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Fixed-angle asymptotic behavior of the type-I superstring amplitude
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The asymptotic limit of the four-point function at fixed angle is analyzed in the context of type-I
superstrings. The analysis shows the amplitude to fall exponentially in s, at least at the one-loop
level. This rate of decrease is faster than that which is allowed by the asymptotic theorem of
Cerulus and Martin, but is consistent with the bound of Chiu and Tan.

Superstring theory has cured many of the "diseases" of
the early dual resonance models. Specifically, the pres-
ence of tachyons, infinities, and anomalies are problems
which have been resolved in spectacular fashion. A some-
what less severe disease of the early models was its
violation —up to the one-loop level of the asymptotic
theorem regarding fixed-angle scattering. We have
analyzed the four-point amplitude in type-I superstring
theory, and find that it too has exponential (in s) behavior
at fixed angle.

Our analysis parallels quite closely that of Alessandrini,
Amati, and Morel, ' who looked at the (nonplanar) Pome-
ron amplitude in the Veneziano model. These authors
state but do not show that the planar one-loop amplitude
has the same behavior as the Born term. This amplitude
is, of course, divergent in the early theory. While one
would not expect the interference between planar and
twisted loops that eliminates the one-loop divergence to
increase the wide-angle behavior, one can ask whether this
interference makes the behavior worse (i.e., more rapidly
decreasing). Our analysis finds that the interference does
not affect the asymptotic fixed-angle behavior of the
Veneziano model.

As is well known, the four-point planar amplitude in
superstring theory reduces to a kinematic factor times the
Veneziano model amplitude. We begin with a review of
this result in the covariant formalism which we use. We
derive the amplitude for the (s, t) diagram; the (s, u) and
(t, u) diagrams follow readily The re. ader wishing to skip
this review should go to Eq. (14).
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The vertex operators for gauge-boson emission from a bo-
son ( B) or fermion ( F) line are

and

Vs(z, d, d)=e'" ~"[(.P(z)+k H(z)(.H(z)] (4)

VF(z, d, d ) =e'" ~"[(.P(z) ——,
' k 1 (z)g I (z)] .

The caret above a character in these expressions is de-
fined in Ref. 3. We have dropped the primes on the vari-
ables z, m, etc. , for brevity.

The vacuum expectation values in Eq. (2) can be rewrit-
ten as

The full one-loop amplitude (including odd twists) for
four external gauge bosons is given by Eq. (47) of Ref. 3
[with D =10 and SO(32) as the internal symmetry]:
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where B is a c number arising from the commutation of
Q with P. An analogous expression results for Eq. (3)
with H ~I /i U 2. In evaluating the last expectation
value of Eq. (6), we encounter terms of order H, H, H,
H, and H (or I,. . . ). Of these, the first trivially van-
ishes when taking TNs —T~ in Eq. (1). The next vanishes
because k;.g;=0. The order-H and -H terms cancel
when combined as in Eq. (1), as can be seen from the ex-
plicit forms of the expectation values. Finally, the H

term, when combined with FNs(w) and the w~we
terms, yields a kinematic factor K which is independent
of (z;). This factor is given in Ref. 2.

We are left with

i = ) 4;Zd (4.z)-zzz 1' d n(0 n, "'
0) .

i=1
(7)

The vacuum expectation value in Eq. (7) can be written
(with a'= —,') as
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The relevant correlation function is

and
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vij
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where

—1nfr(pj /p;, w ) Taking the limit a~0 gives
r
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(10) With s = —(k1+k2), t = —(k, +k4), our amplitude
then has the form

' dw v4 v3

L =16i(2m.i) g K5' gk; f f dv4 f dv3 f dv2[e —(w~ —w)], (14)

where 1a=
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we have (omitting the r dependence)
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(18)

nI= dxief'"', (19)

then a critical point of the first kind satisfies

BX-
=0, i =1,. . .,n (20)

for some point Ix; Io within the region of integration. A
critical point of the second kind can exist on a boundary
of the integration region. Such a point satisfies the less
restrictive condition that the derivatives need vanish only
in the directions tangent to the boundary:

a =0, i =1, . . . , n with xj at an end point.
BX-

In Eq. (16), 8, is the scattering angle in the center-of-
momentum frame.

The asymptotic evaluation of a multiple integral is
most easily achieved using the method of steepest descent.
The method requires the determination of critical points,
which come in two varieties. If we are evaluating

8,(a+ f3)81(p—a)
V1 ——ln

81(y+a)81(y —a) '

81(y+p)81(y —p)
V~ ——ln

8,(y+a)e, (y —a)

The region of integration is

—, &y&p&a&0,

with

(23)

(24)

(25)

dv2dv3dv„=4da dPdy . (26)

(The factor of 4 comes from our use of the symmetry of
the integrand about a=0 and y= —,'.) It is straightfor-
ward to analyze the case w =0 and see that no critical
points exist within the remaining region of integration. It
is also straightforward to see that the separate vanishing
of the derivatives of V1 and V2 cannot lead to a critical
point. The more general case w&0 is not so easy to
analyze. We have not found any critical points of the
first kind for this case. We consider then the possibility
of changing the contour of integration in the v; in order
to encounter a critical point. Indeed, there is a critical
point of the second kind which can be reached by chang-
ing the contour of integration, and we use that point to
approximate our integral for large s.

Noting that

(21) ln
~e, (vlr)

'

=1n(sinmv)
81(0

I
r)

In our case, we need to examine the derivatives of V~.
The conditions (20) and (21) are somewhat more easily
analyzed if we introduce a new set of "angular" variables
(a,p, y). We choose these so as to symmetrize V1 and V2.
Letting we define g according to

w" sin n~v

n=1
(27)
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Specifically,
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rl=
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(29)

av,
w=0, =0.

a

The solution to the latter equation is

1
90

1 —X

(33)

(34)

and

S„=cos2n sra(cos2n ~y cos2n—mP) .

We then find that V~ can be written in the form

(30)

Note that g0 & 1, whereas g is restricted to be positive and
less than 1 in the original region of integration. At g0 we
have (where P; =a,g, y)

(35)

V2 ——in' —A. ln(1 —q)+4 g
1 —w

S„—kT„
(31)

1 —a(s)(1 )1—a(t)[1+O( )] (32)

and bears some resemblance to the Veneziano Born term.
The integrand now can be seen to have a surface of crit-

ical points of the second kind at

T„is defined in analogy to S„.Note that the integrand
now has the form

We now find it convenient to change variables to
(2),f3, y), because the critical point will then be the sheet
q=g0, w =0. The integral over g then becomes nothing
other than the Veneziano Born-term amplitude, and its
asymptotic form is the same. We must also deal with the
w integration, which is expedited by recalling that the re-
gion of convergence of our integral is a cone around the
imaginary s axis. We expand V2(g, w) about w =0, keep-
ing only the linear term, and expand in g about g0. We
find

L =64i(2~i) g K5' gk; e
1

dy ~ dtU, —s(s) —s)&) V) (s)&, 0)/4 —swV /2 +swV /2

0 P j0 0 0
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where

(37)

Note

1 —A. 2(cos2mP —cos2n.y) &0 . (38)

J is the Jacobian Bg/Ba, which we have approximated by its value J0 at g =g0.
Letting s ~i o., the w integral becomes

dw —2i sin
w

o.w V

2 a ~oo
( irr) . — (39)

The g integral is a simple Gaussian as s~ ~, yielding

L =64vr(2mi) g K5' g k; e ', J d)t3 1 dy(1/J0) .
sV" (40)

The remaining integrations in Eq. (40) cannot be car-
ried out in closed form. However, it is easy to verify that
the integral is finite, and does not vanish. In fact, it is
complex, as the integrand possesses a single square-root
branch point within the region of integration.

Equation (40) represents our approximation for the
asymptotic form of the amplitude. The dominant
behavior for fixed A, is given by the exponential, with

Vg" ——VI —k' V2,

where

(42)

We have thus found the asymptotic behavior of the
(s, t) diagram at the one-loop level. The (s, u) and (t, u)
diagrams are quite similar, with only minor modifica-
tions. For the (s,u) diagram, we need only replace t~~u
The resulting change is that

Vg(g0, 0) = —ln[( —A, )~(1—g)) ~] . (41) X'= —,(1+cos8, ) = —u/s . (43)
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In this case, the critical point is at qo ——A,
' and the asymp-

totic behavior is given by (40), with

V'"(si&,0)= —(A, 1nk+ A, 'in'. ') . (45)

We now turn to the question of the allowed behavior of
the amplitude, according to the asymptotic theorems. As-
suming Mandelstam analyticity, Cerulus and Martin
have found the lower limit

~

F(s,cosO, )
~

&exp[ —s' lnsC(0, )] . (46)

We see that the type-I superstring amplitude falls more
rapidly than this at high energies, at least at the one-loop

The asymptotic behavior is given by (40) and (41), with

For the (t, u) diagram, we find

(44)

level. The Cerulus-Martin bound, of course, applies to the
full amplitude and not necessarily to low-order terms in
perturbation theory. Our result, therefore, serves only to
point out that superstring perturbation theory is a poor
approximation to the full theory in at least some regions
of the kinematic variables. Chiu and Tan have argued
that, if there are indefinitely rising linear trajectories, the
Cerulus-Martin bound can be exceeded. The superstring
theory has such trajectories and is consistent with the
Chiu- Tan result.
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