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A group-theoretic treatment is given of the new phase found by Berry in the adiabatic evolution

of a quantum-mechanical system in a finite-dimensional Hilbert space. It is shown how the Berry
phases for the various eigenstates of the Hamiltonian are obtained from a set of angles associated
with a group element. For the special case of a two-level system there is just one such angle which

corresponds to the holonomy transformation associated with parallel transport around a closed

curve on a sphere.

Berry' has made the interesting observation that there
is a phase factor exp(iy„) in addition to the familiar
dynamical phase factor exp[ —(ilirt) 1 E„dt] in the evolu-

tion of a system which remains in an eigenstate of a slow-

ly varying nondegenerate Hamiltonian H(t) with eigen-
value E„(t). It was shown by Simon that this phase can
be obtained from the holonomy in the line bundle corre-
sponding to the eigenspace of the eigenvalue E„(t). Gen-
eralization to a degenerate Hamiltonian of the Berry
phase was made by Wilczek and Zee.

In the previous papers, ' the Berry phase and its gen-
eralization have been treated for a given eigenspace of the
H(t). In this paper we give a group-theoretical treatment
of this phenomenon and show that the Berry phases for
the various subspaces can be obtained from the action of a
common group element on each of the subspaces. This
not only provides a geometrical meaning to Berry's phase,
it also gives a simple prescription for evaluating it at least
in the case of a particle with an arbitrary spin interacting
with a magnetic field. In this case, the group element
mentioned above is the holonomy transformation associat-
ed with parallel transport around a closed curve on a
sphere which can be easily evaluated. Experimental im-
plications of this result will also be briefly discussed.

Let [ ~

n (0) ) I be a complete, orthonormal set of eigen-
states of H(0) with eigenvalues E„(0). Suppose also that
the unitary operator U(t) diagonalizes H (t) in this basis:

U (t)H(t)U(t) =HD(t) =diag(E, (t), . . . , E~(t))

with U(0) =I. Then the Schrodinger equation

HD(t)
~

p'(t)) =i%
~

p'(t))+iAUtU
~

p'(t)), (2)
at

where
~

P'(t) ) = U (t)
~
g(t) ) and the dot denotes time

derivative. On defining
~

n(t) ) = U(t)
~

n (0) ),
H(t)

~

n(t)) =E„(t)
~
n(t)) .

Clearly (1) does not determine U uniquely. But another
restriction on U may be imposed by requiring that for
every n, (n

~

ri ) =0 or equivalently

(n(0)
~

U (t)U(t)
~

n(0)) =0 .

If H (t) is nondegenerate then (1) can be satisfied by a uni-

tary U(t) if and only if
ie](t) i 62(t) i8~( t)

U(t)=U(t)diag(e ', e ', . . . , e ) .

Also U satisfies (4) if and only if 8„(t )

i(n(0)
i

U —U
~

n(0) ) which determines H„up to a
constant which is zero on requiring that U(0)= U(0)=I.
This proves that (1), (4), and U(0) =I can be satisfied by a
unique U(t). Now in the adiabatic approximation the
system remains in an instantaneous eigenstate of H(t)
once it starts there. Writing

i

g'(t) ) =pa„(t)
~

n(0) )

in (2), this implies that the off-diagonal matrix elements
of the last term in (2) may be neglected compared to the
first term. Therefore with the condition (4), we can
neglect the last term entirely. and write

H(t)
~
P(t)) =i%

~

g(t))a
at

can be written as

HD(t)
~

p'(t)) =i%
~

p'(t))
at

which has the solution
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~

P(t) &
= U(t)

~

P'(t) & = U(t)diag exp ——fE,dt, . . . , exp ——fEzdt
fi

So if
~
g(0) & =

~

n(0) & then

~

g(t) & =exp ——fE„dt U(t)
~

n(0) & .

Suppose now that the Hamiltonian is a function of a set
of parameters B and that its time dependence is due to the
variation of B(t) with time. Suppose that B(r)=B(0) so
that H(r)=H(B(r))=H(B(0)) =H(0). If H is nonde-
generate then

~
g(r) & cc

~

n(0) &. Hence

U(r)
~

n(0)&=e "~ n(0)&, (7)

where y„ is Berry's phase. So y„can be evaluated from
U(r) which is uniquely determined by (1) and (4). More
generally, if

~

g(0) & =g„b„~n(0) &, where b„are con-
stants, then

~
f(r) & =gb„exp ——f E„dt

~

n (r) &

n

=gb„exp ——f E„dt e "~ n(0)& .
n

Thus
~
P(t)& undergoes the usual dynamical evolution

with respect to the basis [ ~

n(t)&) which are parallel
transported according to (4) and acquire the Berry phases
when transported around a closed curve in parameter
space.

We now give a geometrical interpretation for U(t) in
the special case when H is the Hamiltonian of a particle
with an arbitrary spin interacting with a magnetic field B.
In the rest frame of the particle, we may take the Hamil-
tonian to be

H=pJ B(t),
where J=(J„,J~,J, ) are the generators of rotation in this
representation. (For the special case of a spin- —, particle,
2J; =cr;, the Pauli spin matrices. ) Since U(t) satisfies (1),
(4), and U(0)=I, U(t) must belong to the SU(2) group
generated by J; and it does not rotate about the instan-
taneous direction of B(t). This can be proved by noting
that a U(t) HU(2) group, satisfying (1), can be found for a
spin- —,

' particle (fundamental representation) for which H
is a 2 X 2 Hermitian matrix. Then, (4), written as
(n

~

ri & =0, implies that the diagonal elements of the gen-
erator of U(t) at time t has no diagonal elements in the
basis ( ~

n (t) & ). For an arbitrary spin, the same form of
U(t), with J' generating the corresponding representation,
will then satisfy (1) and (4) for the same B(t). So,
U(t) C SU(2) can be regarded as a rotation.

A rotation can be completely specified by giving the
orientation of a triad (e„,e~, e, ) relative to some starting

position. Let us consider the triad representing U. We
take it initially to be oriented parallel to the fixed external
coordinate system. We also take B to be initially pointing
along the external z axis. The condition (1) obviously
means that the triad representing U always has e, point-
ing along B(t) as B moves. The condition (4) means that
the triad, as it moves, does not rotate around e, . This
may be seen from the condition (4) (n

~

ri & =0 and from
the fact that since

~

n (t) & is the eigenstate with respect to
quantization along e„a rotation around e, would mean

~

n & ~exp(io„)
~

n &, 8„ is some phase.
The visualization of the motion of the triad is aided by

the following construction: Take a sphere S and consider
the triad placed on its surface with e, perpendicular to the
surface. As B(t) varies, the triad moves on the sphere
with its origin at the point of S representing the direction
of B(t) such that it does not rotate about the local direc-
tion of e, . In other words, e, e~ are parallel transported
on S. Now let B return to the external z axis. The triad
has gone around a closed curve C on S traced out by B(t)
and so has rotated about the original direction of e„be-
cause of the curvature on S, by an angle e. U will be ro-
tation around the external z axis giving a Berry phase to
each of the original eigenstates:

U(r)=e

It is well known that a = R d X, where R is the Gauss-
X

ian curvature on the surface and X is the part of the sur-
face of S bounded by C defined as follows: If we walk
along on the sphere in the direction determined by in-
creasing time then the surface X lies to the left. If this
direction is reversed then u is changed to 4~—a which
corresponds to taking the Hermitian conjugate of the
U(r) given by (8). This is to be expected because time re-
versal involves complex conjugation. We emphasize that
the above arguments do not depend on the particular rep-
resentation of J;. Since for a sphere R =(radius), a is
the solid angle subtended by X at the center. The phases
y„, which are then obtained from (7) and (8), are in agree-
ment with the result of Berry. '

We now consider the experimental implications of the
above purely geometric angle a. Consider the interference
of the two coherent beams in a neutron interferometer
passing through a slowly spatially varying magnetic field,
which can be time independent in the laboratory, and in
this respect is somewhat different from the experiment
considered by Berry. ' In the rest frame of the neutron,
however, the magnetic field is time dependent and the po-
larizations of the two beams in the interference region are
related by an extra rotation by the angle a defined above,
assuming the adiabatic approximation to be valid. Since
both eigenstates of o, undergo the rotation by the angle a,
the experiment can be done even with unpolarized
neutrons —the neutron "interferes with itself. "

In particular, when a=2~ there is a phase shift of +~
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between the interfering beams for the two eigenstates even
though classically there should be no difference between
the two spins. Such an experiment would therefore truly
demonstrate that a rotation of a fermion by 2m radians is
observable. This is different from the experiment of
Rauch et al. and Werner et al. in which there is a phase
shift +sr due to the passage of one neutron beam through
a suitably chosen homogeneous magnetic field. In the
adiabatic method one literally "sees" the spin being rotat-
ed, independent of the detailed properties of the neutron,
while in the other method one must use the experimental
value of the neutron magnetic moment and the time spent
in the field to calculate the 2m. rotation. Hence the two
methods are on a rather different footing, and it would
not be a priori impossible for them to give different
answers, although this would be very surprising. A mea-
surement of the 2m. rotation effect by the adiabatic
inethod would therefore be an independent test of the
overall consistency of our usual methods for handling
spin.

Consider now an arbitrary Hamiltonian H describing
an X-level system. Then 8 may be regarded as an ele-
ment of the Lie algebra of the unitary group U(N). Since
U(N) =U(1) X SU(N), H =BoJp+B.J, where Jo generates
U(1) and J; (i =1, . . . , N 1) gener—ate SU(N). But the
effect of BoJo on the eigenstates of H is to give just the
dynamical phase factor and there is no Berry phase asso-
ciated with it. Therefore, we shall consider just H=B J
where B are time-dependent parameters. Then there ex-
ists U(t)ESU(N), such that (1) is valid with HD belong-
ing to the Cartan subalgebra of the Lie algebra of SU(N),
generated by J1, . . . ,J„1,i.e.,

This can be proved by choosing a representation in which
J1, . . . ,J„1generate the set of real traceless diagonal
matrices and U then merely diagonalizes the traceless
Hermitian matrix H. Condition (4) may be viewed as fol-
lows. Let U(t+5t) be written as U(t)(1+iJ5t) Jis in.
the Lie algebra, and I+iJ6t can be interpreted as the in-
finitesimal rotation with respect to the local coordinate
system, as established by U(t). Then (4) says that J has
no diagonal elements, i.e., lies outside of the Cartan
subalgebra. Hence (1) and (4) have the following geome-
trical interpretation: consider an orthonormal frame in a
(N 1) dimensional —parameter space to which we give a
Euclidean metric. At t =0, the axes are oriented so that
B;=0 for i=N, N+. 1, . . . , N 1. Then U(t) —corre-
sponds to transporting this frame so that for every t, the
i =N, . . . , N —1 components of B(t), with respect to
this frame, are zero. Moreover, U is a product of infini-

tesimal SU(N) transformations such that in each such
transformation there is no contribution to the correspond-
ing rotation of this frame from the Cartan subalgebra in
the instantaneous basis.

But when B(t) returns to its original value at t =~,
1V —1

U (7 ) =exp i g ai J~ (9)

if H is nondegenerate so that for each eigenstate,
~

n(~) )
and

~
n(0)) are related by a phase factor. Hence, there

are N —1 angles e;, which are purely geometric in the
sense of being determined by a group-theoretic prescrip-
tion just from the time dependence of B(t), that determine
the Berry phases y„ for the various eigenvectors

~

n ) of
H according to

N —1

exp i g aJJJ
j=1

~n)= e" ~n), n=l, . . . , N. (10)

We thank S. P. de Alwis for drawing our attention to
the work of M. V. Berry.

In general, the variation of B(t) would be such that
I H(t): t E [0,~] ) generate a subalgebra of the Lie algebra
of SU(N). If this subalgebra is compact and connected
then there are as many independent angles a; as the rank
of this subalgebra. In principle these angles can be deter-
mined by obtaining U(r) according to the above prescrip-
tion.

The transformation (9) can be regarded as the holono-
my transformation in a vector bundle, with the parameter
space as the base manifold, and each fiber being iso-
morphic to the 1V-dimensional Hilbert space. The connec-
tion here is determined by condition (4), similar to the
connection on the complex line bundle considered by
Simon by focusing on just one eigensubspace. In our ap-
proach, we also have the associated principal fiber bundle
with SU(N), or the subgroup generated by the above-
mentioned Lie subalgebra, as the structure group. The
holonomy group is then a subgroup of the subgroup gen-
erated by the Cartan subalgebra. Since each holonomy
transformation and the associated angles aj are the same
for all the representations (associated vector bundles) and
for all the eigensubspaces in any given representation, this
makes our treatment more geometrical. Moreover, for the
SU(2) case, we were able to determine the single angle a
from the holonomy of the usual Riemannian connection
on a sphere, unlike the holonomy in the line bundle over
the parameter space of Simon. An interesting problem is
to find similar Riemannian spaces for more general Ham-
iltonians.
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