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The dynamics of the internal gravitons in higher-dimensional unified theories is discussed in a
general setting. A generalized nonlinear o model describes the dynamics of the internal metric.
It is shown that when the vacuum of the internal space has a nonvanishing curvature the internal
gravitons acquire masses comparable to the Planck mass. This implies that, unlike the five-

dimensional case, the internal gravitons will not alter Newton's gravity (or the low-energy physics,
in general) in a significant way.

Motivated by the recent discussions ' on whether
Newton's law of gravitation should be modified by a "fifth
force, " Bars and Visser made a very interesting sugges-
tion that the internal gravitons in a higher-dimensional
Kaluza-Klein unification, in the presence of a non-Abelian
gauge field, could mediate a fifth force which can compete
with Newton's gravity. Their suggestion was based on the
five-dimensional result in which the Kaluza-Klein gauge
field generates an "antigravity" effect. So it would be very
interesting to see whether this antigravity survives in a
realistic non-Abelian generalization. In fact, independent
of this question, it should be important for us to under-
stand the dynamics of the internal gravitons, especially its
low-energy effects, if there are any, to see if the idea of the
higher-dimensional unification is indeed a desirable one.
This is so because the existence of the internal gravitons
is an unavoidable fact in any higher-dimensional unified
theory. The purpose of this Rapid Communication is to
discuss the dynamics of the internal gravitons and the pos-
sibility of a fifth force in a general setting.

A central issue in any (supersymmetric or not) higher-
dimensional unified theory is how to reduce it to a four-
dimensional theory. A popular method to achieve the di-
mensional reduction is to make a "zero-mode" approxima-
tion of the harmonic expansion, after a spontaneous
compactification of the internal space. The justification
of this approximation is of course based on the belief that
when the compactification scale remains small all the
higher modes can safely be neglected in the low-energy
physics. Unfortunately, the matter is more complicated,
and the zero-mode approximation is plagued with a logical
ambiguity due to the possibility of a spontaneous symme-
try breaking, and the consistency problems both at the
classical and the quantum levels. A simpler and unam-
biguous method is dimensional reduction by isometry. 79
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Here the reduction is achieved simply by requiring the
right invariance to al/ the fields, including the fermions.
In this case the zero-mode ansatz is replaced by the right
invariance, which allows only a finite number of modes
whose internal-space dependence is completely fixed.
Thus there is no need for a spontaneous compactification
and harmonic expansion. Since the right invariance gives
us a unique dimensional reduction which involves no ap-
proximation, we will adopt this method in the following.

Let the metric gott of the (4+n)-dimensional unified
space P admit an isometry EC consisting of n linearly in-
dependent Killing fields g, (a 1,2, . . . , n),

+g.g~a =O, ~4., 4~ fab4. ,
—1

k

where k is a scale parameter. The isometry makes the
unified space P a principal fiber bundle P(M, K) with the
four-dimensional space-time M as the base manifold and
K as the structure group. In a local direct-product basis
made of a coordinate basis 8„(p 1,2, 3,4) of M and the
Killing basis tl, ( g, ) of K, the metric can be written as

2 2 a bgav+ e + PabBaBv eiclabBvb
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where e is the coupling constant, and 8„' is the gauge po-
tential of K. Now the isometry (1) requires the metric to
be right invariant, and determines the internal-space
dependence of g~~ uniquely:
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Furthermore, when K is unimodular, the (4+n)
dimensional Lagrangian of the Einstein-Hilbert action on
P(M, K) becomes explicitly independent of internal coor-
dinates. So the dimensional reduction is obtained au-
tomatically and one is left with the four-dimensional La-
grangian

ig Jy(R, +A),1 (3)
16zG

where g - ~ detgp„~, p =
~
detp, b ~, Rp is the scalar curva-

ture of P(M, K), and A is a cosmological constant. Notice
that, up to a total divergence, Rr is given by
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Again it is emphasized that this is not a zero-mode ansatz,
but a simple consequence of the right invariance. Now,
notice that since the horizontal basis Dp -Bp exB—p 8, is
orthogonal to the Killing basis 8, on P(M, K), the G-
gauge covariant derivative D~ of the fermions is given by

Dpitr-[8p+ig(Ap —exBp'i'', )t;l y-(8p+igApt;) itr,

D, iti = (8, +igiji,'t; ) itr =igi|i,'t; y,
where g and t; are the coupling constant and generators of
G. Also notice that

(Fbttv ) ' = (F„'„)'+ 2(Dpiti, ) '+ (F"b)',
where Fpk„ is the field strength of Apk -Apk -exBpyk, and

Dpla D 4p'a +fij &+4'a =~p4a efcaBpijik+Rfij&pea
where G„'„is the field strength of 8'. So with e x 16irG
one obtains the desired unification.

For the matter fields let us for simplicity introduce a
gauge field with symmetry group G minimally coupled to
fermions on P(M, K). This would make the bosonic part
(and thus the vacuum and the symmetry-breaking pat-
tern) of the theory very similar to ten-dimensional N =1
supersymmetric Yang-Mills supergravity, ' which is the
low-energy limit of the type-I superstring. Writing the
gauge field of G as Abt and its field strength Fbt~
(M, N=1, 2, . . . , 4+n) one has

X, -jg Jy [ijr(i I "&„)iji—.—,
'

Fbttv Ftvtiv ], (5)

where V~ is the (4+n)-dimensional generally covariant
and G-gauge covariant derivative. To determine the
internal-space dependence of the matter fields, notice first
that Abt is made of the four-dimensional potential A„and
the scalars A, which we write as p,". Then one can easily
prove that the right invariance requires

~oitit = fobiji. tl iti—
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This implies that p, could play a crucial role in spontane-
ous symmetry breaking.

There is one more step to go before we discuss the phys-
ics. Notice that with iti,b =p' "p,b (detp, b -1),Rp can be
written as

n 1(~.e—) '
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where X is a Lagrange multiplier. So the Lagrangian (3)
appears to be unstable because the p field has a negative
kinetic term. To remove this defect, one has to make the
con formal transformation

gp v ~Pgp v

(6) after which Xo is written, in terms of the new metric, as
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up to a total divergence, where Rir =Rir(p, b) and we have introduced the dilaton field o by
i/2

1 n+2
2 n

The result suggests that one should treat the new metric Jpgp„, but not g„„,as the physical space time metric -So from.
now on we will always use the new metric, but express it simply by g„„. With this convention Xi becomes

ex 1 a pv n

4
exp

[ ( )] ij2 o Gp-„-iji(s Sy;)y —
4 exp +2 o F„',F„'„

exp ,j2 o p' (Dpi'', )(Dpijij, ) —
4 exp

n n+2
n+4 ~ 'h '"F' Fp p ac kd '



2630 Y. M. CHO

where we have made the e ' rotation for the fer-i (x/4) y5

mions" to make the mass matrix Hermitian. Then the
Lagrangian

find

e2=8g2

X =Xp+X) (10)

should describe the dynamics of the internal gravitons o,
p,b, and B„' with the matter fields. Notice that even
though the fermions are neutral under K (i.e., B,y=O)
they do couple to 8„', first through 2„' and then through the
(4+ n)-dimensional general covariance. In fact, the
Pauli-type term in (9) is precisely the coupling dictated by
the general covariance. So the coupling constant e as-
sumes the role of the "magnetic moment" of K for the fer-
mions. Another interesting aspect of the Lagrangian (10)
is that the dynamics of the internal metric p,b is described
by that of a generalized nonlinear a model, with the
minimal gauge coupling to B„' and the self-interaction po-
tential R~.

To discuss the vacuum let us choose a =0 (by fixing the
scale x) and flat M. Then one may find p, b =B,b with van-
ishing A„' and 8„' as the vacuum of the theory under
reasonable circumstances. For simplicity we will consider
only two cases: (i) when K=U(1), and (ii) when K is
compact semisimple and KCG. First, when K =U(1) one
can easily show that A=0 with an arbitrary p' becomes
the vacuum solution. In this case B„remains massless but
2„' has the mass matrix

g 2f mf m~k~i

Thus G is broken, but the scale of the symmetry breaking
is left completely arbitrary. For instance, when G SU(2)
the mass eigenvalues become (O, g p,g p ), so that
SU(2) is broken down to U(l). The scale invariance of
course implies the existence of a massless Higgs mode.
Now, when K is compact semisimple and Kt-G, one may

I

as the vacuum, where Rir(0) is the vacuum curvature of K.
So in this case a nonvanishing A plays a crucial role for the
existence of the vacuum. Another interesting aspect of the
above solution is that the two coupling constants e and g
are not independent even though the gauge symmetry is
K&&G. The reason for this is that the vacuum value of p,'

depends on g, which in turn is fixed by the vacuum value of
the internal curvature which depends on e. As for the
symmetry breaking, notice that the mass matrix of 2„' and
B„' is given by

k I
iriij 2fia fjb ~ab~kl

4x

d c1
mab =

2 fac fbd
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This means that K is completely broken while G is at least
partially broken, with all the masses of the order of the
Planck mass. For instance, for K =SU(2) and G
=SU(3), G is broken down to U(1). With the above vac-
uum the fermions also acquire mass, with the mass matrix

m = —igl4 y'y,'r;+ f,b'I4ias' y, .
1

4x'

Notice that the second term is induced by the nonvanish-
ing curvature of the internal space, which is absent when
K =U(1).

To discuss the dynamics further, let us first excite the di-
laton from the vacuum. In this case one finds

[-,' (B„cr)'+V(cr)],
16+6

' 1/2

V(cr) = —Rk. (0)exp
n+2 l 2
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So the dilaton acquires a mass

m =V"(0) = — Rir(0) .n(n+2)
Next, we excite the internal metric p,h and find

4 P'P'( .P-)( .Pbd)
1
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So it must become clear that at least some of p,y should
also become massive when K becomes non-Abelian. In
fact, when K is compact semisimple all the internal gravi-
tons o, p,b, and 8„' acquire masses of the order of the
Planck mass.

Now we are ready to discuss the possibility of a fifth
force. When K =U(l), Rx must vanish so that both o and
B„remain massless. Furthermore, since B„couples to the
fermion mass in the nonrelativistic limit, B„generates an
antigravity eA'ect. However, as soon as K becomes com-
pact semisimple all the internal gravitons acquire huge
masses, which should make them totally irrelevant in any
low-energy phenomenology. On the face of this one might
try to keep at least some of the internal gravitons massless,
which one can certainly do by assuming K =U(1) & K', or
by judiciously choosing a Ricci-flat vacuum for K. For in-
stance, by choosing K E2 (or E2xE2) one could keep K
Ricci flat. In this case the dilaton and one (or two for
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K E2X E2) of Bg remains massless. This would allow the
dilaton to modify Newton's gravity. However, from (9) it
must become clear that the massless B„'will no longer cou-
ple to the fermion mass term when the dimension of the
internal space becomes larger than one. So their antigrav-
ity eA'ect will completely disappear. Actually even in the
five-dimensional case our analysis shows that B„couples to
the mass of the "heavy" fermions, because the desired cou-
pling arises from the "first step" symmetry breaking where
all the masses involved are of the order of the Planck mass.
Thus it is not clear whether the antigravity coupling could
also apply to the "light" fermions which are supposed to
acquire mass in the "second step" symmetry breaking.

In conclusion, my analysis suggests that, for a very lim-
ited class of K, a non-Abelian generalization of the
Kaluza-Klein unification could contain massless particles
and generate a fifth force which could alter Newton's
gravity. But it is highly unlikely that one could obtain an
antigravity efI'ect from the Kaluza-Klein gauge bosons. In
fact, an antigravity effect could more likely come from a
massless cr. Because of the unique coupling of o with the
matter fields shown in (9), a massless o could generate an
antigravity effect under certain circumstances. ' ' As for
the low-energy physics in general, our result could be in-
terpreted as an encouraging aspect of the higher-
dimensional unification, because it virtually guarantees

that the low-energy phenomenology will not be altered
significantly by the unification. However, two things
should be kept in mind here. First, for a very limited class
of K, some of the internal gravitons could remain massless
(i.e., light) and thus become relevant to the low-energy
physics. The other point is that the presence of the inter-
nal gravitons (especially the dilaton) will have a deep im-
pact on cosmology. '

Finally, my analysis demonstrates how difficult it is to
try to obtain the dimensional reduction by the "zero-
mode" approximation. Notice that one might have liked
to regard the conditions (2) and (6) as a zero-mode an-
satz. However, as soon as the scale invariance is broken
and the internal space is compactified by a Planck scale, it
becomes very difFicult to avoid a spontaneous symmetry
breaking which will force some of these zero modes to be-
come extremely heavy. Once such a symmetry breaking
does occur, of course, one loses the whole justification of
the zero-mode approximation.
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