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The canonical ensemble is formulated for lattice gauge theory with heavy quarks in the system. A
mean-field analysis of SU(2) gauge theory is carried out within this formulation. The dependence of
the Wilson loop on the thermodynamical properties is analyzed in an SU&(2) XU~(1) phenomeno-
logical model. This analysis can contribute to an understanding of the partial-quenching approxi-
mation relating to the vanishing of the imaginary part of the Wilson loop on a lattice with the
nonzero chemical potential.

I. INTRODUCTION

It is a rather well-established fact that strongly interact-
ing matter exhibits a behavior typical of a systetn with a
phase transition. For sufficiently high temperature
and/or baryon-number density the color is deconfined and
the system undergoes a phase transition from a hadron
gas to a quark-gluon plasma. ' This critical behavior can
be observed in a pure SU(3) gauge theory on a lattice as a
discontinuous jurnp in the energy density or in the order
parameter (Wilson loop) both of which suggest a first-
order phase transition. The situation for the full lattice
gauge theory (QCD) including the dynamical fermions
(quarks) is still not so well confirmed. There is, however,
strong evidence' for the deconfinement phase transition in
the full system with color sources but the order of this
transition remains until the present unclear. Some of the
most recent Monte Carlo results suggest a second-order
phase transition in the system with dynamical quarks.
There are also difficulties in the Monte Carlo analysis of
the model with nonzero chemical potential p. These are
mainly due to the fact that in the SU(N) gauge theory for
N )2 the fermion contribution to the Euclidean lattice
action is a complex one. ' Nevertheless, the Monte Carlo
investigation of the lattice QCD with p&0 has been re-
cently obtained where in order to avoid the problem of
the complex fermion determinant the "partial quenching"
approximation has been applied. The mean-field analysis
of lattice QCD with p&0 has been also recently studied in
the literature.

The contribution from a nonzero baryon number to the
thermodynamics of lattice QCD has been studied up to
this time strictly in the grand canonical (GC) ensemble
with respect to baryon-number conservation. In the rela-
tivistic statistical thermodynamics, however, we have a
choice between the GC and the canonical (C) treatments
of the conservation laws. The possible differences be-
tween GC and C descriptions of the conservation laws to-
gether with the implications of the exact implementation
of the charge conservation have been recently studied in

the literature in different thermodynamical models. " It
turns out from the above discussion that in many realistic
physical situations the application of the GC ensemble
with respect to the conservation laws can be questionable.
This is especially true in the case when we deal with a
small amount of matter enclosed in a tiny volume with a
fixed but small absolute value of the quantum numbers.
This situation is found in the laboratory in the central re-
gion for heavy-ion collisions with the absolute value of the
baryon number B =0 and also for hadron-hadron col-
lisions when B is small. In the above actual cases the C
description should be preferred over the usual GC treat-
ment of the conservation laws.

One of the main purposes of this paper is the forrnula-
tion of lattice QCD in the C ensemble with respect to
baryon-number conservation. With the assumption that
there are only heavy quarks in the system we shall find
the canonical partition function in the SU(3) lattice gauge
theory. As an example we use mean-field (MF) analysis
of SU(2) lattice QCD to show the possible implications of
the canonical formulation on the thermodynamical
behavior of the system. We shall show in terms of MF
approximation that in the limit of large values of baryon
number and volume of the system but fixed baryon-
number density the GC and C ensembles are equivalent.
We shall also observe that the above analysis can give
some information about the validity of the "partial
quenching" approximation as it has been applied in the
GC ensemble.

This paper is organized as follows. In the next section
we briefly summarize the canonical description with
respect to internal symmetries. Then we formulate lattice
QCD with the exact implementation of the baryon-
number conservation. We are then able in the fourth sec-
tion to compute the Wilson loop in terms of a
phenomenological model with the SUc(2) X U~(1)
internal-symmetry group formulated in the C ensemble.
The mean-field analysis of SU(2) lattice gauge theory in
the C ensemble in the strong-coupling limit is also present
in this section. Finally we draw some conclusions about
our analysis of lattice QCD in a C formulation.
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II. CANONICAL DESCRIPTION
OF INTERNAL SYMMETRY

The formulation of relativistic thermodynamics with
the exact implementation of the conservation laws is car-
ried out through a procedure based on group-theoretical
methods. ' For this situation the formal structure resem-
bles the CiC description with the main difference being
that we define the generating function by taking the trace
over all states as

Z(g, V, f3) =Tr[e ~ U(g)], (2.1)

where U(g) is the unitary reducible representation of the
symmetry group 6 with gEG, 8 the Hamiltonian, V
volume, and P the inverse temperature of the system. Be-
cause of the exact symmetry and the decomposition of
U(g) into the form g e U (g), one can write'

x
Z(g, P, V) =g Z, (/3, V)d(a)

(2.2)

XZ(P, V, yi, . . . , q&, ), (2.3)

where dM is the Haar measure over the group and

gi, . . . , y„ the parameters of the maximal Cartan sub-
group of the symmetry group G. From (2.2) and the defi-
nition of the GC partition function one can also establish
the following simple relation:

Z(P, V,yi, . . . , g„)
=Z (P, V p, =iy, /13, . . . , p, „=iy„/P) . (2.4)

In our present analysis we shall apply the above formal-
ism to the simple case of the U(1) baryon symmetry group
for lattice QCD in the next section. In the following sec-
tion we shall develop a simple phenomenological model
with the symmetry SU(2) XU(1) for the exact evaluation
of the thermodynamical quantities.

III. LATTICE QCD WITH BARYON-
NUMBER CONSERVATION

In the lattice formulation' of QCD the partition func-
tion on an isotropic Euclidean lattice with N, (N ) tem-
poral (spatial) lattice sites and a nonzero baryon chemical
potential' p can be found as

Z(p, N„N, x ) = f + dU exp( —SG )(detg) f (3.1)
links

with

with Z (P, V) the usual canonical partition function given
by Tr [exp( PH)] w—hich contains exactly that value of
the quantum numbers which correspond to the a repre-
sentation of the symmetry group. X (g) and d(a) are the
character and the dimension of the n representation of the
group. By using the orthogonality properties of the group
character one can find'

Z (P, V) = f dM (yi, . . . , y„)X (yi, . . . , q&„)

being the pure gluon part. Nflndetg is the quark-gluon
contribution to the lattice action, which is gotten after the
integration of the quark spinor fields. The fermion ma-
trix in (3.1) has the form'

Q=1 —~ g M„ (3.3)

with ~ the "hopping" parameter and

(M, ) „=(1—y )U„5„
+(1+y„)U „y„ (3.4)

Zri(N, N~, x) = cos(By)Z(y, N„N~, h), (3.6)

where we have used the symmetry properties of the gen-
erating function (y~ —y) together with (3.5). In the
leading order in the hopping-parameter expansion the
generating function can be obtained as

where U is an element of the SU(N) group.
In order to bring the chemical potential into the theory,

one can use the prescription of Ref. 15, which is contained
in the following substitution:

U~Ue", U ~U e (3.5)

This is set into the v=O term of (3.4). However, this re-
placement implies that the fermion matrix (3.3) is no
longer Hermitian. A direct consequence of this is that the
ferrnion contribution to the Euclidean lattice action be-
comes complex for N ~2. This fact alone is the origin of
the well-known difficulties in the Monte Carlo computa-
tional procedures, which require a real and positive-
definite measure.

The complex contribution to the fermion determinant
with @&0 can also be found in a model outside of lattice
QCD (Ref. 12). Thus the above feature is neither directly
connected with the lattice regularization scheme nor with
the way in which the chemical potential has been brought
onto the lattice. Its presence has a rather general nature
arising in the gauge theories which is related to the struc-
ture of the SU(N)-symmetry group with N & 2.

After having established the thermodynamics of QCD
in the GC ensemble, we now want to find a lattice parti-
tion function Zrr(N„N, a) which gives an exact im-
plementation of the baryon-number conservation. Howev-
er, we should note at this point that the quantity B is ac-
tually just the difference between the number of quarks
and the number of antiquarks. Then the real baryon
number is simply B/3 for SU(3).

In the following analysis we shall restrict ourselves to
the case for which there are only heavy quarks present in
the system. Thus the determinant in (3.1) can be evaluat-
ed using the "hopping parameter" expansion, which for
very heavy quarks and 1V, & 4 can be approximated by the
leading term in this expansion. ' ' With the formalism
indicated in the previous section applied to the U(l)
internal-symmetry group, the C partition function be-
comes

SG —— g —Re Tr UUU U
6 1 (3.2) Z ( qr, N, N, h ) = f + exp( —SG —SF )

links

(3.7)
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with SG as in (3.2) and

SF—— h—(cosgLR —sin(pLt ),
N

where h:—4NI(2R. )
' is the quark parameter and

LR —=Q ReL„and Lt —=Q ImL„

with the Wilson loop at the spatial site x given by

(3.8)

(3.9)

Thus with the generating function with (3.7) the in-
tegration over the UR(1) group can be performed exactly
so that the canonical lattice partition function becomes

Zt3(N„N, h)= f + dUe IR(hy)TR(y 'LR)
links

(3.10)
with y =(LR +LI )', IR(x) the modified Bessel func-
tion of the first kind, and TR(cosy)=cosBy being the
Chebyschev polynomial. The thermal average of any
physical quantity f ( U) in the C ensemble can be calculat-
ed in the usual way as

(f(U))R ——f QdUe f(U)I&(hy)T&(y 'LR) f +dUe IR(hy)T&(y 'LR) . (3.11)

Now let us discuss the relation between the C and the GC partition function as given above in (3.10) and (3.1), respec-
tively. In the ordinary statistical thermodynamics the C partition function is the coefficient in the cluster decomposition
of the CsC partition function. The same relation holds for the relativistic statistical thermodynamics where the distinc-
tion between the GC and the C ensemble are given on the level of the conservation laws.

For the case of the UR(1) symmetry this cluster decomposition has a particularly simple form:

Z(p, N, N, h) = g e"~ ZR(N, N, h)
8 = —oo

with ZR(N, N, h) given by (3.10). From the relation

(3.12)

1
exp —,z t +— t "Ik(z),

k = —oo

(3.13)

one can find from (3.12) that

Z(p, N„N, h) =f g dU exp[ —SG —h cosh(pP)LR)cos[h sinh(pP)Lt] (3.14)

which is just the GC partition function recently used in
Ref. 5 for the Monte Carlo evaluation of the statistical
QCD on the lattice with nonzero chemical potential. The
last term cos[h sinh(pP)Lt] together with the weight fac-
tor exp( —SG —SR) in (3.14) leads to the large fluctuations
and thereby produce the difficulties in Monte Carlo com-
putation. In order to avoid this problem, the "partial
quenching" contained in the substitution Lt ——0 in (3.14)
has been proposed. Unfortunately on the level of the GC
ensemble one cannot test the validity of this approxima-
tion. '

In the C ensemble we are in general also not free from
the problem concerned with these large fluctuations in the
Monte Carlo computation. For large values of the baryon
number the Chebyschev polynomial term in (3.10) plays a
similar role to the cos[h sinh(pP)LI ] of the GC ensemble.
Nevertheless, for not too large values of the baryon num-
ber a numerical analysis in the C ensemble may be possi-
ble. Thus for instance in the central region of the heavy-
ion collision where 8 =0 as well as in the hadron-hadron
scattering it could be possible to deduce the thermo-

dynamical properties of the produced hadronic matter by
using the C partition function given in (3.10) as a basis.
Furthermore, one may well suspect that since the argu-
ment of the Chebyschev polynomial is proportional to
[1+(Lt/LR ) ] and generally the ratio Lt/LR is
rather small, the numerical analysis can probably be per-
formed for reasonably large values of the baryon num-
ber. "

Now we consider the "partial quenching" approxima-
tion on the level of the C ensemble. Because of the cluster
expansion (3.12) and the relations (2.3) and (2.4) one can
conclude that the approximation LI ——0 in both C and GC
is equivalent. As we have already pointed out in the GC
formulation it is not so clear how to test the above as-
sumption. In the C ensemble the situation is quite dif-
ferent. Here it is possible to check the validity of the
"partial quenching" approximation by computing first the
thermal average of some quantity f ( U) using (3.11) with
some given small value of the baryon number B and then
comparing it with

(f(U)) =f gdUe f(U)I (hL ) f +dUe I (hL„) . (3.15)
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Thus in this way one can deduce the possible contribution
of the imaginary part of the Wilson loop Li in the given
model. '

1.0-

IV. PHENOMENOLOGICAL MODEL AND
MEAN-FIELD THEORY

A

V

o.e

Now we can use the results of the previous section to
determine the thermodynamics of the system in which the
absolute value of the baryon number is conserved. In the
following discussion we shall restrict ourselves to the case
of the SU(2)-color gauge group for which we shall analyze
only the properties of the Wilson loop in the canonical en-
semble.

First we consider a very simple model which consists of
a gas of quarks and gluons with the exact implementation
of the color and baryon-number conservation connected
with the SUc(2)XU~(1) internal-symmetry group. This
model has been recently discussed by Skagerstam" in re-
lation to the finite-volume correction to the energy density
which has been compared to the usual continuum limit.
In our case we shall use this model in order to show the
behavior of the Wilson loop on both the volume and the
net baryon number of the system.

We require that only those states are allowed in the sys-
tem which are color singlets so that the C partition func-
tion Zo(8, V, T) has the global color charge equal to zero
with a specified baryon number 8 By u. sing (2.4) and
(3.6) the C partition function takes the form'2

1 C Z
Zo(B, V, T)=—e ' (1+e™B)fdx+1 —x e ' Iz(c2x),

7T 0

(4.1)

where the constants c, and c2 are, respectively, 8 VT Iqr
and ( c i l2)(m IT) K2(m IT) with the quark mass m and
Iz(x),K2(x) the modified Bessel functions of the first and

I

o.e

Q.4
12

I

1e Bq

FIG. 1. The dependence of the thermal average of the Wilson
loop (

~

L ( )z on Bq 4VT fo—r different values of the baryon
number B as obtained in the gas model with SU~(2))&U&(1)
internal symmetry. The lower (solid) curve represents the case
B =0, the middle (dash-dot) curve is B =2, the top (dashed)
curve is B =10.

second kinds, respectively. In (4.1) the integration over
the Uii(1) group has already been performed and the sym-
metry properties of the Bessel function Iz(x) have been
used. Furthermore, we may readily conclude that from
(4.1) the only admissible values for 8 are 0,2,4, . . . . This
result can be interpreted to mean that a11 the colorless ob-
jects [SU(2) baryons] may only be constructed from even
total numbers of quarks minus antiquarks.

In our previous analysis' we have indicated that for the
SU(2) gauge group in the gauge where the zero component
of the gauge field A' is equal to 5 3C& with a constant qadi

the %'ilson loop L is the character of the fundamental
representation of the SUc(2) group. Thus L becomes sim-
ply cosy. Starting with the partition function (4.1) the ex-
pectation value of the Wilson loop for a given 8 can be
found as the average over the SUC(2) XU~(1) group given
by

C Z C Z2
(

~

L
~
)z ———,

' f dx+1 —x x e ' Iz(c„x) f dx+1 xe '
Iz(coax—) . (4.2)

The dependence of (
~

L
~
)z on Bq=4VT for a different

value of the net quark number 8 is shown in Fig. l. Ac-
tually in the numerical analysis we have assumed for sim-
plicity c i ——c2. The results indicate that for Bq & 4 the
Wilson loop is far from its asymptotic value and strongly
depends on the value of the net charge. If we assume that
the temperature in the quark-gluon plasma is around 200
MeV, which could be produced in hadron-hadron col-
lisions, and its volume is in the range from 1 to 10 fm,
the lower expected value of Bq/4 is of the order of unity.
For Bq ——0 the lowest value of the Wilson loop can be ex-
actly determined from this model. For the net charge
B & 10 even in the case of very small Bq the Wilson loop
is close to one. This agrees with the results obtained pre-
viously by Elze et al. and by Amundsen and Skager-

stam. "
Now let us consider a mean-field analysis of SU(2)

gauge theory at finite temperature and in the strong-
coupling limit formulated on the lattice in the C ensem-
ble. Since the previous results obtained in the mean-field
approximation' ' agree quite well with the Monte Carlo
analysis, one can suspect that also in the C ensemble we
can deduce some interesting features of the model in this
approximation.

In the strong-coupling limit the spacelike plaquettes in
the Euclidean lattice partition function (3.1) with a=0
can be neglected. ' ' Then the effective theory can be
given by the partition function written in terms of the
character expansion

Z, rr =f g dM (x)g 1+g[Z, (P)] X,(L„)X,(L„,),
Z Z, k V

(4.3)
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where the two products run over the lattice sites and the directed links, respectively. The expressions 7 and Z, respec-
tively, are the character and the character coefficient of the v representation of the SU(N) group.

When g is assumed to be very small, then the leading contribution to the expansion (4.3) is given by the fundamen-
tal representation. Thus

Z, ff f +dM(x)exp P'QTrL„TrL„+I+c.c.
X I

(4.4)

.V
with P'=Z~, 'o~. If the quarks in the system have a very large but finite mass and at the same time there is a nonzero net
average baryon number, the effective partition function is generalized" as

Zf r(p, N„N, h)= f Q dM(x)exp P'P TrL„TrL +&+c.c. +h cosh(p/3)L&+ih sinh(pf3)LI
X x, l

(4.5)

with the same notation as in (3.14). With this partition function and the formalism presented in the previous sections we
can establish the effective theory with the exact implementation of the baryon-number conservation

Z,rr(B,N„N, h)= f Q dM(x)exp P' g TrL„TrL +~+c.c. Is(hy)Ts(y 'LR )
X x„l

(4.6)

following the notation of (3.10).
Now the above effective C partition function can be studied in terms of a MF approximation. In the following

analysis we shall restrict our consideration only to the SUC(2) gauge group for the investigation of the effective partition
function in the limit where B and N are large but the ratio B/N defined as B is fixed (T limit). Then from (4.6) in
this case the effective partition function is given by

2
Z,'rr(B, N, B/N, h)= — +[1—(TrLx) ]' d(TrLx)exp P'QTrL„TrL +&+lnIs(Ba )

X x, l

(4.7)

where the Bessel function Is(Ba„) in the T limit can be
approximated as FMF/N '=3P'—Ls'+B (1+a ')' '+In

1+ 1+a

lnI&(Ba„)=N B (1+a„)' +ln
1++1+a„ + —,ln(1 Ls ), — (4.10)

(4.8)

with

a„=hB '
3 g TrL„.S (4.9)

In (4.7) the explicit expression for the Haar measure and
the character formula of the fundamental representation
of the SUC(2) group has been used.

The result presented in (4.7) indicates that in the C en-
semble the quark parameter does not play the role of the
external magnetic field which breaks the Z~ symmetry of
the model. Because of the symmetry of the Is(x) func-
tion and due to the requirement that B must be an even
number the Z& symmetry is not broken even for h&0.

At this point let us consider the MF analysis of the ef-
fective partition function as it is given in (4.7). Assuming
here the thermal Wilson loop to be constant everywhere
on the lattice ' and then using the steepest-descent method
for the integration over the SUC(2) group in (4.7), the
leading contribution in the T limit to the canonical MF
free energy can be found as

where a is simply hB 'LB. Thus with this free energy
the MF canonical value of the Wilson loop Ls can be
found as the solution of the equation

aF'„ =613'Ls-
B

B +}+a'=0 . (4.11)
1 —I.B'

FM„/N =3p'M —+ —,ln(1 —M )

+h cosh(pN a)M, (4.12)

with a the lattice spacing. The MF value of the order pa-
rameter M in GC ensemble is given as the solution of

One could expect that in the T limit the CxC method for
the description of the thermodynamical properties of ha-
dronic matter is also quite adequate. Thus in this limit
the GC and C ensembles must be equivalent. In order to
show this to be the case, let us consider how the SUc(2)
effective theory looks in the GC description. Starting
from (4.5) and taking the MF approximation, which is
equivalent to the one in the C ensemble, the MF free ener-

gy in the GC ensemble becomes
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BFMF =6P'M — +h cosh(pN, a)=0 . (4.13)
BM

After taking the limit B~O in (4.10) one can immedi-
ately see that the canonical mean-field partition function
is equal to the GC one (4.12) with p, =O. Thus in this lim-
it the GC and C ensembles are equivalent. However, for
arbitrary nonzero values of the baryon-number density the
expressions for the MF free energy in the GC and C en-
sembles are different which means that (4.10) and (4.12)
cannot be directly compared. Thus only the physical
quantities should be compared. They should be the same
in both descriptions when B~oo. We can see this by
considering the MF value of the Wilson loop which is ob-
tained in both these ensembles. However, for this we still
need to know the relationship between the baryon-number
density and the chemical potential in the GC ensemble.
With the effective partition function (4.5) this relation has
a particularly simple form; namely,

(B) =hM sinh(pN, a) . (4.14)
N

I I

I l

I
I -K
I

eff

Now using the above result together with (4.13) we can see
that if one identifies B with (B) the MF results for the
Wilson loop I z in the GC and those for M in the C en-

semble are the same. Thus we are able to conclude that if
both B and N go to very large values with B/N
remaining constant, then the GC and C ensembles are
thermodynamically equivalent.

The above result should also be valid for the model
with the SUc(N) gauge group. Nevertheless, because of
the polynomial term in (3.10) for N &2 one comes upon
considerable difficulty in the evaluation of the effective
partition function for the above considered T limit from
this equation. In order to find the effective theory for
N ) 2 in the T limit, the application of some other
method is required. This method is contained in the ana-
lytic continuation of the generating function (3.7) and the
application of the Chebyschev polynomial method for
the evaluation of the U(1) integral in the T limit in (3.6).
This analysis will be presented elsewhere. '

Finally we indicate the difference at finite baryon-
number density between the GC and C ensembles through
numerical examples shown in Fig. 2. The effective poten-
tial V,rr for the Wilson loop in the SUc(2) model is ob-
tained from the MF free energy for the respective ensem-
bles from (4.10) and (4.12). We notice in both cases of
Fig. 2 that there is a qualitative difference between the
behavior of V,ff in the GC and C ensembles. Neverthe-
less, the thermodynamical behavior of any physical quan-
tity obtained in both ensembles in the T limit is the same.
This we have already illustrated by the example of the
Wilson loop. For any value of the baryon number in the
C ensemble there is observed a singular structure of V,ff
for I.MF approaching zero. In order to attain a finite
value of V,ff at this point, the baryon number has to be
identically zero. The structure of Vdf indicates the spon-
taneous breaking of the Zz symmetry of this model. In
both ensembles there is a general quantitative sensitivity
in the values of V,ir for changes in the parameters P' and
B. However, in the GC ensemble we note a qualitative

I'
I

y

I y

l
/

-0.3

FICx. 2. The effective potential V,fq in SU~(2) model for the
canonical ensemble (broken line) and the grand canonical ensem-
ble (solid line) as a function of the mean-field values of the Wil-
son loop LMF for different value of the parameters: (a) P' =0.1,
B=0.5, Ii =0.06, (b) P'=0 4, B=0.1, A =0.0.6.
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change in the structure of V,ff for the different values of
these parameters as illustrated in Figs. 2(a) and 2(b).

V. CONCLUSIONS

Having in mind lattice QCD as the realistic theory,
which can possibly give some useful information about
the properties of hot hadronic matter as it might be pro-
duced from hadronic collisions, we have formulated lat-
tice QCD in the C ensemble respecting baryon-number
conservation. The obtained C partition function
Ztt(N„N, h) in (3.10) can be presumably considered to
be the starting point for the more detailed Monte Carlo
analysis of the model. ' It can also give some information
about the validity of the "partial quenching" approxima-
tion proposed in the GC ensemble.

We have also indicated that there can be significant
differences between the GC and C treatment of the
charge-conservation law. In particular, the quark contri-
bution to the partition function in the C ensemble does
not play the role of the external magnetic field which
breaks the Zz symmetry in our SU(2) model. However,
for any finite value of the baryon number the Z& symme-
try is spontaneously broken. In the limit of large 8 and
N with fixed B/N the GC and C ensembles are ther-

modynamically equivalent. This has been shown by the
example of the MF analysis of the SUC(2) model. In the
model with SUc(2) XUs(1) internal symmetry we have
pointed out that in the region in which one would only ex-
pect the C ensemble to be valid the behavior of the
thermal average of the Wilson loop is sensitive to the ab-
solute value of the baryon number of the system.
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