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Bound states in quantum field theory and coherent states: A fresh look
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We consider bound-state equations in quantum field theory where the state explicitly includes ra-
diation quanta as constituents with the number of such quanta not fixed. The fully interacting sys-

tem is dealt with through equal-time commutators/anticommutators of field operators. The mul-

tiparticle channel for the radiation field is approximated through coherent-state representations.

Usually one considers bound states in field theory with
a fixed number of particles. However, in field theory par-
ticle number need not be conserved, and in particular the
bound state as an eigenstate of the Hamiltonian need not
be an eigenstate of the number operators. In the present
analysis, we shall recognize this fact for the definition of
the bound state, and develop a nonperturbative framework
accordingly.

To motivate, let us first consider a toy model in quan-
tum mechanics. Let the Hamiltonian be

such that, with 3 as a normalization constant,

I
B„)=A exp[ n(g/co)—a ](c )"

I
vac) (4)

is an eigenstate of H with eigenvalue ne n(g /to) W—e.
may also construct other eigenstates of H as

I
m, n ) =(at+ng/to)

I
B„),

where

H
I
m, n ) =(m @+en neg /co)

I
m, n ) .

We took matter as fermionic so that energy is bounded
below. Here

I
B, ) is a coherent state' with

a
) Bi ) = —(g/to)

I
Bi ). Also there are an infinity of ra-

diation quanta with the probability for k quanta given as

H =ec +co taa+gc c(a +a) .

In the above, c stands for the "matter" annihilation opera-
tor, a for the "radiation" annihilation operator, and we
take the usual quantum conditions [c,ct]+——[a,a ]=1.
Thus matter has been taken as fermionic and radiation as
bosonic. The state

I

vac ) is defined through a
I
vac )

= c
I
vac) =0. Let us now make the substitution

a =a' —(g/to)c c. We then have [a',a' ]=1. However,
a' does not commute with c or c . Equation (1) then sim-
plifies to

H =ec c+toa' a' —(g /cp)(c c)(c c) . (2)

Let us next consider a state
I
B„)=f (a )c "

I
vac ) with n

(=0,1) fermions and arbitrary number of radiation quanta
such that a'IB„)=0. With a =5/5a this leads to the
differential equation

[5/5a +(gita)n]f(a )=0,

We may here note that for adequately large g /cp, there is
a phase transition and the single fermion state

I Bi ) with
its radiation cloud constitutes the physical vacuum.

The above reveals the relevance of multiradiation quan-
ta, simulating field theory, which we now proceed to con-
sider. For illustrating the dynamics, we take a nonrela-
tivistic Hamiltonian density at t=O given as, with
P(x) =(2'„) '~ [a (x)+a (x)t],

A (x)=ci(x) E ci( i)x+c ( 2)xe2„cp(x)

+a(x) co„a(x)

+[eici(x) ci(x)+e2c2(x) cq(x)]P(x) . (7)

The following notations may be noted. In the above we
have expressed the Hamiltonian density in terms of the
fermion and boson creation and annihilation operators
with, e.g., the obvious algebra

[ci (x»c i (y)']+ = [c2(x»cz(y)']+

=[a(x),a(y) ]=5(x—y) . (&)

Further, e», e2„, and cp„are differentiation operators corre-
sponding to the respective free-field Hamiltonians, and
are defined through the Fourier-transform space. The
model corresponds to two fermions interacting with a
scalar meson. The spins are suppressed, but the kinetic
relativistic corrections may be present through
e„„=(—V„~+iM„)'~2 and co„=(—V„+p )'~ . We shall
also have in addition counterterms corresponding to the
self-energy of the fermions.

As earlier, we define Ivac) through c„(x)
I
vac)

=0=a(x)
I
vac). The bound state of two fermions and

an arbitrary number of radiation quanta will be con-
sidered. This will be an eigenstate of the Hamiltonian
H = JdxA (x) where the eigenstate

I
B) will have the

I
Bp)+

I
Bi )+ I

B2)+ . with B„) describing
a state with n radiation quanta. The problem will thus in-
volve the coupling of infinitely many channels which is
not possible to solve. We shall hence use here the approx-
imation of the multiparticle states being the coherent
states, and shall proceed to construct such states.

We start with the fiducial state

I
Sp(x y) & =ci(x) c2(y) I

vac) .

pk ——[(g/co) "/k!]exp( —g /cp ) . (6) We next consider the operator
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G = c, z A, z c, zdz

IS(x,y)):—Nexp(G ) ISO(x,y))
=Nc i (x) exp[A, (x) ]exp[A z(y) ]cz(y)

I

vac )

=c,(x)tc2(y)t
I
R (x,y) ) . (9)

with summation over repeated index r, and with
A„(z) = ff„(z—z')a (z')tdz'. f,(z) (r=1,2) are two
functions of space coordinates z. The justification for
this choice of operators will occur later .Using Eqs. (8)
we now see that

(9) from the condition

(R(x,y) IR(x,y)) =1 .

We first note that by (8)

[A„(x),A, (y) ]=ff„(x—z)*f,(y —z)dz

=h (x—y),
such that (12) yields

N„» =exp[f (x—y)]

with

(12)

(13)

In the above, N is a normalization constant which we
shall determine. We may interpret that exp[A i(x) ]
creates the radiation quanta attached to the fermion at x,
and similarly for exp[32(y) ]. Such an identification will
help us to recognize the self-energy contributions of the
fermions. We note that [a (z),A„(x) ]=f,(x—z), which
yields

a(z) IS(x y)) =[fi(x—z)+f2(y —z)] IS("y)) .

(10)

It was our purpose to construct such an eigenstate.
We shall define a bound state of zero momentum in the

form

IB(0))=(2m) i fu(x —y) IS(x,y))dxdy.

This has three arbitrary functions: u(x —y) which will
correspond to the old Schrodinger wave function, and
f„(x) (r=1,2) which will decide the nature of the radia-
tion quanta in the bound state.

We now determine the normalization constant N in Eq.

f(x —y)=h»(0)+h»(0)+h»(x —y)+h»(y —x) .

(15)

We next take the forrnal normalization for zero-
momentum states as (B(0) IB(0))=5(0), which yields
the conventional normalization

h [u,f|,f2]=t +hM+h;, (17)

where we have taken the expectation value
(2~) (B(0) IA (0) IB(0)). The individual terms t, h~,
and h; are, respectively, the expectation values of the fer-
monic kinetic part, the "meson" or radiation field part,
and the interaction part of Eq. (7). These functionals are
next to be evaluated.

For the evaluation of t, we first note that

u x 2dx=l .

We shall now consider the expectation value of the
Hamiltonian density of Eq. (7) for the state as in Eq. (11),
and then minimize this to obtain the mass. We substitute

( R (x', y')
I
R (x,y) ) =N„» N»exp[h»(x' —x)+h2&(y' —y)+h |z(x' —y)+hz&(y' —x)] .

Using this, and with some algebra, we get

u —y *@~„exphei —x —h» 0 u x—y „y
+f u(x)'E2»{exp[h»(y) —h22(0)]u (x —y) j„odx .

In case we can approximate the above limits inside the differentiation, we obtain

u x Ei„+62x u xdx.
Using Eqs. (10) and (12), evaluation of hM gives

h~= f I
u(x —y) I'dxdy[fi(x)*+f2(y)'][~Z|(x)+~, fz(y)] .

(18)

(19)

(20)

(21)

(23)

Next, evaluation of h; gives

h;= f I
u( —y) I dy{e, [(2'„) ' f, ( )*x(+2 c)t»f2(y) ]Ix

+f I
u(x)

I
dx{e2[(2'„) ' f|(x)"+(Zco„) ' f2(y)*]I„O+H.c. (22)

Here we have used g(x)=(2'„) 'i [a(x)+a(x) ] and Eqs. (10) and (12).
We shall now use the limit (20) for t, and Eqs. (21) and (22), and extremize with respect to f i and f2. Thus, e.g.,

[5/5f &
(x)'](t +h~+h;) =0 yields, using (16),

f I
u(x —y) I'[~Pi(x)+~f2(y)]dy+e2(2~. ) '"Iu(x) I'+e&(2~. ) '"5(x)=0.
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We can easily verify that the above as well as the other
similar extremization equations for f~ and fq are satisfied
when

f„(x)= —[e„/(v 2co„'~')]5(x) . (24)

As mentioned earlier, all these equations are defined
through Fourier transforms and are to be regularized
when necessary, and, for appropriate contributions, self-
energy terms are to be subtracted.

We shall now use Eq. (24) and identify the self-energy
contributions. Equation (21) has, respectively, the self-
energy and the potential contributions given as

h~ ———,
' (e)'+ep') f [co„'~'5(x)][co„'~25(x)]dx (25)

corresponding contribution as

(, &R )t= e—&e2 f I
u (x)

I
[V„~„5(x)]dx

3 fd k dk'u (k')'u (k' —k)k /[co(k) ]
(2m )'

(34)

We note that this is Yukawa coupling so that e& and e2
have the same sign.

We may note that in Eq. (15) f(x—y) has a divergent
contribution through h»(0) and h22(0), and the "conver-
gent" part f, (x—y) is given by

f, (x)=h &z(x)+h2&( —x)
and

h~=eie2 f I
u (x)

I
[co„5(x)]dx . (26)

e~e2 ei& x e&e2dk= Eo(p) .
(2n. ) co(k) 2m

(35)

Similarly, the self-energy and the potential contributions
from Eq. (22) are, respectively, given as

and

h = —(e~ +e2 )[co„5(x)]„

h;"= —2e&e2 f I
u (x)

I
[co„5(x)]dx .

(27)

(28)

We assume that the terms in (25) and (27) are canceled by
appropriate self-energy counterterms. This gives us the
potential as

U =AM +&i

= —e, eq f I
u(x)

I
[cu„5(x)]dx . (29)

pk —— u x x k! exp — x dx. (31)

We may also obtain the average number of radiation
quanta as

~R Qkpk f I
u (x)

I
'f (»dx (32)

We may also find the momentum squared carried by the
radiation quanta. Taking the expectation value of
a (x) [—V„a (x)]„owe thus formally obtain,

&t= f Iu(x y) I
I(V f&+Vyf2) I

(33)

The above expression also contains divergent expressions
which are to be subtracted. After doing so, we obtain the

Thus the conventional potential term is contributed both
from the free radiation part as well as the interaction part
in a simple manner. Now a variation with respect to
u (x) yields the familiar eigenvalue equation, for p =0,

e(e2
(ei„+e~„)u(x)— u (x)=Eu (x) (30)

4n IxI
when we shall carry out the corresponding algebra. This
ends the "conventional" nature of the present theory, and
we shall now proceed to show the extra physics content of
the present approach.

Firstly we see that the probability for there being k ra-
diation quanta contained in the bound state parallel to (6)
is given as

In (35), p is the effective mass or infrared cutoff of the ra-
diation quanta, r =

I
x

I
and, Ko is the Bessel function

with imaginary argument such that, for small r,
Ko(pr)=in(1/p r ), and %0~0 as r~no. In order to
get a feeling for the contribution, let us use an explicit ap-
proximation

f( )
2a

I
I+@ r

p2r2
(36)

where we have substituted e&e2 ——4+a, with quantum elec-
trodynamics in mind. One then obtains

21n 1+@r dx .
p r

(37)

—e2coy 5(y —z)] . (38)

The above correctly describes the classical potential inside
the bound system when the sources are at x and y. Thus,
the radiation quanta inside the bound state may be recog-
nized as the quantum description of the confined classical
field. These radiation quanta, as well as the two fermions,
are obviously off the mass shell. We may picture the radi-
ation quanta to act like glue to keep the fermions togeth-
er. The conclusions are nonperturbative in the sense that
only equal-time commutators or anticommutators are
used.

In conclusion, we may note the following.
(i) We have shown that an approximation through mul-

tiradiation quanta present in the bound state generates the
conventional Schrodinger equation for the energy eigen-
values.

(ii) The momentum carried by the radiation quanta is
calculable. Thus, in a hadron, all the momentum will not

We note that when p, ~O, (37) includes the usual infrared
divergence which is to be tackled separately.

The present description of radiation quanta inside the
bound state has another interesting consequence. Let us
define, using Eqs. (10) and (24),

P,~(z)—:(8(0)
I P(z) I

8 (0) )

=f I

u (x—y) I
dxdy[ —e~co„5(x—z)
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be carried by the quarks or antiquarks, but the gluons
may also carry a substantial fraction of the momentum.
This has obvious relevance for deep inelastic collisions.

(iii) For hadronic spectroscopy, gluon number in had-
rons will be nonzero, and can be large. Since gluons carry
spin, there will be substantial spin corrections, and the
static SU(6) models will be particularly bad regarding po-
larization effects.

(iv) The gluons present in the hadron will simulate the
potential which may be calculable for the heavy-
quarkonium system. For this purpose more complicated
coherent states could be relevant.

In a deeper sense, the present formulation of the bound

state is a "true" field theory since here we take a bound
state with particle nonconservation, which is a basic
feature of field theory. The fact that it has many correct
hints regarding harmonic phenomenology was thus prob-
ably to be expected.
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