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Recent installations at a number of synchrotron light facilities have extended the use of the syn-
chrotron radiation spectrum into the far infrared. At these low frequencies, it is not self-evident
that the high-frequency, far-field expressions used normally to describe the synchrotron spectrum
are valid. In this paper this question is examined. The near-field distance of the synchrotron
source, analogous to the Rayleigh distance of conventional sources, is derived. It is shown that at
wavelengths from cm to mm ™! this distance is of the order of 1 m, which is sufficient to influence
the siting of an initial aperture. The effect of the finite length of the curved sections of the electron
orbit is investigated and it is shown that structure on the +10-dB level is introduced into the spec-
trum at these wavelengths. Finally, the temporal and spatial coherence of the field is examined. It
is demonstrated that no coherent radiation is to be expected from the synchrotron at these wave-
lengths, but that at mm wavelengths the field will be spatially coherent over apertures of order 100

mrad.

I. INTRODUCTION

A number of synchrotron light facilities have recently
been equipped with ports whose purpose is to extend the
use of synchrotron radiation into the far-infrared region
of the synchrotron spectrum.! The use of the electron syn-
chrotron in the infrared has been discussed by a number
of authors.>~* The advantages of high brightness and
high flux offered by the synchrotron over broadband labo-
ratory sources has been discussed by Duncan and Willi-
ams,” who also present estimates of the flux and bright-
ness particular to the Daresbury and Brookhaven institu-
tions.

These descriptions of the infrared properties of syn-
chrotron radiation are based on the derivation, due to
Schwinger,® of the high-frequency field radiated by a rela-
tivistic electron in circular motion. In the far-infrared re-
gion of the synchrotron spectrum the wavelengths are suf-
ficiently long that it is neither clear that the frequencies
may be assumed to be high, nor that the departure of the
electrons from a truly circular orbit may be ignored. In
addition, when the radiated wavelength approaches that
of the electron bunch length, coherent radiation from the
electrons may become important, effecting both the spec-
tral and spatial coherence of the radiated field. It is the
purpose of this paper to established the degree to which
the high-frequency approximation may be used in the cm
to mm~! region of the synchrotron spectrum, and
describe the consequences of coherent radiation on the
statistical properties of the field.

In Schwinger’s derivation® of the synchrotron spectrum
it is assumed a priori that the point at which the field is
calculated is infinitely distant from the circulating elec-
tron. In an experimental system the collecting aperture is
only finitely distant, and may be certainly much closer
than the electron orbit radius. Yet, at high frequencies,
the effect of the relativistic motion of the electron is to re-

35

strict that part of its orbit contributing to the radiated
field at a particular point to those sections very close to
the tangent ray from the orbit. At optical frequencies and
above this behavior is certainly sufficient to regard the
collecting aperture as being infinitely distant.

The length of orbit contributing to a given point varies
as o~ '3, and as the radiated frequency decreases, it be-
comes increasingly less obvious that this length may be re-
garded as small; that is, it becomes less obvious that the
aperture lies in the far field of the synchrotron source. In
Sec. II we derive the near-field distance of the synchrot-
ron source and consider whether it is sufficiently large to
influence the siting of an initial aperture.

In many synchrotrons the electrons do not, in fact, exe-
cute circular orbits.” The orbit consists of a number of
circular arcs joined by linear sections of track. In the far
infrared the length of orbit contributing to the field at a
point may approach the length of the curved sections of
track, and lead in turn to a lower radiated power than
might otherwise be expected. In Sec. III we discuss the
effect on the radiated field of the finite length of curved
electron orbit.

The radiated field from the electron synchrotron is the
summed effect of the field from successive bunches of
10'° electrons. At high frequencies the electron bunch
length is very large in comparison with the radiated wave-
length, and the electrons may be considered as radiating
completely incoherently. When the radiated frequency
approaches the bunch length, however, this is no longer
true. The cm to mm ™! region of the radiated spectrum is
particularly interesting because it is at these frequencies
that coherent radiation may become dominant.® The radi-
ation of coherent energy was a cause of some concern in
the original design of synchrotrons,’ but from the point of
view of spectroscopy it is a desirable characteristic. Some
evidence for coherent radiation in the far infrared is
described in Ref. 5.
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In Sec. IV we consider the statistical properties of the
radiated field in the presence of coherent radiation. The
spatial coherence of synchrotron radiation is the subject of
papers by Benard and Rousseau,'® and Akhmanov et al.!!
These papers leave the subject in a somewhat unsatisfacto-
ry state, inasmuch as the latter claim explicitly to contra-
dict the former. We demonstrate that their results are, in
fact, in agreement. The presence of a coherent component
within the field, however, allows for radiation from dif-
ferent bunches to interfere with each other. This is of
particular importance in the far infrared, where resolving
powers of ~MHz are possible. It is therefore desirable to
include the effect of multiple bunches within a coherence
calculation, and in Sec. IV we extend these calculations to
include multiple bunches.

Finally, in Sec. V we bring these theoretical results to-
gether by considering their implications in the far-infrared
region of the synchrotron spectrum, taking the post high
brightness lattice (HBL) Daresbury synchrotron as an ex-
ample.

II. NEAR-FIELD EFFECTS FROM A SINGLE
RADIATING ELECTRON

The spatial and spectral variation in the far-field, high-
frequency field radiated to a point P from a relativistic
electron in a circular orbit may be parametrized by three
variables: the length k of the tangent ray to P from the
orbit, the angle 1 that the tangent ray makes with the
plane of the electron orbit, and the ratio v of the radiated
to orbital frequencies. In this section we address three
questions. What is the length «, which k must exceed be-
fore the point P may be assumed to be in the far field?
For what range of angles ¥ may the usual far-field result
hold? Over what range of v can the frequencies be as-
sumed high?

We consider the radiated field from an electron execut-
ing one cycle of the circular orbit shown in Fig. 1, without
restricting the field point P to be infinitely distant. The
field E(x,?) is given by

JA(x,?)

E(x,t)=—(1/¢) or

—Vé(x,t), (2.1

where the retarded vector and scalar potentials are

A(x,t): f f a(t—t'[;LXlexll/C)

P

FIG. 1. The geometry of the synchrotron. The electron e
traveling at a velocity v executes a circular orbit in the x-y
plane. Its position at any time ¢ is given by the vector R, which
coincides with the positive y axis at ¢t =0.

¢(x,t)——-f f 8(t —t'— | x—x']| /c)

[x—x'|
Xp(x',t)dx'dt’ (2.3)

and the current and charge densities are given by

J(x,2)=e8(x—R(1))R(2) , 2.4)

p(x,t)=ed(x—R(1)), (2.5)

R(#)=R sin(vt /c)i+ R cos(vt /c)j , (2.6)
and

O0<t<2wR /v . (2.7)

At the frequencies of interest v/c may be regarded as
negligibly different from 1 and we set accordingly v equal
to c.

The Fourier transform F(w) of a quantity f(t) is de-
fined to be

1 o .

X [I(x',t') /e ) dx'de’ (2.2) Flo)=——7 [ fexplionar (2.8)
and from Eqs. (2.2)—(2.8) we find the Fourier-

and transformed potentials to be

|
/e T R(t)
Alx,t)=—2 _ Ry ,
(277.)1/2 fo IX_R(II)I exp{ l[wt+k IX R(t )]]}dt (2.9)
and

T 1 .
#lx.0)= <21;1/2 fo | x—R(t")| expl—ilot+k | x—RUD | [ar

(2.10)
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which from Egs. (2.1) and (2.3) are related to the Fourier-transformed field E(x,w) via
E(x,0)=—ioA(x,0)—Vé(x,0) . (2.11)

At this point we remark that the far-field result may be derived by expanding the phase of the exponent and retaining
only powers in t and 3. (See, for example, Jackson.!?) By analogy with more conventional sources, we might hope to
shed some light on the near-field problem by including the “Fresnel” term in t2. However, this leads immediately to an
integral which is difficult to handle analytically. We therefore proceed in a rather less direct fashion, and seek a general
integral form for the radiated field, and enquire under what circumstances it reduces to the far-field result.

With the identity

—1 pa— 3 O0—ioo 2w
expl |;k_‘;| R =% "cosydy [ deexp[—ikn-(x—R)] 2.12)
where i
n=/{(isine+ jcose)cosy+k siny (2.13)

and the positive limit is taken for z <0 and vice versa, the potentials may be written

A(x,a))z-——i—e-l%/; fd¢fdeexp[—ikrcos(e—a)]cosz{z
c(2m)
T .
Xexp(—ikzsing) [~ dt'R(t")exp{ —i [wt'—kr cos(ct'/R —€)]} , (2.14)
¢(x,w)=<-2—i—e%/—2 fd;[/fdeexp[—ikrcos(e—a)]cosd/
T

T
X exp( —ikz siny) fo dt'exp{ —i[wt’'—kr cos(ct'/R —€)]} . (2.15)

Performing the integrations over ¢’ in Egs. (2.14) and (2.15), substituting the result in Eq. (2.11), and collecting terms
according to their component results in

E(x,w):—(%;ﬁ f dy f deexp[ —ikr cos(e —a)]cosy
T
X exp( —ikz siny) | ki“siny cosyJ, (v cosy) /v cosy
| iv!
—i|— coseJ (v cosy)) +sine sin®yi *J (v cosy) /v cosy
vt
+3j sineJ (v cosy) —cose sin®yi *J,(vh) /vcosy | | | (2.16)
where
v=kR =0T 2r=w/wy . (2.17)
To reach (2.16) we have employed the approximation
iV . .
T ) =" fo explix cosgp—ivg)dp+0(1/v) . (2.18)

The € integration may be performed without approximation to yield
E(x,0)=(e/cW?k (2m)'/? [ exp(— ikz sing)cosy di)

X expl —iva) |ki®sing cosJ, (v cosp) /v cosy],(kr cosy)
+i¥sin%J (v cos) /v cos[ — (jeosa+isina)i¥~1J., (kr cosy)

—(jsina—icosa)i*vJ, (kr cosy) /kr cosy]

v—1

+l

J(veosy)[ —(jcosa+isina)i¥~ U, (kr cosyp)

—(jsina—icosa)i*vJ, (kr cos) /kr cosy] | . (2.19)
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As we may anticipate (2.19) to assume its familiar far-field form when » becomes large we write

J (kr cosyp)=J,((vr /R)cosy)
and, for simplicity, consider only the case for which

(r/R)cosy > 1

(2.20)

(2.21)

(which constrains, essentially, the field point P, Fig. 1, to lie outside the electron orbit). Under these circumstances the
Bessel function may be replaced by its expansion of similar order and argument:'3

J (vsecE) ~ (F-tang){exp[ —iv(tanE — %tan3§—§)+i1r/6]H(]1/)3( Tvtan’¢)

+exp[iv(tang — +tan’€s — &) —im/6]H 2y (+vtan’€)}

with an error, at worst,! of O(v~172)

When, say,
(v/3)tan’¢ > 10

the Hankel functions may be replaced by their asymptotic expansion

HYW(x)~V2/(mx Jexp| +(ix —im/6—im/4)]
and hence

J (vsec§) ~V'6/mvtang cos(vtang —vE—1/4)
and

J(vsecE) ~V'6/mv tang sing sin(v tang —vE — 1 /4) .

Substituting Eqgs. (2.24) and (2.25) into (2.18) and noting in addition that

v/kr cosy=cos§

we have

E(x,0)=(e/cWk fi)::w (cosyp/V'vtané )d | ki >siny coshJ, (v cos) /v cosy

X exp{ —i[kz siny—vtanf —via—§&)—7/41} ,

provided, from Egs. (2.23) and (2.26),

(2.22)
. This is the most severe constraint on v.
(2.23)
(2.24)
(2.25)
(2.26)
—i*sin*Y[J (v cosy) /v cosy][jsin(a— &) +i cos(a—§&)]
+i% =W (veosy)[ jcos(a — &) —isin(a—&)])
|
For small 3, (2.29) becomes
tanyo=z/(r?*—R?)'/? . (2.31)

(r’cos*y—R?)*/2> 30R?/k . (2.28)
The factor of 30 appearing in (2.28) is to an extent arbi-
trary. It follows from the asymptotic approximation of
the Hankel function (2.24) and it may be argued that this
is a rather conservative estimate. However, the presence
of the cube in (2.28) makes a detailed discussion unneces-
sary. We postpone discussion of this limit to continue
with the evaluation of (2.26), which is suitable for a
straightforward application of the method of steepest des-
cents. The phase ¥ of the exponential in (2.26) is station-
ary at some Y, when

av

=0 (2.29)
ay |y,

or

(r?cos’ho— R ?)" “tanyy=2z cosiy . (2.30)

The geometric significance of this equation may be seen
from Fig. 2. Equation (2.30) identifies a ray connecting
the field point to the orbit and lying in the tangent plane.
That (2.30) only supports this interpretation when v is
small is to be expected, as the importance of the tangent
ray lies in the fact that it is nearly parallel to the electron
velocity vector, a coincidence which is only true for field
points close to the plane of the electron orbit.

To the same level of approximation the second deriva-
tive of the phase at ¥, is

d*y

=(r*—R?H)'2 (2.32)
dy? |u,
and identifying the length of the tangent ray to be
k=(r2—R*'? /cos, (2.33)

the steepest-descent integration of (2.27) yields
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E(x,0)="(e/c)v(2m) exp( —i [k —v[a—E()1})
X | ki ?sinpocoso], (v cosyy) /v cbsn/to—iz"sinzg[/o[.lv(vcoslpo)/v coshp]{jsin[a—&(¢)]+icos[a— &)1}

[Z‘V—l

+ J(veosyy){jcos[a—&(¢)] —isin[a—E() ]} (2.34)

v
subject to the restriction that the field of O (1/+'/2) may be neglected, v, is small and (2.28) satisfied.

In the far field of the synchrotron radiation it is more convenient to work with coordinates specific to the tangent ray.
From Fig. 2 the angle a—&(y,) can be identified as the angle between the x axis and the projection of the tangent ray
onto the plane of the electron orbit. Writing this angle as 8 and introducing the vectors

€=]jsinB+icosB, € =jcosp—isinf, (2.35)
so that €, is the unit vector in the plane of the orbit transverse to the tangent ray, (2.34) may be written
E(k,10,v) = (27)""*v(e /c)expl —i(kx+vB)][i**(k sinhocosy— €)sin’y)J, (v cosiy) /cosyo+i 2 e, T, (v cosy) ] (2.36)

which identifies the field in the plane of the orbit to be transversely polarized.
It is convenient at this point to recall the important features of this result. The power radiated into unit angular fre-
quency interval and unit solid angle is given by
2

P(govidiodo ="k’ | Eov) | >+ | EWo, —v) ] 237
and substituting Eq. (2.36) into Eq. (2.37) we find
2
P(yo,v)dyppdw= (Ze:I)Q {[J'v(vcostlzo)]2+sin21b0[Jv(vcostl/o)/cosdzo]z} (2.38)

which is Schwinger’s result.

The radiated power spectrum of (2.38) can be put in its more familiar form by following Schwinger and replacing the
Bessel functions with their asymptotic representation for large argument and larger order [as distinct from large order
and larger argument, (2.22)] to find

( 1/)026 v )2

P(z/;o,v)dd;odm.:~—6TR—{[K2/3(v¢3/3)]2+[K1/3(v¢3/3)]2] (2.39)
T
which describes a power spectrum which is concentrated
to a small range of angles ¥, about 0. When 1y=0, the
spectrum takes it maximum value of
o2 3 1/3

= TA3W. 2.40

7R |4 (5) ( )

P(0,v)dYpdo=

The modified Bessel functions decay rapidly away to zero
when their argument exceeds 1, which, after Jackson,'? we
take to define the angular width of the spectrum at low
frequencies:

P, =03/, (2.41)
Associated with this angle is a length of track
L,=R1, . (2.42)

This length is a measure of the length of electron orbit
which contributes to the radiated field at a particular
point.

The significance of the limit (2.28) is that it defines a
distance kg from the tangent point

K0=2L2 > (243)
beyond which the field assumes its 1/« dependence. Only
at ranges greater than ko does the field assume its spheri- FIG. 2. The geometry of the tangent ray between the electron
cal spreading form. Thus, for an aperture placed at some orbit and the field point P. The ray is so defined that its projec-

distance « <ko, brightness and total power estimates, tion onto the x-y plane forms a tangent to the electron orbit.
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based on Eq. (2.39), will be significant overestimates, in
rough proportion to xg?:x>.

It is desirable to have a simple explanation of this re-
sult. We might anticipate that k, is simply related to the
distance at which the arc length R, subtends the first
Fresnel zone at the point P in Fig. 2. This is indeed the
case. The highest-order term in 1, neglected in the far-
field phase approximation is R2,%/2«. The arc length
Ry, will subtend the first Fresnel zone when this term
equals A/4. This will occur at a distance
K =kR 2Pt /= Rp, =k /.

III. THE EFFECT OF A FINITE
CURVED TRACK LENGTH

In many synchrotrons the track followed by the elec-
trons is not a circle, but a number of circular arcs con-
nected by linear sections. The arc lengths are typically
very much smaller than the 27R assumed in the source
distribution of (2.4)—(2.7). However, at high frequencies

J

exp(—ik |x—R|) _exp{—ik[|x—Rj| +R-(x—Rj)/|(x—Rj)|]]
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the length of electron orbit, L,, contributing to the radi-
ated field at a particular point is very small indeed and it
is safe to ignore any effects caused by the truncation of
the source distribution at the edges of the arcs.

In the far infrared this is no longer true, and L, may
approach the arc length of the electron track.!® In this
section we describe the effect that the truncation of the
source distribution has on the radiated field, restricting
the discussion to the far field of the synchrotron radia-
tion.

The finite arc length may be introduced by replacing
(2.7) with

—R¢,/c<t<R@,/c (3.1)

so that the circular arc subtends an angle of 2¢, in the
plane of the orbit. In the far field of the synchrotron, it is
neither necessary to distinguish between the angles a and
B, nor distinguish a particular value of ¥ by 1, so that we
may set

|x—R | [x—Rj|

(3.2)

in (2.9) and (2.10). From (2.11), (2.31), (2.33), and (2.35), we find

—vo,exp( —ikk) (1-8/9,

B¢, f,v)= 0KV 2m

where we note that the introduction of noncircular sym-
metry results in the field being a function of both 3 and S.
From (2.37) and (2.39) we may define a power gain

P(¢,B,V,¢1)

3.4)
P(y,v) (

G(¥,B,v,¢,)=

to be the ratio of the power radiated per unit solid angle
in the direction ¥, to the power radiated in the absence
of any truncation.

At sufficiently high frequencies (3.3) may be approxi-
mated asymptotically. Provided |B| <¢,,

G(,B,v)~1

(see, for example, Jackson'?). If |B| >é,, the phase in
(3.4) is nowhere stationary between +¢, and —¢,, and it
can be shown that

G(¢,B7V)~V_l .

Equations (3.5) and (3.6) provide the geometric optical
description of the effect of the source truncation. When
| B| <@, the point P lies in a region of constant illumina-
tion. When || exceeds ¢,, P lies in the geometric sha-
dow.

At lower frequencies there does not appear to be any
simple asymptotic solution to (3.3), and we are thus led to
investigate (3.3) numerically. As it stands (3.3) will not
nondimensionalize further. However, for values of
¢, <<2m, G(¢,B,v,¢,) is, to a good approximation, a
function of ¥,8/¢, and v'/3¢, =3¢, /1,=pn only; as
may be seen by expanding the exponential in the integrand

(3.5)

(3.6)

—1-p/s, {€isin(¢,7) —€)|[cosyp—cos(@,7)] +k siny}exp{ —i [v$, T+ vsin($,7)]] ,

(3.3)

of (3.3). To confirm this conclusion, and investigate the
behavior of G (¢,8/4,,1), (3.3) has been numerically in-
tegrated. A simple Simpson’s rule scheme was imple-
mented. The number of points in the interval was deter-
mined by requiring that there be at least 20 points per
wavelength at the highest frequency of oscillation on the
interval —1—B/¢,, 1—B/¢, To check the scheme, the
program was used to compute P(0,v) [Eq. 2.40)], for
values of v < 10000, and found to be in error by <0.1%.

Figure 3(a) shows the function G;=G(0,0,u,d,
=0.025). Figures 3(b), 3(c), 3(d), and 3(e) show the ratio
G(0,0,u,¢,)/G, for values of ¢,=0.05, 0.1, 0.2, and 0.4,
respectively. In keeping with the remarks above,
G (0,0,u,¢,) can be seen to have only a very weak depen-
dence on ¢,. This result demonstrates that the crucial
factor in determining the field in the presence of a trun-
cated source is the number of wavelengths, given by u /,
radiated by the electron in passing from —4¢, to ¢,.

Figure 3(a) may be explained in these terms. When
M << contributions from across the entire arc are in
phase and G(0,0,4) varies as ¢,>. When u >>, the ef-
fects of the edges of the arc become negligible and (3.5)
holds. When u~ the edges play an important role in
determining the radiated power distribution. The oscilla-
tions seen in Fig. 3(a) may be interpreted as interference
between contributions from either end of the arc.

Figures 4, 5, and 6 show the gain G(0,8/¢,,u) for
u=1.5, 3, and 10, respectively. The same behavior is seen
in this figure. At small values of y, the field in the orbit
of the electrons is dominated by diffraction from the
edges of the arc. Considerable energy has been radiated
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FIG. 3. (a) The power gain G(0,0,u,¢,) in the synchrotron
spectrum, on the axis of the synchrotron beam, when the circu-
lar section of the electron orbit subtends an angle 2¢,, over that
power radiated with a truly circular orbit.  (b)
G,=G(0,0,u,4,=0.025); (o G(0,0,u,¢6,=0.1)/G;; (d)
G(0,0,1,,=0.2)/Gy; (e) G(0,0,u,6,=0.4)/G,.

into the shadow region of (3.6), with a consequent loss
when B/¢, =0 of 15 dB. As u increases, the diffraction
effects reduce, although their effect is still marked at
p=3. By the time =10, however, the fields tends to
that described by (3.5) and (3.6), i.e., a region of constant
illumination bounded by a shadow.

IV. THE STATISTICS OF THE RADIATED FIELD

Thus far, we have considered only the field radiated
from a single electron. The field radiated by the electron
synchrotron is the sum of the fields radiated by successive
bunches of ~10'° electrons. In this section we consider
the consequences of the electron bunch, and successive
bunches, on the radiated field.

The total field radiated by a succession of electron
bunches is

K
Er(x,0)= Y Eg(x,0);exp(—iwt;), (4.1)
j=—K

where ¢; is the time at which the center of the bunch
passes the tangent point from the orbit to the point x, and

B/®¢

FIG. 4. The power gain G(0,8/¢,,u=1.5) in the synchro-
tron spectrum, in the plane of the electron orbit, when the circu-
lar section of the electron orbit subtends an angle 2¢,, over that
power radiated with a truly circular orbit.

Ep(x,w) is the field radiated by a single bunch of N elec-
trons:

N
Ep(x,0)= 3 E(x,0)exp(—iwt;) (4.2)

i=1

3.0)
o

dB

G(0.B/d¢.pY

-10+

_15T

20 nlll 4 ; , Hhi g
-4 -2

B/®t

FIG. 5. The power gain G(0,8/¢,,,.=3) in the synchrotron
spectrum, on the plane of the electron orbit, when the circular
section of the electron orbit subtends an angle 2¢,, over that
power radiated with a truly circular orbit.
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and ¢; is the time at which a particular electron passes the
same tangent point on the orbit. We define the functions

A(xy,%5,0)=(c/2m){ E(x},0) E*(x5,0)) 4.3)
and
| A(x),x5,0) |
C(x,Xy,w)= (4.4)
0% ) = T R ) | Al k@) | 172

so that, for x;=x,, A(X;,w) is the mean radiated energy
per unit solid angle, and C(x},x,,w) is the spatial correla-
tion coefficient between the fields at x, and x,.

In the calculation of these functions a considerable sim-
plification arises if the assumption is made that the posi-
tion of each electron is a random variable which is in-
dependent of any other electron position, i.e.,

(R RO ) = (RO ) ARWye ), iEm, j£k .

(4.5)

I have been unable to find a demonstration of this result
in the literature, although its use is fairly universal. It is
not our purpose here to examine this difficult area. We
will assume (4.5) is true, and merely note that we know of
no evidence to suggest otherwise.

With this assumption (4.3) becomes

G(0,B/¢.p=10.0)
3 1
@ I

|
-
o

151

]
-
1
N
=)
~ A4
-~

B/t

FIG. 6. The power gain G (0,8/¢,,u=10) in the synchrotron
spectrum, on the plane of the electron orbit, when the circular
section of the electron orbit subtends an angle 2¢,, over that
power radiated with a truly circular orbit.

A(x,xp,0)= (c/2‘rr)<2EB(x1,co) jexp( —iwt; ) <2EB X2, @ kexp(—ta)tk)>

+(c/2m) <EE X1, E(xz,w)3j>, j£k . (4.6)
Equation (4.6) requires us to find the mean and mean-square fields from a single electron bunch: (Eg(x;,w)) and
(Eg(x;,0)-Ej(x,,m)), respectively. The mean field is
< EB(XI,CO)J‘ ) = 2 F,-_,-(K,tﬁ,v)exp[ —l(kK'U +vBij -{—wtu )] 5 (4.7)
i
where we have employed (2.36) and (4.2) and set
F(k,¥,v)=(2m)'?v(e /c)[i*(k singocosio— €);sin’tho)J, (v cos) /costhy+i >~ '€ T, (v cosyp)] . (4.8)
f
We now assume that the electron bunches are distributed the quantities 7 and ¢ we find
uniformly around the orbit so that they pass a particular 2
point at intervals of time 75. For convenience we define  k#1+vB; ~k[k+RB—¢E; +Bn; —(3/2k)n;
the time origin to be the time at which the center of the +(1/26)¢,2]
zeroth bunch passes the tangent point from the orbit to x, t
so that (4.10)

ti=jrp . (4.9)

The bunches are assumed to be statistically identical so
that < ;= < ;. Each one is distributed around a cen-
tral electron whose orbit radius is R and which lies in the
plane z =0. The ith electron is assumed to have an orbit
radius R +7, lie in the plane z=¢, and pass the origin at
a time ¢, later than the central electron. The values of «,
B, and ¥ in the phase of the exponential in (4.7) are func-
tions of the electron orbit radius R +7 and height &
through (2.31). Expanding this phase to second order in

where the values «, 3, and ¥ refer to the tangent ray from
the central electron. For a high brightness machine such
as the Daresbury (post HBL) synchrotron radiation spec-
trum (SRS), 7 is typically ~10">m and
£~0.15%10"3 m. Assuming 9 <0.1 to satisfy (2.31) and
k> 1.0 m to satisfy (2.28), only the linear terms in (4.10)
need be retained. In addition, a close examination of
(2.22) and (2.23) shows that satisfying (2.28) ensures that
F is slowly varying in comparison with the exponential in
(4.7). Thus, for the frequencies of interest,
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(Ep(x,0))=NE(x,0){exp(—iwT;)) , @.11)  (Ep(x,0)E3(x3,0)) = (Ep(x,,0))-{ E}(x,,0))
where we have set +<2§Ei(x1,a))-E?(x2,w)>
=B — Y& /e +1; . 4.12) i (4.13)
The second term we require is the mean-squared field assuming (4.5) and a large N. Following similar reason-
from a single bunch: | ing that led to (4.11)
(EBg(x;,0) B} (x5,0)) =E(xy,0)-E*(x;,0)
X (N*(exp[ —iw7(x));]) {explioT(x,);]) + N {exp{ —iw[r:(x;) —7:i(x,)]} )) . (4.14)

We remark at this point that the results of both Bernard and Rousseau'® and Akhmanov!! may be deduced from this
formula, in spite of the latters’ claim to contradict the former. Assuming that ¥(x;)=1(x,)=0, that the quantities
ti» Wi, and &; are Gaussian distributed (as we shall presently), and that 7(x;) ~7(x,) in the coherent term in N2, (4.14) be-
comes Eq. (44) of Ref. 10. Alternatively, if the frequency is assumed sufficiently high that the coherent term is negligi-

_ble and (4.12) is substituted into (4.14) we reach Eq. (2.6) of Ref. 11 on allowing for the differing coordinate choice.

Equations (4.11) and (4.14) may be used to provide a general expression for the spatial and temporal coherence of the
synchrotron radiation. It is, however, more instructive to give the characteristic functions a particular form which we
take to be Gaussian; that is, we assume the joint probability density function of ¢;, 7;, and §; to be

—3,2
plt<t,m <& <C)dtdy d§=%—rexp[(tz/a,z—+—172/0,,2+§2/o§2)/2]dt dndé (4.15)
t“n9¢
in keeping with (4.5).
From (4.3), (4.9), (4.11), (4.14), and (4.15) the mean radiated energy per unit solid angle is

sin’[w(K +3)75]
A(x,0)=(c/2mE(x,0)-E*(x,0) |[N? ey /’2)3 exp[ —2k*(0,’c?+ 4o+ B0, ) +N(2K +1)] (4.16)
n“(wtg

which may be converted to power by multiplying by 1/(2K +1)73.

The energy spectrum of (4.16) contains two terms, which may be identified as the coherent component, proportional to
N?, and the incoherent component, proportional to N. The coherent component is, more or less, a line spectrum, result-
ing from the interference between the separate bunches. Each line has a maximum when

w=nwg, h=...,—1,0,1,..., (4.17)
where
(L)B=27T/TB N (418)

taking a value of the maximum of

(c/2mIN? | E(x,nwp) | 22K +1)%exp[ —2(nwp /c)X 0, c? + o2+ Bo,?)] (4.19)
and whose width is

Ao=w/K +1) . ' (4.20)
When B=1 =0, the coherent and incoherent components are equal in amplitude when

w=w.=0, '"{In[N2K +1)]}'/*. 4.21)

From (4.21) it is apparent that the crossover point between the coherent and incoherent is a function of the number of
bunches. In any measurement this will be determined by the resolution of the measuring instrument (and not the integra-
tion time of the experiment).

The spatial coherence between the points x; and x; is

_ E(x;,0)-E*(x;,0)
T [AGxpe)Alxy,0)] 2

C(x,X3,w)

N2 sin’[w(K +1/2)7g]

— exp( —k2{20,2/c?+ 0 [B2(x1) + B (x2) ]+ 1Y (x 1)+ ¥*(x2)]))
sin“(wTg /2)

+N (2K + Dexp( —k{ o [B(x)) —B(x) P +ol[¢x))—p(x)]*}) | - (4.22)
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The behavior of this function depends upon the relative
power in the coherent and incoherent parts of the spec-
trum. When o <<w,, the field is completely coherent ex-
cept when E(x;,0)-E(x,,0)=0.

When o >>w,, the coherent part of the spectrum is
negligible. When ¢(x,)=1(x,)=0, the spatial coherence
is determined entirely by the angle B(x;)—B(x,) through
which the tangent ray turns in going from x, to x,. This
dependence may be characterized by a coherence angle 3.,
through which the coherence drops by 1/e:

B.=(1/ka,)[In(4)]'72 .

In a similar fashion the variation in coherence out of the
plane of the orbit may be characterized by a coherence an-

gle ¢,.:
Y. =(1/ko)[In(4)]'72 .

In the far field the angular extent of an aperture in the
plane of the orbit is equal to the range of angles in 8 that
it subtends. Equations (4.23) and (4.24) are thus a direct
measure of the spatial coherence of the synchrotron radia-
tion across an aperture.

(4.23)

(4.24)

V. APPLICATION OF THE RESULTS TO
HIGH-BRIGHTNESS SYNCHROTRONS

This study was started in response to concern that
departures from the high-frequency form of the synchro-
tron spectrum in the mm region might result in lower
values of flux and brightness than would otherwise be ex-
pected. In this section we examine this question by apply-
ing the results of the previous three sections to the post
HBL Daresbury SRS.

In Table I the values of the lattice and beam constants'?
are shown, together with the values of the various param-
eters identified in the previous sections as characterizing
the radiated power. Three sets of values are given, corre-
sponding to the wavelengths 10, 1, and 10~ ! mm.

The first two parameters, v and 9,,, are within the lim-
its set by (2.22) and (2.31) and need no further comment.
However, the near-field distances k are surprisingly large.
In a practical synchrotron, the choice of geometry is re-
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stricted, and for this reason the first aperture encountered
by the beam is a mirror whose task is to deflect the beam
away from the orbit. Table I demonstrates that there is
little to be gained from siting this mirror at distances
closer than 0.5 m (say) to the tangent point. Within this
range the effective length of orbit contributing to the field
at the mirror is reduced by the Fresnel term in the phase
of each contributing element.

The values of p shown in Table I show that no overall
loss of power is likely to accrue from the finite length of
the arc sections. However, at wavelengths greater than
10~! mm, the field will show considerable structure on
the +5-dB level. The parameter p is linear with ¢,, and it
can be seen from Fig. 3 that the effect of finite arc length
at the low frequencies is highly dependent on the particu-
lar synchrotron geometry. For wavelengths less than
10~! mm, the effect of the finite arc length may be ig-
nored for most purposes.

The values of w/w. indicate that, at Daresbury,
coherent radiation is probably negligible at these wave-
lengths. The value of K is determined by the resolving
power of the instrument used to measured the spectrum.
At mm wavelengths, resolving powers of 100 kHz are
possible with heterodyne spectrometers; however, it may
be seen from (4.20) that the dependence of w, on K is ex-
tremely weak, and the crossover between the coherent and
incoherent components of the spectrum is largely deter-
mined by the number of electrons in a bunch. It is also
worth pointing out that the crossover occurs at a frequen-
cy some six times higher than the half-width of the
coherent component o,”!. Given this fact, it would
perhaps be best not to take the Gaussian form of the
coherent component at these frequencies too seriously.

The importance of the angle ., which measures the
spatial coherence in the plane of the orbit, depends on the
dimensions of the aperture. To give a specific example,
the field over a mirror subtending 50 mrad would vary
from compete spatial coherence at 10-mm wavelengths, to
almost complete incoherence at 107! mm. Clearly, for
any particular application B, is an important parameter.

Out of the plane of orbit a slightly different mechanism
operates. At a 10-mm wavelength, the coherence angle ¥,

TABLE I. The parameters describing the beam, lattice, and radiated spectrum of the Daresbury (post high brightness lattice) SRS.

BEAM AND LATTICE PARAMETERS
RADIUS ELECTRONS PER NUMBER OF BUNCHES BUNCH RADIAL BUNCH VERTICAL BUNCH
BUNCH 1 MHz RESOLUTION) LENGTH WIDTH WIDTH
R (m) N K o (sec) o (m) o, (m)
5.5 1010 103 2 x 10710 1073 5 x 1074
RADIATED SPECTRUM PARAMETERS
A v Ko Vuw " m/mc Bc Ve
(m) (m) (rad) (rad) (rad) (rad)
1072 3 x 103 1.1 1071 2.9 7 6 x 1071 3 x 1071
1073 3 x 104 0.5 4 x 1072 . 7 x 10t 6 x 102 3 x 1072
1074 3 x 10° 0.2 2 x 1072 14.4 7 x 10° 6 x 1073 3 x 1073
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is larger than the width of the beam, and the field may be
regarded as coherent irrespective of the width of the mir-
ror. For wavelengths less than 10! mm this is no longer
the case for here the coherence angle is very much less
than the beam half-width.
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