
PHYSICAL REVIEW D VOLUME 35, NUMBER 8 15 APRIL 1987

String theory considered as a local gauge theory of an extended object
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In attempting to understand more about the physical origin of the so-called "chordal gauge sym-
metry" in string field theory it is found that one can, at least formally, consider the theory as a gen-
eralized local gauge theory. However, the fundamental object is no longer a point, as in ordinary
gauge theory, but a point with a tail, and it is the motion of this tail which represents the internal

gauge degree of freedom. Moreover, the differential geometry is based on the non-Abelian confor-
mal group instead of the usual translation group.

Recent work has shown that string field theory has a
very large symmetry' (called chordal symmetry by
Banks and Peskin) which is parametrized by an arbitrary
functional of the string. The apparent similarity this has
to the gauge symmetry of ordinary gauge theories is par-
ticularly clearly exhibited in the elegant formulation due
to Witten. Chordal symmetry is known to include ordi-
nary gauge invariance in the zero-slope limit, and to a
large extent also the invariance under general coordinate
transformations. Thus, it seems important to understand
more about the physical origin of this symmetry, and to
clarify the relation it has, if any, with the gauge invari-
ance of ordinary gauge theories.

In an attempt along that general direction, it is found
that one can indeed, at least formally, consider string
theory as a generalized local gauge theory. However, the
fundamental object is no longer simply a point as in ordi-
nary gauge theory, but a point with a tail, and it is the
motion of this tail which represents the internal degree of
freedom. The string function in conventional formula-
tions of string theory is the gauge potential in this theory
and the ghost field is the differential one-form. In both of
these, however, the concepts of ordinary gauge theory has
to be generalized in such a way that the usual Abelian
group of translations is replaced by the non-Abelian con-
formal group. In what follows, we shall try first to for-
mulate a gauge-invariant theory of such an extended ob-
ject, and then show that the result is equivalent, under
certain important reservations to be made clear later, to
Witten's formulation of the open-bosonic-string theory.

By gauge theory one usually means the following. One
starts with a base space X, which is usually ordinary
space-time, on which wave functions P(x) are defined:
x&X. P(x) has an internal degree of freedom and thus
depends, in addition to x, on an index i which gives its
"phase, " i.e., its direction in internal space. This "phase, "
however, has no absolute meaning, all physics being in-
variant under local gauge transformations, i.e., arbitrary
rotations of the frames of reference in the internal space
at each space-time point. To specify what is meant by
parallel "phases" at neighboring space-time points, one in-

specified by an arbitrary, gauge-algebra-valued, function
e(x) of the space-time point x, A changes by

5A„=d„E [A„,e],— (2)

where matrix multiplication with respect to internal space
indices is understood.

Suppose now, inspired by Witten, we consider half-
string wave functionals /[X], where X are elements of the
function space of functions X"(o.): o =0~1r/2, which we
denote by IIX. If we like, we may choose to regard ib[X]
as a function of x =X(m/2) and a functional of the func-
tions X(o ) for o in the semiopen interval [O,m/2); thus

lb[X]-p[x;X] . (3)

Imagine now a linear transformation of the wave func-
tional as

it[x'&1] I &&2(1+e[x X1X2])4[x &z] (4)

where e is an infinitesimal and real function of x and a
functional of 7] and +2. Compared with the gauge
transformation (1) of an ordinary gauge theory, Eq. (4)
differs superficially only in replacing a sum over a
discrete index j by an integral over a continuum of con-
tinuous indices X2(o). One may therefore think of x as a
point in base space (which is just ordinary space-time) and
Xi and X2 as internal space indices, and regard (4) as a
gauge transformation local in x. If e is infinitesimal and
real, but otherwise arbitrary, the gauge group is the gen-

troduces a gauge potential A„(x), which is a matrix in the
internal indices. Thus, in a given gauge, a wave function
P(x) is said to be parallel at x and x+dx if the local
values of P at x and x +dx, respectively, differ by
A ~(x)dx"gz(x). Notice that the gauge potential A de-
pends on x, the point in X under consideration, and on
the index p, which gives the direction of displacement to
the neighboring point x+dx. Under an infinitesimal lo-
cal gauge transformation

g;~ g [1+e'J(x)]g~(x),
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eral linear group of transformations on the functional
space over HX. Our wish now is to construct string
theory as a field theory invariant under these local gauge
transform ations.

Notice that the physical picture so far is such that
space-time is quite conventional. Only the fundamental
object we deal with is not a point as in usual gauge
theories, but a point with a tail (like a comma), extending
from its head at x=X(n/2) . to X(0). Invariance under
the transformation (4) for arbitrary e[x;Xi,Xz] would
seem to say that we are allowed to wag the tail in which-
ever way we like, and the physics is not changed, just as
unitary symmetry in ordinary gauge theories says that one
can rotate the direction of (color) charge arbitrarily
without changing the physics. Indeed, this freedom in
wagging the tail is like an internal degree of freedom in
the sense it was originally meant, namely, as being due to
a genuine extension in ordinary space, not in some other
space. The way it is implemented, however, looks new.

Next, we proceed to consider gauge potentials for the
"comma" theory. It turns out, however, that for some
reason not yet clear to us, the potential of interest as far as
string theory is concerned is not that which specifies
parallel "phases" at neighboring space-time points as in
ordinary gauge theories, but one which requires a general-
ization of the concept. We note that the index p in the or-
dinary gauge potential A&(x) may be regarded as denoting
a generator of the translation group. Now this generator
may in turn be regarded alternatively either as acting (ac-
tively) on the base-space point x giving a displacement of
x by dx", or as acting (passively) on the wave function
g(x), giving a variation B&g. One could imagine, there-
fore, a generalization of the concept of a gauge potential
in which the operators 8& on P are replaced by generators
of another operator algebra whose elements operate on the
wave functions g(x) but do not necessarily correspond to
displacements of space-time points. (Such generalizations
have of course been considered by mathematicians. Our
considerations here follow closest the ideas of noncommu-
tative differential geometry, as invented by Connes. )

Denoting the generators of such an algebra by Di, one in-
troduces then a potential Ai(x) in place of A„(x), where
Ai(x) may still be regarded as specifying what is meant by
parallel phases between, in some sense, "neighboring"
wave functions g(x) and P(x)+Dig(x). Under a local
gauge transformation specified by E(x), one finds then
that A~ changes by

5Ai ——[(Di —Ai), e] .

Clearly, for the special case when Di is the derivative 3„,
then (5) reduces to the usual gauge transformation (2) of
Ap.

For the string theory, as already remarked by Gervais,
the potentials of interest are those corresponding to the
generators of the Virasoro algebra:

2

the index of the generator o, —ir/2 & o & ir/2, thus
A (x). It takes values in the gauge algebra, which for the
"comma" theory means that A (x) can be considered as a
matrix in the index X(o), crE[0,m/2), denoting the con-
figuration of the comma's tail. Thus we may write

A~(x)-A [x;Xi,Xp]

which operates on /[X] as matrices according to the rule

A g= f 5XqA [x;Xi,Xp]f[x;X~) . (7)

Under the gauge transformation (4), A transforms as

5A = [(L —A ),e],
where matrix multiplication is again everywhere implied,
e.g.,

5+2~&7 X~+1~+2 ~ + ~+2~+3 (9)

diagonal in X(n/2), .

A [Xi,Xp] cc 5[Xi(vr/2) —Xq(ir/2)],

a notation we shall often use in what follows.
Once given the potential, we are used in ordinary gauge

theories to constructing gauge-covariant quantities such as
the covariant derivative of the wave function, or the field
tensor F, which is the covariant curl of the gauge poten-
tial itself. Generalizing to the potentials A~, the covariant
derivative of the wave function is straightforward:

(10)

The covariant curl of the potential, however, requires a
small modification. Suppose, introducing the anticom-
muting variables i)' as the differentials dual to Di, we
write

as a one-form; then in analogy to the usual exterior
derivative

we would be tempted here to write the exterior derivative
of A as (replacing B„by [Di, ] and dx" by ri')

DgA =[Di,A~]i) i)

This does not work, since D& &0. However, by defining
instead

(12)

where C~" is the structure constant defined by

Equivalently, one can consider A as a matrix in X(cr)
(cr =0~m. /2),

A —A [Xi,Xp],

L+~ = in—+X. '"(o )5X"(o.)
.0 & cr & m /2, [Di,D~ ]=CimD„ (13)

operating on the wave functionals /[X]. The potential
will be a function of the space-time point x and depend on

one retrieves nilpotency. We note that if D~ commutes, as
when D~~B„, one obtains back the usual exterior deriva-
tive.
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Applied to the potential 3, this gives for the covariant
derivative of the "comma" wave function 1(r as

(14)

diagonal in P(o '), cr' )cr: namely,

z) [P;P ] + 5(P ( ') —P, ( ')) . (27)

and for the exterior derivative of forms Hence, the potential one-form A in (18) can be considered
as a matrix now not only in X but also in P; thus,

Q= [L, ]ri + —,
' C ' (15) A =A[Xi,gi, Xz,gz], (28)

Substituting the structure constants

0'3
C =4im5'(a, —oz)[5(cr3 —o i)+5(o3—oz)]

obtained from (6) and (13), one has
T

m/2
Q= do. [L, ]ri +4inri ri'.

—n/2 5.-

(16)

(17)
C=A QA+ —,A A A (29)

which is diagonal both in X and in P at cr=rr/2.
Suppose now we wish to construct an action which is

invariant under "comma" gauge transformations. Let us
consider first the pure gauge theory with only the gauge
potential A as field variable. One can obtain a gauge in-
variant by taking the trace with respect to X of gauge co-
variants constructed out of A. For example, inspired by
Witten we can take the Chem-Simons three-form

F=QA+A. A, (19)

where matrix multiplication according to (7) is again un-
derstood. Under the transformation (4),

W g~(I+e)~ P,
F~(1+@)F(1—e) .

(20)

(21)

To proceed further, it is convenient at this point to intro-
duce a matrix representation also for the differentials ri,
which have so far been defined only abstractly as the du-
als to the Virasoro operators L . They are one-
dimensional anticommuting fields, and can therefore be
"bosonized" as'

o 1 g(cr) —o 1 —g'(a ).
7l :e :e

2m &2m.

where

(22)

By means then of this Q and the covariant derivative W
in (14), one can construct gauge-covariant quantities as in
ordinary gauge theories. Thus, for example, in terms of
the potential one-form,

71./2
do A (18)

the field tensor two-form is

and obtain the gauge invariant

f 5X,C[X„y,;X„y,], (30)

which is, however, still a matrix in P. To get a scalar, we
can take the trace again of (30) with respect to P; thus,

6Xi6 C Xi, i,'Xi, (31)

Such a trace, we think, should be taken for another
reason. Our present representation in terms of P comes
from the differentials g and g which are defined only
by their commutation relations. However, if one takes a
conjugation of (22) with respect to any matrix in p, then

g ~MgM ', g —+My M (32)

[ri,g(cr')] =ri, a' (o

the commutation relations remain unchanged and thus
should give an equally good representation of the g's. We
argue therefore that the action should also be invariant
under conjugation of ri by any matrix M of p, and taking
the trace with respect to (() guarantees such an invariance.

The straight trace M~ taken in (31), however, is no good
as an action because it is identically zero. To see this,
consider again ri as a matrix in P. From the commuta-
tion relations'

g(o ) = f do.', +i rrP'(cr')
5$(o')

(23) =0, 0.'& o. (33)

i) [4i 4'z]= f 505[4 —4'i]n 5[4' —Pz] .

They operate on functionals P[P]H HQ as

f 5P 2 1 [41 4214[4 z]

and multiply each other like matrices, e.g.,

n 'n '= f 54zn '[4i Wz]n '[4z 43]

(24)

(25)

(26)

We note that in this representation, q and q are both

As such, q are linear operators in the functional space
HP of a bosonic variable P(o); o =0~sr/2, and can be
represented as matrices in the representation where P is
diagonal: namely, as

satisfied by g as kink-creation operators, one sees that if
~

t))z) is an eigenstate of P with eigenvalue Pz, then

~
Pz) is also an eigenstate of P but with value Pz(cr') —1

for o'&cr and Pz(cr') for o'~a. In other words, the ma-
trix ( Pi ~ g ~ Pz ) has no nonvanishing diagonal elements,
which in turn implies that the matrix (Pi ~

A
~
Pz) for A

in (18) also cannot have nonzero diagonal elements, since
Pz(0) —Pi(0) = 1 for all terms in (18). Repeating the argu-
ment for any product of three g's easily shows that for
any three-form, the matrix in P can have nonvanishing
elements only when Pz(0) —Pi(0)=3, so that, in particu-
lar, the trace of W, in (31) must vanish.

To obtain a nonvanishing gauge invariant we have to
doctor up the trace in such a way as to remove the kinks
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from the forms without destroying the basic invariance
which is all tied up in the multiplication rules of A as
"comma" matrices. Only at the point o.=m/2 is A not a
matrix but only a number, where we can safely make

I

some modifications.
To do this, it is more convenient to make a functional

Fourier transform in the functions P(o) as follows. De-
fine the Fourier transform of any form B

m/2 n./2

B[«i «2] = f 5y, 5y,exp i f «&(cr)Pi(o')do B[gi,gz]exp i — «2(cr)gz(o)do. (34)

C [Ki'«2]=exp[ —i3«(n/2)]C[ai', a2] (35)

then its Fourier transform C [Pi,'P2] will have no more
kinks and can yield diagonal elements with Pi(0)=$2(0).
Hence, the trace of C no longer needs to vanish, and
since we have not changed anything for o&m. /2, it is still
invariant under "comma" gauge transformations. We
may therefore take

Notice that we have P'(o) in the exponent, not P(o ) as
usual, so that a(cr) is the conjugate variable to (t '(o ). Sup-
pose now we take the Chem-Simons three- form C,
Fourier transform to C, and multiply by a factor
exp[ —i3«(n/2)] [we need not specify whether «(m/2) is

«i(n/2) or «q(n/2) since B is also diagonal in «at
cr=n/2] Thi. s has the effect of inserting in C[gi', $2] an
extra kink of —3 units at cr=ir/2, as can be seen by tak-
ing the inverse Fourier transform of the inserted factor.
In other words, if we denote

One sees then that A ~ is an eigenstate of the ghost num-
ber operator:

X= —i do.
5a(o )

(41)

with eigenvalue ——,', as required for the standard string
functional. Indeed, the operator 1V counts the number of
kinks: P(ir) —$(0) in the Fourier transform of (39), which
is ——, with A accounting for 1 unit, and the factor g
accounting for ——', .

The multiplication rule for "comma" matrices au-
tomatically guarantees that A.A has one kink more than
A, or that its Fourier transform corresponds to a full
string functional with ghost number one unit higher.
However, in view of the extra factor g

' introduced in
(39) for the standard string functional Aw, an additional
factor has also to be inserted for the product to retain this
property, hence the factor g in Witten's e product, which
in our notation is

M= f 5X,5$iC [Xi,g, ;X„P,] (36) Aw+Aw=g(g (42)

A [Xi,a. i',X2,a2] —A[X,a]
of the full string functions X(cr) and a(o ) defined as

X(cr)=Xi(cr), «(o)=«i(o), o (m./2,

(37)

X(o ) =Xi(o.) =Xz(cr), a(o ) =«i(o ) =Kg(o)~ o =77!2,
(38)

X(o') =X2(m —o ), «(o ) =«2(n o), o )m. /2 . —'

Suppose we define now a string functional A ~ as

Aw ——g 'A, (39)

where Witten's A —our A w, his P —our «, his C(o )

-our g, and

g =exp[ +i ', «(m /2) ] . — (40)

as action. Notice that when viewed in this way, the inser-
tion factor in (35) seems natural but we can no longer
claim any uniqueness for the action (36), as Witten has
claimed for his. For it would appear that taking any form
(e.g., a higher Chem-Simons form), one can always insert
the right number of kinks at cr= /ir2 before taking the
trace to obtain a nonvanishing gauge invariant, and use
that as an alternative action.

How is the theory of (36) related to the standard string
field theory as formulated by Witten? We have noted al-
ready that the potential one-form A, when considered as a
matrix A [Xi,«, ,X2,«2] in X and «, is diagonal in both X
and ~ at o.=m/2. Hence, it may be regarded also as a
functional

Furthermore, the action W in (36) can be written as

Tr{g '[(g 'A)gQ(g 'A)+. —,'(g 'A)g(g 'A)g(g 'A)]I,
(43)

which, in terms of Aw and the e product in (42), is for-
mally the same as Mitten's action with the same insertion
factor g '=exp[ —i —,«(ir/2)] that he incorporated into
the definition of his integral. Indeed, if one can show that
the exterior derivative Q defined in (17) as operating on
"comma" matrices has the same effect as the Becchi-
Rouet-Stora (BRS) charge Q operating on the string func-
tional A~, one would have shown that the two theories
are equivalent.

Unfortunately, one cannot quite do that for the follow-
ing reason In the def. inition of Q, all operators are sup-
posed to be normal ordered, which depends on the mode
expansion and hence on the boundary conditions chosen
for the string. As noted already by Witten it would seem
necessary first to choose boundary conditions for the
half-string or the "comma" in such a way as to obtain the
Fock space of the full string as a tensor product of the
two half-string spaces, which one does not know how to
do yet.

However, suppose one can, for some reason, ignore this
implicit normal ordering. Then one finds that the opera-
tor Q in (17) is indeed the same as the BRS Q for the full
string. One can see this as follows. The operator Q
operating on the comma" potential one-form A gives ex-
plicitly
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m/2
QA = f dcr f do'([L, A ]ti ti

+4im71 tl' [Yi,ti IA ~ ) .

Consider first the commutator

(44)

Again, recalling (37) and (38), one has, from (53),

g A =g A, 0&o &a/2,
where

(56)

[L,A ~ ]=L A ~ —A L ri =exp do', +ivrP'(cr')
0 5 o.' (57)

where both L and A are operators on the functional
space IIX. Thus, operating on any wave functional /[X],
we have

whereas from (54), on integrating by parts with respect to
$2, one has

L A P= f 5X2 im— . +X/(o. )
6

5X~)(o )
Ari =exp —f do', +imp'(o') A[/], (58)

n cr —5$(o')

x A [X],X2]q[X2],

A. L.q= f 5X,A. [X„Xz]

X — +X/( ) A[X ]
6

5X~q(o. )

(45)

(46)

I =L g A+L( )g'" 'A (59)

for 0 & o & rr/2. Similarly, repeating the same arguments,
one has, for the same range of o,

where P(o ) =$2(rr o)for o—~.n/2 T. he. operator operat-
ing on A[/] in (58) creates a kink at boa.n—d may thus
be defined as g( ', from which we obtain

L A ~ =L A, 0&can &a/2,
where

(47)

Recalling now the definition of the full string functional
A in (37) and (38), one sees from (45) that

I =L g A+L ( )g
'" 'A .

This gives, altogether for the first term in QA,

f doI=f d. oL g A.

(60)

(61)

L = im— . +X'"(o)
5X~(cr )

(48)

x A [X„.X2]/[X~] (49)

or, from (37) and (38),

A L =L( )A

Consider next the expression

I = f do. '[L,A ]ri ri

Using the anticommutativity of the q's, this is

I =L q A+AL

(50)

(51)

(52)

where both g and A are operators on functionals of P,
say P[P], explicitly:

f 5ype A [f] Pp]&[WAN],
27r

f 5y, A [y„.y, ]e " 'g[Pz],
271

(53)

(54)

where

However, for (46), on integrating by parts with respect to
X2, one obtains

A L g= f 5Xz iver +X/(o)6

5X~2 (o.)

Following a similar procedure for the second term in QA,
again with willful neglect of questions concerned with
normal ordering, one then arrives at the conclusion that Q
operating on the "comma" matrix A has indeed the same
effect as the BRS operator Q operating on the full-string
functional A.

The formal equivalence obtained above between the
"comma" gauge theory (36) and the open-bosonic-string
theory as formulated by Witten is of uncertain signifi-
cance at present because of normal ordering. However,
assuming that this last important reservation can be re-
moved, e.g., by an appropriate choice of boundary condi-
tions on the "comma, " then we may have learned some-
thing about the physical origin of the mysterious "chordal
symmetry" underlying string field theory.

The "comma" theory may also have some interest in it-
self as an example of a local gauge theory of extended ob-
jects, and may show us the way to further generalizations.
First, the extension to "commas" with internal degrees of
freedom of the usual type, such as color, in addition to the
intrinsic internal degree of freedom of its tail, is straight-
forward. The wave function carries then an additional in-
dex, and matrix quantities such as A are matrices also in
these indices. It will lead to a "comma" theory equivalent
to a string theory with internal symmetry inserted via the
usual trace factors. Second, the action in (36) corresponds
only to the pure gauge theory for the "comma" theory.
One can, of course, in analogy to what one did in ordinary
gauge theories, go further to consider adjoining to the
pure action a term corresponding to the gauge interaction
of the "comma" with the potential, e.g. ,

g;(cr) = f dcr', +i re,'(cr')
5$; (cr')

(55)
(62)

using the covariant derivative W defined in (14). Third,
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one can imagine applying similar ideas even to extended
objects of higher than one dimension.

Considered as a gauge theory, the action M in (36) has
the unusual feature of being cubic in the potential and not
quartic as in ordinary Yang-Mills theory. It yields the
curvature F=0 as the equation of motion instead of the
standard Yang-Mills equation which has the divergence of
curvature F„„.=0, and may thus be regarded as a some-
what unnatural generalization. However, it is perhaps
worth noting that even the standard Yang-Mills theory,

when formulated in loop space, has the vanishing of the
loop space curvature as an equation of motion. "' There
it was the monopole charge which appeared as the source
of loop space curvature, ' just as the "comma" charge
occurs in (62) as the source of curvature for the "comma"
potential.
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