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Hydrogenlike atom in bosonized QED
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A hydrogenlike atom is constructed in bosonized lowest-partial-wave QED. Despite the classical
treatment of the theory the charge radius of the hydrogenlike atom is shown to be the order of the
Bohr radius. This indicates that the classical treatment of the bosonized theory does contain
fermionic quantum effects.

In a previous paper' we analyzed the ground state of
quantum electrodynamics (QED) around a highly charged
(Z & 137) nucleus. Csuided by several physical arguments
we were led to construct the bosonized theory of lowest-
partial-wave QED. We found that the ground state un-
dergoes a phase transition from the normal QED vacuum
to a supercritical one associated with the real pair creation
of electrons and positrons. The analysis of Ref. 1 was

performed in the leading order of semiclassical expansion
In this paper we wish to address the question of a hy-

drogenlike atom in our bosonized lowest-partial-wave
QED. Our particular interest in such a well-understood
system may need explanation. First of all, it is of interest
to see, without recourse to the one-particle theory, how
the hydrogenlike atom appears in the spectrum of quan-
tum field theory. Second, and more importantly, the
study of the system provides us with a measure of how
well the classical approximation of the boson theory takes
care of the quantum effects of the original fermion
theory. This is because the characteristic size of the hy-
drogenlike atom, the Bohr radius, is determined by the
balance between the Coulomb attraction and the effective

repulsion due to the uncertainty principle. If the classical
approximation of the boson theory does not contain quan-
tum effects the size of the hydrogenlike atom constructed
by our boson theory would be unacceptably small, which
may be of the order of nuclear size.

We start with briefly reviewing the bosonized lowest-
partial-wave QED, the quantum field theory of j= —,

'

electron and j=O electromagnetic fields, developed in Ref.
1. In the course of the summary we recollect the neces-
sary formulas for our present analysis.

It was observed in Ref. 1 that the only relevant partial
wave of the electron field for the question of supercritical
QED is j=—, for Z &300. In addition, if the external
source is spherically symmetric, only the s-wave elec-
tromagnetic fields communicate with the external source.
Discarding all the higher partial waves we have construct-
ed an effective two-dimensional fermion theory living in
one-half-space (0&r & Oo) and one-time dimensions. We
have further converted this theory into a boson theory us-
ing the bosonization technique.

The obtained bosonized Hamiltonian has the form

H =fdr g , (II +P +N—' +Q' )+ g 1 —cos ~ir N +Q —5 f ds[II (s) —P (s)]
m m, s 2~r

M+ g [2—cos(2~ir@ ) —cos(2v n.Q )]+ 2
m 8~r

2

@(r,t) — g (4~+Q ) @(r,t)—
m

where H and P denote the canonical conjugate of the
Bose fields 0& and Q, respectively. The index
m ( =+—,

'
) represents the spin (third component of the an-

gular momentum) degeneracy and 5 implies the chirality
signature which takes + 1 ( —1) for right- (left-) handed
fermions. The information of the external source is car-
ried by N(r, t) in (1) which is related to the external charge
density p(r, t) as

(O, t)+Q (O, t)=0. (3)

Finally the electric charge and the angular momentum

1'

4(r, t)=4trZ f dr r p(r, t) . (2)

As usual in partial-wave field theories the boson fields
in (1) are subject to the following boundary condition at
the origin:
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allow the following expressions in terms of Bose variables: l

0.4—

QEM= — g[+ (r)+Qm(r)]ID,
1

m
(4)
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We note that the framework just summarized above is

quite suited for our present purpose. Most of the nuclei
may be approximated by static and uniformly charged
spheres. Therefore our system (1), if properly quantized,
should give rise, not only to the ground state, but also to
the series of radial excitations of hydrogenlike atoms with
2=2 ~

We, however, restrict ourselves to the classical analysis
of the boson theory in this paper, and thereby to the
ground state of the hydrogenlike atom with fairly high Z
(Z&50). The last restriction is due to the following
reasons. First, we do not have any good reasons for
believing that the semiclassical approximation is accurate
for small-Z atoms. Second, there are technical difficulties
in obtaining reliable answers in our variational calculation
in such systems. It should be stressed that the restriction
does not lower the value of our analysis because there are
big differences (factor -80 for uranium) between the
Bohr radius and the nuclear size.

The hydrogenlike atom in our Bose theory is nothing
but the solitonlike configuration around an external
source as discussed in Ref. 1. For our purpose we exam-
ine the soliton configuration with electric charge —2 and
zero angular momentum, the spin-singlet two-electron
atom. The obtained energy of such state via the classical
analysis may be identified with that of the 1Si&2 state.

It can readily be seen by (4) that to construct spin-
singlet two-electron state we have to have solitonlike con-
figurations both for 4+i&2 and @ i~z (Ref. 2). The rest
of the field variables and the canonical moments are freely
varied within some suitable ansatz which are consistent
with the boundary condition (3).

For the purpose of comparison with the results of Ref.
3, we take the external charge density as

p(r, t) = 8(R r)—3

4+8
with

-0.4—

80 100 120 140
I

160 180

z
FIG. 1. The energy of hydrogenlike atom is plotted as a

function of Z. The solid line shows the energy per electron cal-
culated by our bosonized lowest-partial-wave QED, whereas the
dashed line indicates the result of the Dirac theory (Ref. 3).

As mentioned earlier we employ the variational method
to obtain the energies of the atomic (solitonlike) and vacu-
um configurations. The latter includes the effect of the
polarizability of the vacuum. In Fig. 1 we plot the energy
difference divided by 2 (the energy per one electron) be-
tween the atomic and the vacuum configurations as a
function of Z, which should be identified as the energy of
the 1S&&2 level. For comparison, the same quantity ob-
tained by solving the Dirac equation with one-loop radia-
tive correction is also plotted. The parameter M is deter-
mined to be 0.322 MeV so that the energy of our solitonic
atom agrees with that of the Dirac theory at Z=100.
This value of M is 20% smaller than the one determined
by the classical soliton mass formula which was used in
Ref. 1.

As one can see in Fig. 1 the agreement between two
theories is quite good in the region 50&Z & 130. Beyond
Z= 130 the energy of our solitonic atom becomes consid-
erably lower than that of the Dirac atom. This result
shows a remarkable consistency with our previous calcula-
tion. ' There we have observed that, for corresponding nu-
clear size, the normal QED vacuum undergoes the phase
transition to the supercritical one at 140&Z &150 with

& = 1.2 X (0.007 33Z + 1.30Z +63.6) ' ~3 fm . (6)

The only parameter which remains to be determined is
the value of M which appeared in the mass term in (1). In
principle, it can be determined by the electron mass at
spatial infinity (free electrons). If we use the classical soli-
ton mass formula, then m, =4M/m with m, being the
electron mass. In the case of sine-Gordon theory in 1 + 1

dimensions, however, it does not give a credible estimation
of the value of M. The one-loop radiative correction
yields 50% correction to the above purely classical mass
formula. Lacking the estimation of a one-loop correction
in our theory with a nontrivial boundary condition we
shall regard M as a free parameter, and adjust it at a par-
ticular value of Z so as to reproduce the binding energy
predicted by the Dirac theory.
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FIG. 2. The profile of the Bose fields and their canonical mo-
menta consisting of the solitonic atom at Z= 100. The solid line
indicates ++Iq2, while the dashed and the dashed-dotted lines
show Q+~q2 and II+,z2 ——P+~q2, respectively, each multiplied by
5.
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This should be compared with the prediction of the Dirac
equation

(r)=[—, +(1—Z a )'~ ](m, Za) (8)
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FIG. 3. The charge radius of the hydrogenlike atom normal-
ized by the prediction (8) of the Dirac theory is depicted as a
function of Z.

QEM f «r g [@' (r)+Q' (r)]

induced electric charges at around the nucleus and at spa-
tial infinity. In the present calculation the critical value
of Z may be given by the point where the atomic energy
dives into the negative-energy continuum, which is about
145. We should, therefore, remark that beyond the phase
transition point what we have computed is not the atom's
energy but the ground-state energy (minus 2m„actually)
of the supercritical vacuum.

In Fig. 2 we show the profile of the boson fields as well
as canonical momenta consisting of our solitonic atom at
Z=100. We note that the inclusion of the nonvanishing
canonical momenta is indispensable for obtaining reason-
able values of the atomic energies. This is in sharp con-
trast to the case of the spin-parallel configuration exam-
ined in Ref. l.

In Fig. 3 we show the charge radius of the solitonic
atom normalized by the same quantity obtained by the
Dirac theory. The charge radius is defined as (the prime
being r derivative)

for the 1Si~2 state. In deriving (8) we have used the
point-source approximation which seems to be quite good
for Z &120.

As can be seen in Fig. 3 the charge radius of our soli-
tonic atom constructed by the classical Bose theory has
the order of the Bohr radius over the wide range of Z.
Furthermore, the agreement at the range 80&Z (120 is
impressive considering the crudeness of our approxima-
tion.

Skeptical readers may suspect whether the agreement
occurs only at the particular values of the parameters,
namely, a=(137) ' and m, =0.51 MeV. To check this
point we have performed calculations with different
values of these parameters. In the region of mass parame-
ter —, X (0.322) & M & 2)& (0.322) the deviation of the
charge radius from the behavior (8) is within 8%%uo at
Z=100. For a it is essentially covered by the Z depen-
dence presented above since the Coulomb interaction term
in (1) plays a minor role as far as a « l.

In this paper we have constructed the hydrogenlike
atoms utilizing the bosonized lowest-partial-wave QED
for a relatively large (Z ) 50) nucleus. They are the soli-
tonlike configurations around the nucleus in this theory.
Despite the classical approximation in the boson theory
the charge radius of our solitonic atom has the order of
the Bohr radius. This may be interpreted as evidence that
the semiclassical analysis of the Bose theory contains fer-
mionic quantum effects, supporting our claim in Ref. l.
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