb-type po-
tential is greatly modified, as compared with the usual
one, in addition to the fact that our potentials are con-
cerned directly with the squared masses. From Tables
II—IV we find that the Coulomb-type and orbit-orbit-like
squared-mass shifts are roughly of the same size. From
these tables and Figs. 5—8 we also see that these spin-
independent squared-mass shifts for the pure orbitally ex-
cited states are quite small (in practice negligible for the
states with L ) 3), while they give considerable contribu-
tions for the radially excited S-wave states. These
features seem to be supported experimentally.
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FIG. 5. The centers of gravity of the multiplets for isovector
(nn ) mesons in comparison with experiment. In the third
column the established (not established) resonances are shown

by solid (dashed) lines.

FIG. 7. Same as in Fig. 5, for isoscalar (nn ) mesons.
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FIG. 6. Same as in Fig. 5, for isodoublet (ns or sn) mesons. FIG. 8. Same as in Fig. 5, for isoscalar (ss ) mesons.
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TABLE V. The S-wave mesons. The masses and the spin-spin squared-mass shifts for the isovector
(nn ), isodoublet (ns or sn), and isoscalar ($$) mesons are given. The experimental masses are also given
in parentheses and the input values are underlined.

State

1'Sp

1 Si

2'Sp

2 'Si

3 'So

3 Si

4 Sp
4 S

5Mss2
(QeV )

—0.422

0.141

—0.704

0.235

—0.869

0.290

—1.001
0.334

nn (I =1)
140

763
(769+3)

1270
(1300+100)

1600

1850
(1770+30)

2140
(-2150)

2150
2440

Mass (MeV)
n$ or $n

494

898
(894+3)

1360
( —1400)

1670
(- 1650)

1910
(- 1830)

2190

2210
2490

$$

690
( )

1020

1440

1740
(1685+10)

1970

2250

2260
2540

In order to see the validity of our Coulomb-type and
orbit-orbit-like potentials, the orbitally excited (L&0) iso-
vector (I= 1) spin-singlet (S =0) states are especially in-
teresting, since their mass shifts are almost given by these
potentials (the contribution from the spin-spin potential is
small, as mentioned above) and there are no possibilities
of the spin-orbit and flavor mixings. At present we have
the three experimental candidates for these states:

B(1235), A(1680), and A(2100) to be assigned to
(n +'Lq ——) 1 'P~, 1 'D2, and 2 'D2, respectively, whose
experimental mass values seem to be close to our predic-
tions (see Table VI).

C. Spin-orbit and tensor splittings

Our spin-orbit and tensor squared-mass shifts, which
are described by the parameters hME and h~ 6, respec-

8.0 8.0

7.0- 70-

3.0-

, 4S+

1 4'SQ

3S ~ 3'S

y 3'S,

0 (2150)

----~—— .(1770)

6.0-

5.0-

co 40-

3.0-

, 4S / 43Sq

3'SQ

i 4'SQ

3S ~33S,

K (1830)

2.0-

2'Sq
2S

'q 2'SQ

p (1600)

~ (1300)
2.0-

K' (1650)

K (1400)
2"S

N=O 1'S~1S

y 1'SQ

c (770)

1.0- N =0 13S)

0-

K' (892)

MQ M' Theor. Exot. M' Theow. Exot.

FIT+. 9. The mass spectrum of the isovector (nn) S-wave
mesons in comparison with experiment.

FICx. 10. The mass spectrum of the isodoublet (n$ or $n) S-
wave mesons in comparison with experiment.
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e 4.0-
C9

4S / 43S1

3'Sp

41So

ss Q3's,

one of the most important features of the COQM. The
remarkable regularity of universal Regge slopes for all the
meson systems was also incorporated in our scheme in the
unperturbed limit.

We can now see the OGE effects on the leading Regge
trajectories from Tables II—VI. We find that the total
squared-mass shifts are about 4% of the unperturbed
masses even for 1 P2 states, to which they give the largest
contribution. We note here that for 1 S& and 1 P2 states
the spin-independent (Coulomb-type and orbit-orbit-like)
and the spin-dependent (spin-orbit, tensor, and spin-spin)
contributions are individually sizable, but they mostly
cancel out each other. Therefore, the linearity of the lead-
ing Regge trajectories is preserved in the perturbed case.

3.0- 2S ~ 23St
4 (1680)

2'Sp
VI. CONCLUDING REMARKS

1.0-
N=O 13S~

4 ('1020)

0-
Mo M' Theor. Exit.

FIG. 11. The mass spectrum of the isoscalar (ss) S-wave
mesons in comparison with experiment.

D. Linearity of leading Regge trajectories

Reproducing the experimental fact (the linearity of
leading Regge trajectories) in the unperturbed limit was

tively, also become flavor independent, corresponding to
the flavor independence of the spin-spin splittings. To
our regret, we cannot check its validity presently, since
the experimental knowledge is poor.

We also note that our spin-dependent potentials contain
the effect of a color-anomalous moment interaction
(hM ——1.69&1), in contrast with the case in the standard
NR potential models (hM ——1). Therefore, the strength of
the tensor interaction becomes the larger relative to the
spin-orbit one. (It is to be noted that the above value of
the color-anomalous moment was determined only from
the analysis of the S-wave mesons. ) In our analysis a
color-anomalous interaction seems to play an important
role in reproducing the consistent fine and hyperfine
structures.

Furthermore, we remark that our spin-orbit [Eq.
(3.25c)] and tensor potentials [Eq. (3.25d)] contain the ex-
tra term due to the retardation effect, as in the case of the
spin-spin one. This contribution is about as large as that
of the usual term.

The magnitude of the spin-orbit and tensor squared-
mass shifts is comparable only for the lower-L states and
becomes as small as a few percent or less of the unper-
turbed square masses for the states with l.)3, as is seen
from Table VI.

In this paper we have extended the COQM so as to in-
clude the OGE effects covariantly and applied it to inves-
tigate the light-quark meson spectra. The effects are in-
cluded as a first-order perturbation in our specific scheme.
Our OCHRE potential consists of Coulomb-type, orbit-
orbit-like, spin-orbit, and hyperfine interactions, and each
of them formally corresponds to the respective parts due
to the contribution of transverse gluons in the Breit-Fermi
Hamiltonian in the Feynman gauge. However, these po-
tentials are modified, because of their covariant nature, as
follows. First, all of them contain the retardation effect.
Second, the Coulomb-type potential depends on the un-
perturbed masses of relevant rnesons in the meson rest
frame. Third, the orbit-orbit-like potential has the contri-
bution of the motion concerning the relative-time free-
dom. It should also be noted that our potentials are con-
cerned directly with the squared mass of mesons.

The centers of gravity for most of the multiplets with
the number of oscillator quanta N (6 and the spectra of
excited S-wave mesons and of several orbitally excited
ones were calculated, simply neglecting the mixing of
LJ~ LJ, 'Lz~ LJ and of flavor, and compared with ex-

periment. As a result, we may conclude that our scheme
reproduces consistently the experimental behavior of the
light-quark meson spectra. One of the most important
features of the COQM is to reproduce the linearity of
leading Regge trajectories in the unperturbed limit. We
have examined the OGE effects on the leading trajectories
and found that they affected little the linearity of them.

Our Coulomb-type and orbit-orbit-like potentials in-
duce the mass reduction of a fair amount for the radially
excited S-wave states, while they affect only a little the
pure orbitally excited states, in conformity with experi-
mental behavior. The spin-spin potential also seems to be
satisfactory. We withhold a definite conclusion for our
spin-orbit and tensor potentials, since the experimental
knowledge is poor. However, it is to be noted that our
spin-orbit potential lacks the part corresponding to the
contribution of longitudinal gluons, and furthermore we
may need the spin-orbit interaction due to an effective
scalar exchange, as in the standard models.

We now turn to mentioning some defects in our
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TABLE VI. The orbitally excited state mesons. The masses and the spin-orbit, tensor, and spin-spin squared-mass shifts for the
isovector (nn ), isodoublet (ns or sn ), and isoscalar (ss ) mesons are given. The experimental masses are also given in parentheses.

State

1 P1

1 Pp
1 P)

1 P2

1'D,

1 Di

1'D,
1 3D3

2 PD

2 P)
2 P2
1 'F3
1 F2
1 F3

1 F4

2'D

2'D)
2 D2
2 D3

3'P,
3 PD

3 P)
3'P,

5Mso
(GeV')

—0.333
—0.167

0.167

—0.150

—0.050
0.100

0
—0.466
—0.233
0.233

0
—0.076
—0.019

0.057

—0.232
—0.077
0.155

0
—0.560
—0.280
0.280

5MT
(GeV )

—0.328
0.164

—0.033

—0.061

0.061
—0.017

0
—0.408
0.204

—0.041
0

—0.023
0.028

—0.009

—0.079
0.079

—0.022

0
—0.474
0.237

—0.047

Mss'
(GeV')

0.070

—0.023
—0.023

—0.023

0.056

—0.019

—0.019
—0.019

0.021
—0.007
—0.007
—0.007
0.036

—0.012
—0.012

—0.012

0.040

—0.013
—0.013
—0.013

0.001
-0
-0
-0

nn (I =1)
1280

(1234+ 10)
940
1240

(1275+30)
1300

(1318+5)
1690

(1680+30)
1600

1670
1690

(1691+5)
1910
1660
1900
1950
2000
1970
1990

(2080+40)
2000

(2037+27)
2230

(2100+150)
2150
2220
2250

(-2250)
2390
2160
2380
2440

Mass (MeV)
ns or sn

1370
(1370+20)'

1060
1340

(1310+15)'
1390

(1425+5)
1760

1680
(1786+12)

1740
1760

(1780+ 10)
1980
1730
1960
2020
2070
2030
2060

2070
(2060+ 30)

2290

2210
2280
2300

2440
2220
2430
2490

ss

1460

1180
1430

(1418+10)
1480

(1525+5)
1830

1750

1810
1830

(1853+10)
2040
1800
2020
2080
2130
2090
2120

2130

2260
2330
2360

2490
2280
2480
2540

'These mass values are taken from Ref. 24.

scheme. One such vital defect is that the space-time part
and the spin one of the unperturbed wave function are
decoupled from each other, since they are covariantly gen-
eralized, separately, and the coupling between the two
parts in the gluon vertices has been switched on by hands.
This is a reason which has led us to vanishing of the
"small components" of our spin wave function in the
hadron rest frame and accordingly to missing of the in-
teraction corresponding to a longitudinal gluon exchange
(except for a Coulomb-type interaction). Second, we can-
not apply the present scheme directly to heavy-quark sys-
tems, where the perturbative treatment of the Coulomb-
type potential may not be permissible. Apart from such
rather technical problems there remain fundamental ques-
tions of how our scheme is related to the standard treat-
rnents such as the Bethe-Salpeter equation and to the
linear confinement model motivated by QCD. The latter
question is under investigation.

Finally we should like to refer to the recent attempt

closely related to ours, which investigated light- and
heavy-quark meson spectra in a unified and covariant
way. This approach starts from the mutually consistent
two coupled covariant wave equations for qq systems.
This avoids the introduction of redundant relative-time
freedom from the beginning, while it seems to make very
complex a covariant description of the center-of-mass
motion of hadrons.
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APPENDIX A. UNPERTURBED WAVE FUNCTIONS

The internal meson wave functions for the states with
the definite radial quantum number N', orbital angular
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(Al)

momentum L, total quark spin S, and total angular
momentum J and its third component M are, in the
meson rest frame, given by

1/4
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fourth S-wave states, by

where

QhTLS (r ) RJV'L ( r )+LS ( ( (t' )

includes the radial part
—pp 2/2

R)vr (r)=N~r r e ~' F( N', L—+ , ;Pr —)

with

(A2)

(A3)

(3S
i

U
i
3S)= ——'5lg+4),

(4S
i

U
i
4S) = —","5(/+ 6),

(1S
i

UQQ
i
1S)= ——,5,

(2S
i UQQ i

2S ) = ——,5,
(3S

i
UQQ

i
3S) = —„5,

(B4)

(B5)

(B6)

(B7)

(B8)

i
Nv'c

I

=
[/2 ]/4+ + (2N'+2L+ 1)!! P2i+3

N'! [(2L + 1)!!] 7T
for both the spin-singlet and -triplet states, and

(B9)

and the confluent hypergeometric function
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m, p

with the usual spherical harmonics Yz (8,$) and the spin
wave functions 7». In these formulas, the principal
quantum number N =2N'+ L, p =v'pE, and the flavor
and color wave functions are omitted for simplicity.

APPENDIX B: DIAGONAL MATRIX ELEMENTS

The first-order squared-mass shifts are obtained by cal-
culating the diagonal matrix elements of UG as

8a,E (M(0) )2
5=

9n.F(m) +m2) II
(B14)

(M0(0))2 and 0 are defined by Eqs. (3.5a) and (3.5b),
respectively, and v is —3 (1) for S =0 (S = 1).

For the pure orbitally excited states, the Coulomb-type,
orbit-orbit-like, spin-orbit, tensor, and spin-spin poten-
tials, Uc Uoo Uso UT, and Uss contribute to their
matrix elements. They are generally given by

5M (n 'L )=d(n +'L
i

U
i

n +'L ), (Bl)

where n =cV'+1. Here we list some diagonal matrix ele-
ments used in the calculations of the text.

For the S-wave states, the Coulomb-type, orbit-orbit-
like, and spin-spin potentials Uc Uoo and Uss contri-
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and the matrix elements of the spin-orbit and tensor po-
tentials for the spin-singlet states vanish.

For the radially excited states with nonzero orbital an-
gular momentum, the Coulomb-type, orbit-orbit-like,
spin-orbit, tensor, and spin-spin potentials, Uc, UQQ,

UsQ, UT, and Uss, contribute to their matrix elements.
They are given, for the several lower excited states, by
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and the matrix elements of the spin-orbit and tensor po-
tentials for the spin-singlet states vanish.
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