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Heterotic strings from the bosonic string in 26 dimensions

Shin'ichi Nojiri
Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan

(Received 4 November 1986)

We construct a tachyonless string model from the purely bosonic 26-dimensional string model,
without using any projection which excludes the unwanted states. The spectrum of this model is
equivalent to that of the heterotic string model proposed by Gross et al. , and we show that the one-
loop vacuum amplitude vanishes. 16 dimensions have to be compactified leaving 8 uncompactified
transverse dimensions. Since the 8 fermion coordinates in the superstring sector are identified with
only 4 string coordinates in the compactified 16 dimensions, the residual 12 string coordinates
should decouple for consistency. We propose a mechanism for this decoupling to occur: the signa-
ture of the metric of the 16-dimensional space should change. Unitarity is, however, restored by im-
posing some state condition. We show that this decoupling really occurs in the one-loop amplitude.

I. INTRODUCTION

Recently Freund has suggested that the superstring
theories with gauge groups SO(32) or Es)&Es might arise
as "soliton-type" solutions of 26-dimensional bosonic
string theory. ' Casher, Englert, Nicolai, and Taormina
further proposed that all the closed-superstring theories
are contained in the bosonic theory. A more detailed
analysis is given in Ref. 3. In their scenario, the 16 di-
mensions among 24 transverse dimensions of bosonic
theory have to be compactified, leaving 8 uncompactified
dimensions, in such a way that the internal-symmetry
group 6 resulting from the compactification contains an
internal group SO(8), the covering group of SO(8). Fur-
thermore, the rotational group SO(8) in 8 uncompactified
transverse dimensions must be mapped onto the SO(8) so
that the diagonal subgroup SO(8)d;,s of SO(8)SO(8)
becomes identified with a new transverse subgroup of the
10-dimensional Lorentz group. In this way, the spinor
representation of SO(8) describes fermionic states because
a rotation in space induces a half-angle rotation on these
states.

However, there exist several problems to be solved.
First, in order that we regard SO(8)d;,s as the subgroup of
the 10-dimensional Lorentz group, a mechanism is needed

by which SO(8)SO(8) breaks down to SO(8)d;,s since
SO(8) has originally nothing to do with the 10-
dimensional Lorentz group. In the case of superstring
field theory in the light-cone gauge, the free part of the
action has an SO(8) symmetry in the bosonic coordinate
sector and another independent SO(8) symmetry in the
fermionic coordinate sector. However, the interaction
vertex breaks this SO(8) SO(8) to its diagonal subgroup
SO(8)d;,s and we can regard these fermionic coordinates
as spinors in 10-dimensional space-time. Therefore we
suspect that the interaction vertex in the bosonic string
field theory, if it generates superstrings, must be modified
to induce the breaking of SO(8)Is|SO(8) symmetry. This
mechanism may be described by the condensation of
string fields.

Englert, Nicolai, and Shellekens have been mainly con-

cerned with string compactification on the even self-dual
Euclidean lattice by requiring modular invariance of the
closed-bosonic-string one-loop amplitude. We should,
however, remark that the modular invariance of the bo-
sonic string has no relation with that of the induced
superstring. It is because the trace over the states corre-
sponding to the odd-fermion-number sector in the super-
string, which should be space-time fermions, never has the
relative minus sign in the usual one-loop calculation of
the bosonic string. This minus sign is of course necessary
for the vanishing of the cosmological term or supersym-
metry.

There is another important problem. Since we need
only four bosonic operators to generate SO(8), the role of
the residual 12 string coordinates in the compactified di-
mensions is not obvious. Casher, Englert, Nicolai, and
Taormina have expected that these extra coordinates
might be understood to be the superghost and the unphys-
ical Majorana fermions on the basis of the counting argu-
ment of the conformal anomaly. If this scenario were
true, these coordinates must decouple from the physical
transverse state and the norm of the states containing the
excitations of those coordinate modes should cancel. The
cancellation of their norm is necessary for consistent
decoupling at the loop level. In the previous paper, we
proposed a mechanism how these coordinates decouple.
We expect that the signature of the metric changes and
antiperiodic negative-norm bosons appear. The appear-
ance of negative-norm particles is potentially dangerous
since they may break unitarity. We have shown, however,
that some state condition restores the unitarity.

The purpose of this paper is to construct, based on the
previous paper, a purely bosonic string model from which
the heterotic string model' '" is generated. The model
does not contain a tachyon mode due to the condition that
there is no distinguished point on a closed string and the
spectrum is equivalent to that of the usual heterotic
string. It should be noted that we need not use any pro-
jection as was done in Ref. 3 to obtain a tachyonless
theory. We further calculate the one-loop vacuum ampli-
tude of the model and we find that it vanishes. Further-
more we show that the 12 unphysical string coordinates
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really decouple in the one-loop amplitude with vertices
which are properly defined.

The rest of this paper is organized as follows. In the
next section we describe the correspondence between bo-
sons and fermions based on the work by Eguchi and Hi-
gashijima' and after that we discuss the negative-norm
bosons. In Sec. III we review a mechanism proposed in
the previous paper, explain how 12 string coordinates
decouple, and discuss the condition to restore the unitari-
ty. In Sec. IV a tachyonless bosonic string model is pro-
posed. The closure of 10-dimensional Lorentz algebra is
easily shown. In Sec. V the one-loop amplitude is calcu-
lated. The last section is devoted to the discussion of fur-
ther problems including higher-loop calculation.

II. THE CORRESPONDENCE BETWEEN BOSONS
AND FERMIONS

P(8) =i —in 8

n = -infeger n
(2.&)

and the Hamiltonian reads

The last expression in Eq. (2.4) [Eq. (2.5)] just coincides
with the partition function of two antiperiodic [periodic]
fermions. These relations mean the equivalence of the bo-
son system to the fermion system. We obtain two real
Fermi fields 1t

' and 1(t from a Bose field P via

(2.7)

Here:: means normal ordering of the boson mode vari-
ables.

When the Bose field obeys the antiperiodic boundary
condition P(8+2~) = —P(8), on the other hand, the mode
expansion is given by

The Bose field P(8) obeying the periodic boundary con-
dition 1))(8+2m.) =p(8) is expanded into oscillator modes
as

H= a nan .
n =1/2

In this case the partition function becomes

(2.9)

anP(8)=q+p8+i g e ™8.
n&0

(2.1)

The commutation relations of the mode variables are
given by

2n —1)
n=1

(2.10)
(2.2) n=1 m=1

H= —,'p'+ g a „a„.
n=l

(2.3)

The correspondence between bosons and fermions can be
understood by examining the partition functions
Z =tre ~, with H being the Hamiltonian:

which tells us that this system is equivalent to that con-
sisting of one periodic fermion and one antiperiodic fer-
mion.

We now turn to discuss the negative-norm bosons. The
Hamiltonian is given by

The partition functions are given, in the case p =integer,
by

H = ——,p —pa „a„,2

n=1
(2.1 1)

ZI

n=l

q"
(1 2n) n=—

in the period case $(8+2'�)=P(8) and

H= — a nan
n =1/2

(2.12)

(1+ 2n —1)2

n=1
(2.4) in the antiperiodic case p(8+21r)= —p(8). The mode

variables satisfy the commutation relations

and in the case p =half-integer, by [q,p] = i, [a,a„]—= —m5 (2.13)

ZH=

n=1

=2q'" Q (1+q'")' .
n=1

1
q

(n —1/2)2

(1—q ") "=

(2.5)

From Eq. (2.11), however, we recognize that periodic
negative-norm bosons are ill defined since the Hamiltoni-
an is unbounded below owing to the contribution of the
zero mode p (Ref. 13). Therefore we consider only an-
tiperiodic bosons henceforth. The partition function of a
negative-norm boson with an antiperiodic boundary con-
dition is given by

n=1

qi ~ 1 —2q ~ II (1 q2n) / (1+q n)

n=1 n=l

Here q =e P and we have used the identities

(2.6)

( 1+ 2n —1)
n=1

= II(1+q ") II (1—q ') .
n=1 m=1

(2.14)
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(:.~:+:.-~:),
&2

1 (:e~:—:e-&:).
2

(2.15)

III. A MECHANISM OF THE DECOUPLING

In this section we explain how the extra 12 coordinates
can decouple from the physical state. (The definition of
physical state will be given later. ) The norm of the states
corresponding to the excitation of the modes of these
coordinates must cancel for the consistent decoupling.
Since the cancellation of the norm means that the product
of partition functions is trivial, we examine Eqs. (2.4),
(2.5), (2.10), and (2.14) and look for a combination for
which such a cancellation occurs. We find that a com-
bination of one integer-p positive-norm boson and two an-

tiperiodic negative-norm bosons gives such an example:

Note that the states corresponding to the excitation of an
odd number of modes have a negative norm. From Eq.
(2.14) we see that this system is equivalent to the com-
bination of one periodic positive-norm fermion Pp+ and
one antiperiodic negative-norm fermion gz . We can ex-
press these Fermi fields in terms of Bose fields:

5+ = —
& &L QL,

—
& &R pg

5$L ———eL a A,

5y, = —e„a,W,

and the supercharges are given by

Q, =;fd q, a ~,
Q, = fd q, a ~.

(3.3)

(3.4)

IV. CONSTRUCTION OF A MODEL
WITHOUT TACHYON

We start with the light-cone gauge action

s=, fd f d~(a~'a x'+~»a~,'a x,'4+a' 0

+77IJa~1 a Xg )

a=1,2, i =1, . . . , 8, I,J=1, . . . , 16 .
(4.1)

QI (Qz ) is composed of only a left- (right-) moving part.
We demand that the physical states be annihilated by

these superchanges. Since the ground state is not degen-
erate due to the antiperiodic boundary condition, the
unique state annihilated by both of QL and Qz is the vac-
uum and this condition excludes the states corresponding
to the excitation of these unphysical modes.

Z, (Z )'= + (1+q'" ')'
n=] Q (1+q ')

m=1

Here g» (qlJ ) is a metric tensor in the right- (left-) mov-

ing 16-dimensional space. We impose a constraint re-

stricting Xz (XI ) to consist of the right- (left-) moving
modes alone. This can be achieved by demanding that

(3.1)
(a,+a.)x,' =o,
(a,—a.)x,' =o .

(4.2)

Therefore if we identify the 12 string coordinates with 4
sets of this combination so as to realize their decoupling,
the metric of 8 dimensions out of 12 dimensions should be
taken negative. The antiperiodicity may be realized by
putting the string on a fixed point in some orbifold, e.g. ,
K 3 K 3 (Refs. 14—16).

The appearance of negative-norm particles is potential-

ly dangerous since they may break unitarity. Some physi-
cal state condition should be imposed to restore unitarity
as in case of gauge theories. '

Since we find from Eq. (3.1) that the product of the
partition functions of one antiperiodic fermion which ori-
ginates from the integer-p boson and of one antiperiodic
negative-norm boson is unity, we consider an equivalent

system whose Lagrangian is given by

, [X'(o,~),a+'(o', 7 )]=l5(o —o )5 J
27Ta

(4.3)

and

These constraints (4.2) assure the complete separation of a
left-moving and a right-moving part in the string coordi-
nate. The left-right separation given by Eqs. (4.1) and
(4.2) might be equivalent to the usual one which is real-
ized by introducing a "winding vector" in the torus com-
pactified string coordinates, ' ' ' but should be more
comprehensible when the left and right sectors are com-
pactified on the different manifold.

The canonical commutation relations are given by

w= —a,~a ~+ip, a q, +iq, a q, . (3.2)
1

, [x,(~—~),a~, (~—~ )]=—5(~l IJ
2&a 2

Here 3 is identified with the antiperiodic negative-norm
boson coordinate and gl (Pz) is a left- (right-) moving
antiperiodic fermion which is bosonized into the left-

(right-) moving integer-p coordinate in Eq. (4.7) of the
next section. This system is invariant under the super-

symmetry transformations,

(4.4)

, [XL(~+o.),a+1.(~+o.')] = —5(o —o')gL .
27Ta 2

The factor of —, on the right-hand side (RHS) of Eq. (4.4)

arises due to the constraint (4.2) (Ref. 10).
X' can be expanded as
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We use a formulation analogous to the old superstring'

in order to generate a right-moving superstring sector.
We need two string fields: one corresponding to the Ra-
mond sector and another corresponding to the Neveu-

Schwarz ' sector.
The states in the Ramond sector in the superstring be-

long to the SO(8) spinor conjugation class ' and their

weight vector m, is given by

4

w, = g ns;, g n;=odd. (4.13)
i=1 i=1

~a&Xi Xi+pi&+ y e 2in(r a)—l a
2 n~o

—2in(r+o )
aL

e
n

(4.5)

[x',pI] =i5'I,

[aRn aRm]=[aLn aLm]= ~n+m, o~

others=0 .

(4.6)
Here

1 1 1 I
s =(————)2 2 2 2

and we obtain from Eq. (4.3) the commutation relations
for the mode variables:

Xz and XL have the expansion 1

s =(—2 2

1 1 1—————)2 2 2

I
~a'XRI = —,

' x,'+pRI (r a)—+ 'g— "
e

2 ~0 7l

(4.7)

v a'XL = —,'xL+pL(r+o)+ —g e '"'+
n&0

under the periodic boundary condition X (cr+rr)=X (o )

and
I
R"

e 2in ( &. —)&r-
R 2

n =half-integer
(4.8)

X I ( y L"
e 2in(&+&r)—

L 2

n =half-integer

under the antiperiodic boundary condition X (cr+ m)

XI(cr—) Here . mode variables satisfy the following
commutation relations:

1

s =(—3 2

1

2

1 1———)2 2

(4.14)

4 4

w„= g n;v;, g n;=odd, (4.15)

where

u, =(1 0 00),
v2 ——(0 100),
u3 =(0 0 1 0),
u4=(0 0 0 1) .

(4.16)

On the other hand, the states in the Neveu-Schwarz sector
belong to the SO(8) vector conjugation class ' and their
weight vector w, is given by

I J IJ I J IJ
[aRn aRm ] n Sn +m, 0 IR & [aLn aLm 1 n ~n +m, 09L

(4.9)

In order to generate the superstring, 4 right-moving
string coordinates in one string field are compactified on a
weight lattice which is given by

I J ~ IJ I J ~ IJ
[xR&PR]=(9R& [xL&PL]=I /L

4
(4.17)

y2I —(+ y2I ~P( I. R. (I 1 4)
—I

Here X~ is defined as

XR ——2~a'XR

(4.10)

(4.11)

and it corresponds to the Bose field &)I& in Eq. (2.1) with
8=2(~ cr) Cis cal—led a. twist factor which is intro-

duced to let fermions with different indices I&I anticom-
mute. ' It is given by

In order to generate heterotic superstring, 16 dimen-

sions have to be compactified, leaving 8 uncompactified
dimensions. The left-moving string coordinates XL are
compactified on the even self-dual lattice, which corre-

sponds to usual heterotic string theory. ' ' " 12 right-

moving string coordinates decouple by the mechanism

proposed in the previous section. The remaining 4 right-

moving string coordinates are identified with the boson-

ized 8 fermion coordinates via

and 4 coordinates in another string field are compactified
on another weight lattice,

4

Ns =
i=1

(4.18)

ML —1=My +M~ ——, (4.19)

Since we do not impose any restriction like g, ,n; =odd
in Eq. (4.13) or (4.15), the compactification on the weight
lattice in (4.17) or (4.18) is realized by usual torus compac-
tification.

In the following we explain how only the g,. ,n; =odd
sector is realized in the "physical" space defined in the
previous section.

Since there is no distinguished point on a closed string,
we are free to shift the origin of the o. coordinate by an
arbitrary amount. This gives a constraint

17T KC =exp g —g pR
K(I K) I

(4.12)
Here Mr, Mz, and Mz are the normal-ordered mass
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operators for the left movers, the decoupled 12 right
movers, and the remaining right movers:

When we consider the zero intercept, we obtain the fol-
lowing partition functions:

16 16
I I 2

MI —g gal „aL„+g al. „aLg + 2 g (PL)
n=1 [i=1 I=1

(4.20)

Z( ) (Z )s( —1/12Z )8( 1/24Z )8

8
2n —1

1 —q
(4.27)

8 8 oo 16

Mg ——g gaR —„ag„+ 2 g(PR) g g R —n Rn

n =1 I =5 I =5 n =1/2 I =9

(4.21)

4 4

Mg ——g gag „ag„+ g aR aR + 2 g(PR)
n=1

(4.22)

Note that Mz vanishes in the "physical" space which is
annihilated by QR of Eq. (3.4). The zero intercept
—1 ( ——,

'
) in the LHS (RHS) of Eq. (4.19) is due to the

normal ordering of Ml (M~ and M~). Note that the
contribution of one boson to the zero intercept is ——,'4 if
the boundary condition is periodic, and 4, if antiperiod-
ic. ' ' Since we have 24 periodic string coordinates in the
left-moving sector and 16 periodic string coordinates and
8 antiperiodic ones in the right-moving sector, the zero in-
tercept in the left-moving sector is given by

Z 1/12

and ZI and Zz are defined in Eqs. (2.4) and (2.14),
respectively.

Since only the even powers of q can survive due to the
constraint Eq. (4.19), we symmetrize Z with respect to q
and obtain

z(q) = —,[z (q)+z ( —q)]
8

2li

n =1 1 —e'" (4.28)

Here we have used the Jacobi identity for the 0 functions:

in the right-moving parts corresponding to the Ramond
or NS sector. Here Zo is the partition function of the os-
cillators in one string coordinate in the uncompactified
transverse dimensions:

24x( ——„)= —1 (4.23)

and that in the right-moving sector is given by

16x(——„)+8x—,', = ——, . (4.24)

Since gl &(PI) =even on the even lattice, the LHS of
Eq. (4.19) has an integer eigenvalue and hence the RHS of
Eq. (4.19) must also have an integer eigenvalue. From
this fact and the vanishing of Mz in the "physical" space,
we see that gl &(p~) in Eq. (4.22) should be an odd in-

teger. Since p~~ =tiiz or wNs in Eq. (4.17) or (4.18) and

=16 II(1+q ")
n=l

(4.29)

The partition function in Eq. (4.28) correctly reproduces
those of the corresponding Ramond (Neveu-Schwarz) sec-
tor in superstring theories. '

The fermion operators defined in Eq. (4.10) are explicit-
ly given in terms of oscillators as

2N N N

gn; = gn; —2 gn;nj,

the condition

4 4

g(PR) = g(n;) =odd

(4.25)
I

&R —n ing'+i q"=v'2-C'exp i g — e'"'
n=1 n

I
OO

Xexp i g "e
n=1 n

X exp(ixz ) exp[i ( —,
'

+p~ )8],

m =ML —1+M~ +M~ ——,2= 1 (4.26)

Since Eq. (4.19) is satisfied only in case that both of the
RHS and the LHS of Eq. (4.19) is positive semidefinite,
m is also positive semidefinite. Therefore we have ob-
tained a tachyonless purely bosonic string theory.

gives a constraint g,. ,n;= dod in Eq. (4.13) or (4.15).
Therefore uiR (uiNs) is restricted to the weight lattice of
the SQ(8) spinor (vector) conjugation class and the spec-
trum of Ramond (Neveu-Schwarz) sector is reproduced.

The total mass operator m =2p+p —g,. &(p') is
given by

8=2(r —o) . (4.30)

Since the oscillating (non-zero-) mode part in Eq. (4 30) is

a periodic function of 0 and hence of o., the periodicity of
I

fermions is determined by the last factor exp[i( —, +pz )0].
Fermions are periodic functions in the physical space cor-

responding to the Ramond sector since pz is half-integer-

valued due to Eq. (4.13) and are antiperiodic functions in

the sector corresponding to the Neveu-Schwarz sector
since pz is integer valued due to Eq. (4.15). This periodi-

city reproduces the properties of the fermions in the cor-

responding sectors.
We now discuss the 10-dimensional Lorentz algebra.
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The generators are obtained by replacing the fermion
coordinates of the generators in the corresponding sectors
in the superstring, with the bosonized fermion coordinates
in Eq. (4.10). The closure of the algebra is trivial since
these generators are nothing but the boson representation
of the generators in the corresponding theories. The com-
mutativity of the generators with Virasoro operators L„
in the right mover also holds of course. Note that L„has
the following form:

V. ONE-LOOP CALCULATION

Let us start by defining the propagator 6:

b =—5(ML —Mg —M~ ——')8
+ oo + 00

dt ds exp[ tH —+is (ML —M„—M~ ——,
' )]

(4.31)
1

d7d7 exp(i7L RL—) .
upper half-plane (5.1)

Here I.„"' is the boson representation of the Virasoro
operators in the corresponding sectors and it commutes
with the Lorentz generators. In ' is composed of the
mode operators in the decoupled dimensions and it also
commutes with Lorentz generators, which do not contain
these mode operators.

Finally, we note that the 4 string coordinates which
generate fermion coordinates by Eq. (4.10) are not com-
pactified on the different manifolds between the Ramond
and Neveu-Schwarz sectors but the same manifold. Both
s; in Eq. (4.14) and U; in Eq. (4.16) are orthogonal unit
vectors in 4-dimensional space and they are connected
with each other by the rotation. The difference comes
from the choice of coordinate system. Then why do the
weight vectors in the Ramond sector belong to spinor con-
jugation class and those in the Neveu-Schwarz sector be-
long to the vector conjugation class? It is because of the
mapping of the rotational group SO(8) in 8 uncompacti-
fied transverse dimensions onto the internal group SO(8)
which results from the compactification are different in
the Ramond and Neveu-Schwarz sectors. The mapping is
accompanied with the breaking of the symmetry
SO(8)SO(8) down to the diagonal subgroup SO(8)d,,s
and the angle of the breaking may be different for a two-
string field in general.

Here

10
H= —, g (p') +ML+Mg+Mg ——,

10
L = —, g (p') +ML —1, (5.2)

10
L = —, g (p') +Mg+Mg ——,

and

z=s+it . (5.3)

The region of 7 integration is consistent with the path-
integral formulation and will be restricted to the fun-
damental one by modular invariance.

The one-loop free energy in the sector corresponding to
the Neveu-Schwarz one is given by

f d7d7
Im~

2
Im~

( 1 2n)8

n=1
(1

—2m)24

m=1

x —~ g (1+x2n —')8 x 1+ g 480o7(m)x
n=1

(,i /2)v — —(, ~ /2 jr (5.4)

Here tr for an operator 0 is defined by

tr8= g(i) 8(i) (5.5)
f d7d7

Em~

2
Emz

n=1
2n)8

- 8 +(1+x2")8
n=1

and i runs all the states in each sector. We have assumed
that the left mover is compactified on the E8)CE8 weight
lattice and o7(m) is the sum of the seventh powers of the
divisors of m (Refs. 10 and 11). Since the integrand of
Eq. (5.4) contains only even powers of x, the odd powers
of x vanish after integrating over o. Using Eq. (4.29) we
obtain the final expression:

1+ g 480o7(m)x
m=1

x —2 + (1 x 2m)24

m=1

(5.6)

Calculating one-loop free energy in the sector correspond-
ing to the Ramond sector, we obtain the same expression
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as Eq. (5.6) with the relative minus sign. This sign differ-
ence comes from the fact that the Ramond sector corre-
sponds to fermions. Combining the contributions from
both sectors, the total one-loop free energy vanishes,
which signals supersymmetry.

The emission vertices are obtained by replacing the fer-
mion coordinates of the vertices in the heterotic string
theory with the bosonized fermion coordinates of Eq.
(4.10). These vertices V are physical since

[V,gz]=0 . (5.7)

Here Qz is defined by Eq. (3.4). Equation (5.7) results
from the fact that these vertices do not contain mode
operators of 12 unphysical right-moving coordinates.

Now we show the decoupling of 12 unphysical right-
moving string coordinates in the one-loop amplitude with
vertices which satisfy Eq. (5.7). Let us consider the N
point amplitude

N

n tgIL —s&~L i72L —r2L tr&L —t7'&L
Qrjag Jtr(e ie 2

' ' ' e V~)
j=l (5.8)

Since the vertices do not contain the unphysical mode operators due to Eq. (5.7), the integrand of Eq. (5.8) is rewritten
into the factorized form:

N

n i ~1L —rT
l Lp i T2L —l ~2L pd7ja7jtrp e le 2

j=l
1V X Pe N jtr

N

exp i +—rJM~
j=l (5.9)

Here

8

I.p ———,
' g (p')'+MR ——, , (5.10)

N

trU exp i g r—jM~
j=l

(5.11)

due to Eq. (3.1), we obtain

N

n l1'~L tT~LP
V

l72I IT LP2V~jtrz e le 2
j=l

lT~I —IT~Lp
(5.12)

The expression of Eq. (5.12) means the complete decou-
pling of unphysical 12 right-moving string coordinates.

It is straightforward to show that the N-point ampli-
tude of the vector or graviton vanishes for N = 1,2, 3.

VI. SUMMARY AND DISCUSSION

trU and trz are the trace over all the states corresponding
to the excitation of unphysical modes and that over all the
physical states. Since

shown that it really occurs in calculating one-loop ampli-
tude.

The spectrum of the model proposed in this paper is
equivalent to that of the usual heterotic string model and
we have shown that one-loop vacuum amplitude vanishes.
We do not need any projection which kills spurious states.

However there remain some points to be clarified. In
this paper we have shown that the heterotic string theory
can be reformulated in terms of the bosonic theory at least
at the one-loop level. We should extend the argument to
higher-loop levels. This could be done by string field
theory or by path integration. In the former the ac-
tion of the superstring field theory should be rewritten by
the action of the bosonic string one. In the latter the
correspondence between fermions and bosons on the
Riemann surface with arbitrary genus will be a clue.

Recently Hata et al. have shown that the usual closed
bosonic string is equivalent to the theory whose action
contains no kinetic term and consists soley of cubic terms
in the string field. The kinetic term can be generated
through the condensation of an infinitesimally small
string which is a solution of the equation of motion. The
solution would be, however, unstable because the usual bo-
sonic string theory contains tachyons. It is not obvious if
indeed there exists any stable solution at all. If it exists,
however, there might be a solution describing superstrings
and the mechanism proposed in this paper would be real-
ized.

In this paper a tachyonless string model has been con-
structed from the purely bosonic 26-dimensional string
model. The 16 dimensions have to be compactified leav-
ing 8 uncompactified transverse dimensions. Since we
need only 4 string coordinates to obtain the 8 bosonized
fermion coordinates in the superstring sector, the residual
12 string coordinates should decouple for the consistency.
We have proposed a mechanism for this decoupling and
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