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A new algorithm generating asymptotic expansions for general minimal differential operators of
any order is derived. At each space-time point we introduce a tangent space forming the normal-
coordinate system and a fiber frame obtained by a parallel transportation from the base point. The
differential operators can be reexpressed in this local representation of vector bundle. With these
operators we consider the heat kernels and derive an algorithm for the asymptotic expansions. We

apply this method to most general fourth-order minimal differential operators in a curved space-
time and find the first two terms of the expansions including the divergencelike terms which had
been neglected in many calculations. Some interesting cases of general higher-order operators are
also considered.

I. INTRODUCTION

Recently there has been much progress on fourth-order
gravity theories. ' In spite of the relatively long history
of fourth-order gravity, it was only recently that these
models proved to be renormalizable and asymptotically
free. ' Many calculations on the one-loop P functions in
these models, which determine whether or not these
theories are asymptotically free, relied partly on the
Schwinger-DeWitt proper-time algorithm. A similar
theory also exists in mathematics, usually called the
"heat-kernel method. " ' The heat-kernel method is used
to calculate the local index of various elliptic operators.
The original DeWitt algorithm is restricted to second-
order operators. Therefore to find P functions in fourth-
order gravity, this algorithm must be generalized to
higher-order operators.

This was done by many authors. ' ' When a certain
operator can be written as a product of second-order
operators, we may obtain the functional determinant of
this operator by multiplying that of each operator. Many
works on fourth-order gravity relied on such a property
of functional determinants and used the results about
second-order operators to find the one-loop ultraviolet
divergences. In more recent work on the generalized
Schwinger-DeWitt technique, Barvinsky and Vilkovisky, "
using similar properties of functional determinants and
the results on second-order operators, made a reduction
scheme with which asymptotic expansion for a most gen-
eral fourth-order operator was obtained. For another ap-
proach, there is an algorithm based on the pseudodifferen-
tial operators, which is studied mainly by mathemati-
cians. '

In the algorithms where the multiplicative property of
functional determinants is used, information about diver-
gencelike terms' can be lost in the course of the multipli-
cation of operators. For finding ultraviolet divergences, it
may be safe to discard such terms. However, when we

consider a theory on a manifold with a boundary, we
should keep the divergencelike terms. Even for a theory
on a manifold without a boundary, such terms can be im-
portant. For example, in quantum gravity, terms of the
form V R may be responsible for the conformal anoma-
ly. ' The Schwinger-DeWitt proper-time algorithm can
be used to calculate a chira1 anomaly,

' where such diver-
gencelike terms are necessary. On the other hand, in
mathematics, various indices associated with pseudodif-
ferential operators can be expressed as a total trace of an
asymptotic coefficient acted by some operator. In such a
calculation, we cannot neglect the divergencelike terms.

Recently two of us (Lee and Pac) formulated an algo-
rithm' of finding asymptotic expansion for general
minimal operators' with any order. This algorithm does
not rely on the multiplicative property of functional deter-
minants which has been used in many previous works. In
Ref. 12, using this algorithm, we calculated an asymptotic
series for a restricted class of fourth-order operators. Our
results were different from the early works in the diver-
gencelike terms. With our method we can evaluate an
asymptotic series, in a direct manner, including the diver-
gencelike terms for higher-order operators. Although our
previous work presented a new way to calculate asymptot-
ic series, it still requires some tedious combinatoric calcu-
lations.

In this paper we improve our previous algorithm by in-
corporating the normal-coordinate system accompanied
by the parallel transportation on the fiber frame and
present complete first two coefficient functions in the
asymptotic series for a most general fourth-order minimal
operator including divergencelike terms. In this paper we
sha11 call such a formalism simply by "normal-coordinate
method. " The advantage of incorporating this normal-
coordinate system of vector bundles is that an operator ex-
pressed in this representation can be expanded by tangent
vectors covariantly. In our opinion, this formalism can be
also used to obtain covariant momentum expansions in
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gauge theory and quantum gravity. Using the results on
the asymptotic expansions, we will test the multiplicative
property of functional determinant. We also calculate
asymptotic series for a 2dth-order operator obtained by
multiplying second-order operators of the form V +C.

In the next section a general formalism on the algo-
rithm for the asymptotic expansions is given. In Sec. III
we apply this technique to various operators. The final
section contains the discussions.

II. GENERAL FORMALISM

We begin this section by reviewing our previous works.
Before doing this let us be precise about the notation.
Throughout the paper we work in Riemannian space-time
manifold and use a metric tensor g„r(x)with metric sig-
nature (+, . . . , + ). A curvature tensor is defined by

~~sr = ~ wr i ~r+ ir ~s ~r~~s
where I'zr' denotes the torsion-free Riemannian connec-
tion determined by g„r(x).Ricci tensor and scalar curva-
ture are defined by

represented by (x,x'). XXX is locally diffeomorphic to
TX. Each point in TX is described by (x,X), where X is
a tangent vector at x&X. Consider a local diffeomor-
phism defined by

X~ =cT(x,x').~, (7)

where g (x) = det(ger ) and n is the space-time dimension.
The measures on X)&X and TX induced from X are given
by

where cT(x,x') denotes a biscalar, half the square of the
geodesic distance from x to x'. In differential geometry,
this diffeomorphism is called an "exponential map":
x'= exp( —X)x, and the tangent vectors form a normal-
coordinate system. 0(x,x') is also defined by

cr(x,x') =cT(x',x),
cT ~cT' =20', 0' pr(x&x) =g~r

The Riemannian measure on X is given by

dx—:g
' (x)d "x,

Rpy ——R~py and R =R~ (2) g 1/2(x)gi/2(X )dnX dnx =Q i(X,X )d X d X (10)

Denoting Yang-Mills fields by A&=A&'T' with group
generator T', the covariant derivative can be written as

where

b, (x,x') =(g„g„)' det( —cr.&r )

7'„=8„—iA„+I„, (3)
with

ln[ det(M)] = —J Tr[ exp( TM)], —
4

(4)

where I „denotes the Riemannian connection operator
acting on space-time tensors. Hereafter we shall represent
the covariant derivative by a semicolon. For example, we
use R.„"for V&Vi'R.

In the proper-time method, the one-loop effective ac-
tion is given by the logarithm of the determinant of some
operator M:

cT ~r =VpVr cT(xt&x ) (12)

For a given point x in X, we define the measure on the
tangent space at x by

dX=dx'=g ' (x')b, '(x,x')d "X . (13)

Then the measure on TX can be written as dx dX.
Next we introduce the parallel transportation operator

T defined by

where g denotes the proper-time cutoff. Here M can be
any second-order partial differential operator with suit-
able background fields. Generally we may write
M =M(V, P), where P denotes the additional background
fields. It is assumed that, when all the background fields
vanish, M reduces to'

Tf (x,X)=I (x,x')f (x',X'),
T 'f (x,X)=I(x,x )f(x,X),

where

cT(x,x') „=X„,0. (x',x).„=X'„,

(14)

cT(x,x ) i&= —Xp cr(x, x )„=X„, , -

A. The normal-coordinate method

(yr ~x)—:(y
~

exp( —rM) ~x) . (6)

Here any Green's function can be taken instead of a heat
kernel. We can extend the heat kernel to tangent bundle
TX of space-time manifold X. To do this, we first con-
sider a product space XXX. Then a point in X)&X is

The normal-coordinate method is a way of representing
vector bundles by using the normal coordinates to describe
the manifold and the fiber frame obtained by the parallel
transportation from the base point to describe the fibers.
Now we introduce this formalism briefly. Consider a heat
kernel

and I(x,x') denotes the parallel transportation matrix
from x to x' (Ref. 8) satisfying

crt' V „I(x,x') =0=I(x,x') V „cr",
I(x,x') i„„.=l,
I(x,y)I(y, x') =I(x,x'),

(16)

g~r (x,x')
~
„„=ger(x). (17)

Now we return to Eq. (6). Regarding M as an operator
on TX by restricting it to the first coordinate of (x,x ),
we can write

for y lying on the geodesic from x to x'. Bitensor
g„r(x,x') satisfies the similar equation except for
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(18)

where we used Eq.
T '~xO&= ~xO&, and

M= T 'MT

(13) and the relation

=M(V, P),

(yr
~

x &
= f &I'(yI'

~
exp( r—M)

~

x 0 &

dYI y,y' y'Y' exp —~M x 0
M= ga . . . r„.. . s(x)X ax„

a
ax,

(24)

where the a . . . ~'s are covariant tensor matrices and

expand M by X„.Since I(x,x) and cr(x, x) have well-
behaved series expansions at x =x by X„,we can write

where V=T 'VT and P=T 'PT.
Using Eq. (13) we can easily prove that

V„=g„"(x,x) I(x,x)I(x,x)
BX

X

+a -. a =+a +a
1 n I n

To expand M in the form (24), consider an operator

D=—Xp
a

ax„

(25)

(26)

(20)

P„=g„r(x,x )I (x,x )P (x )I (x,x) -. (21)

Since Vz is not a differential operator for the first coordi-
nate in (x,X), we can integrate Eq. (17) and find

(yr
~

x & =I(X,x)(X
~

exp( —rM)
~
0&„,

where y =x. In the coincidence limit y =x, we obtain

(22)

P can have tensor indices, e.g. , P„.As an example consid-
er Pz.

V"(x ) =I (x,x )I(x,x)'"+ a

ax„ (27)

By a simple calculation we have

Since [D,X&]=X& and [D,o'"]=0'", we can say that
operator D counts powers in X„and/or o . By succes-
sive application of D we can expand various quantities ap-
pearing in M.

In the case of flat space-time, since g"- =g"z ———o.'"-,
we may write

(xr ~x&=&0~ exp( —rM) ~O&„. (23) (D+1)I(x,x )I(x,x)„=XI(x,x)A,-„I(x,x), -(28)

Equations (22) and (23) describe the heat kernel by
Green's functions defined on the tangent spaces. In Eqs.
(22) and (23), the coordinate x is considered as a constant
parameter. The merit of this representation of Green's
functions is that these functions are covariant at x regard-
less of tangent vector X and x can be regarded as a con-
stant. Since the diffeomorphism defined in Eq. (7) is a lo-
cal one, Eqs. (22) and (23) may not hold exactly in curved
space-time. However, the asymptotic series depends on
the local property of the operator. So we can safely use
Eqs. (22) and (23) to find asymptotic series.

For the later calculation of asymptotic series, let us now

where

(29)

Using Eq. (28), we can find

n —1 p,a, ;—X
X

(30)

In curved space-time, although the calculations are
somewhat complicated due to space-time curvature, in a
similar way, we obtain

g(xx)q I(xx)I(xx) = —,X 8 „+—,X.-R „.s+ —,Xr R r„.s —„Xr'o—spr IR, .
s0+( X), (31a)

2 n!
(31b)

where

,
X '

o nf
(3lc)

~r=[V„,Vr] . (32)

In Eq. (31) R „ris a curvature operator acting on any tensor following it and all the tensors with the name cr have been
assumed to be evaluated at x =x. Since —X g mrs

——X„,each tensor with the name o in Eq. (31.b) vanishes if sym-
metrized with respect to all barred indices, which can be used to find these tensors in terms of curvature tensor R„z~.
Inserting these results into Eq. (31), we finally obtain

—g(xx )p o'
~r —ger —

6 X Rrapr ]z X Rrapws+X ( —40 Rearm;5&+ 360 RpaETR 'mrs)+0 (X ) (33)
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Similar calculation gives, when x =x,
&C

p(y5) 3 ~ (y5)p (34) M0—
BX

' d

(35)

This completes our description on the normal-coordinate
method.

B. Asymptotic expansions

(X
~

exp( r—Mp) ~0) =t @( &z ),
where

(36)

In this subsection we derive an algorithm for asymptot-
ic expansions using the representation of the heat kernel
given in Eqs. (22) and (23). First consider the case of fiat
space-time and vanishing background fields. In this case,
M =Mp and we easily find

@(—,'z )= J exp(ip"z„—p ~) .
(2ir )"

(37)

Next we consider (X
~

exp( rM—) ~0)„,which can be
written as

(X
~

exp( —rM)
~

0)„=(X
~ [ exp( —v'M) exp(rMp)] exp( rMp) —

~

0)
= [ exp( rM ) ex—p( rM p ) ](X

~
exp( —rMp )

~

0 ) . (38)

In Eq. (38) the two operators within the brackets may be
meaningless, when considered one by one, but not as a
whole. From Eqs. (36) and (38), we have

(X
( exp( —M)

~

0)„=t"f exp( —M) exp(Mp)]@, (39)

(X
~

exp( —M)
~

0)„=t" g (m)"@ .
k=0

(45)

Cxenerally Mk in Eq. (41) and mk in Eq. (44) are regular
at z =0 and have the form

where M=rM and Mp ——rMp. Using Eq. (39), we calcu-
late the asymptotic series. From Eqs. (24) and (39), we
can see that it is not possible, except for d = 1, to write

(X
~

exp( —M) ~0)„=t "@gt"hk(x,X}

Q a
'' " r(x)z . . . sB„.. . r,

where

z~. . . Q=z~ z$ Bp. . . y=Bp ~ By

(46)

(47)

M =MP+tM] +t M2+t M3+t Mg+ (41)

with some functions hk's which are regular at X=0.
This is possible only when d =1. In the next two para-
graphs, we show that for arbitrary d, (X

~
exp( —M )

~
0)„

has an expansion by z& and t rather than X& and ~.
From now on let us take as independent variables x, t,

and zz. Note that

[a„,a, ]=0=[z„,z, ],
(40)

[i3„,zr ]=g„r(x),
where 8"= (Blitz„)„.In general, M can be expanded by t,
i.e.,

g (z) —g (8)+2d =k and g(B) &2d for M,
g (z) —g (r))+j 21=k for m,

(48a)

where g (z) and g (8) denote the degrees of the monomi-
als of (47} in z and 8, respectively, and j is a non-negative
integer. On the other hand, B,when operated on 4,
yields a regular function around z =0.

From these results we conclude that Eq. (45) gives a
well-defined series expansion by the variables z„and t:

Comparing Eq. (46) with Eq. (24) and noting that m is
given by the sum of repeated commutators involving M
and Mp, we find

From Eq. (35), it is obvious that (X~ exp( —M) ~0)„=t"g t"hk(x, z),
/c =0

(49)

M, =( —a')' with a'=a&a„. (42)

For the operator inside the brackets in Eq. (39), we define
operator m by

where hk's are C at z =0. In particular, we are interest-
ed in the coincidence limit of the heat kernel. From Eqs.
(45) and (49), we conclude

exp(m)—:exp( —M) exp(Mp) .

Since M —Mp =0(t), m can be written as

m = g t mk tmi+t m2+t m3+t m4——+. . .k 2 3 4

k=1

(43)

(44)

oo

(x~fx)=t "g (m)"4
k=0

=t " g ak(x)t",
k=0

(50)

Notice that m =O(t) Hence to find a.symptotic series, we
can use

where the symbol = means "equal to in the coincidence
limit. " Here we would like to emphasize that the expres-
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sions of the form (50) used in this paper always mean the
asymptotic expansions. It may be impossible to write the
exact form of (xy

~

x ) in this way, which also depends on
the global properties of M and the underlying manifold.

In the remaining part of this section, we explain how to

calculate the series given in Eqs. (50). First we expand M
by t as in Eq. (41) and write it in the form (46), using the
results obtained in the last subsection, e.g. , Eqs.
(19)—(21), (24), and (31). For later use, we list some use-
ful formulas. From Eq. (31), we find

4 ~gyp ~ 1 7 ~Qy 1 1+ t [Z 13 ( —4O
R aSj&4. gy+ 26O RjS4k&R (ay) +Z ( 8

R ~j4 Sy+ 2.4 R j4 S R y2 )]+
2 y5 3 y5a

4t2~ rt2j, +tZ ——Pj y+ 2. t Z Pj yS+ 6.t Z 0j;ySa+ ' ' '

(51a)

(51b)

Inserting Eqs. (51) into Eq. (19), we obtain an expansion of M by t. In Eq. (51) do not confuse B„withr)„.
Next we calculate m defined in Eq. (43) using the Campbell-Baker-Hausdorf formula. Denoting E= —M+Mp, we

have

m = ln[ exp( —Mp +e ) exp(Mp )]
1 1 S) 1 Sl S~= J ds e, + —, f ds& J ds2[e...e, ]+—, I ds, I ds2 f ds, ([[e, ,e, ],e, ]+[a, ,[e, ,k, ]])+

=(1+ , L+ , L + ,—4L—)e+——
12 [e,Le]+ 24 [F.,L e]—+

where e, —:exp(sL)e, and L = [—Mp, ]. From Eq. (48a) we easily find

L"M =0 fork)j .

(52)

(53)

(54)

Inserting Eq. (41) into Eq. (53) and using Eq. (54), we find, for the coefficient functions of the asymptotic series defined
in Eq. (50),

ap(x)=@, a2(x)= —,M) — 1+—M2 41&,2 L
2

a4(x)= —M) ——(M) M2+M, M2M, +M2M, ) — L(3M) M2+2M—)M2M)+M2M, )
3t 41

+(—,M, + —,LM, )(M, )+( —,LM, + —,M, )(LM, )+—„(12+8L+3L')M, M,

+ —„(12+4L+L )M3M( —(1+ , L+ , L +—„L)M—4— (55)

k

gj1'''jk X gi ljj p2 jj —ljj+1 jk
J=2

Then we can find

(56)

(57)

and so on. The ak's for odd number k vanish, which will

be clear in the next paragraph. In many cases, M] ——0
and then Eq. (55) is greatly simplified.

Each term in Eq. (55) can be reduced into the standard
form (46). Equation (48a) is also valid here. Then every
term with g (z) & 0 vanishes in the coincidence limit. So
for the calculations of ak using Eq. (55), it is sufficient to
consider the terms of the form a" yB„.. . y4I1. For this
let us introduce the fully symmetric tensors defined by the
recursive relation

and

(a') C=(4 )-."'—'"r "+'
d 2d

nr—
2

(58)

where CJ satisfies the recurrence relation

C, =n[C, 1+j (j —1)C, ,] and Cp ——1 . (59)

In the sPecial case of n =4, Cj ——(j +1)!2j. In conclusion,
by using Eq. (51) to find the expansion (41), and applying
Eqs. (55), (57), and (58), we can calculate the asymptotic
series t "gakt

Even with these tools, we still need some labor to calcu-
late ak. So now we briefly introduce techniques allowing
us to contract tensors in advance. In calculating ak, we
frequently meet expressions of the form
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(60) p 1 q 12. . 2r —12r

To find the coincidence limit of Eq. (60), normally, we
reduce it into the standard form (46) by commuting z 's

with ar's, and then use Eqs. (57) and (58). Since Eq. (60)
is symmetric for the two sets of indices (ai. . . ap) and
(yi . . yq), it will be the sum of tensors of the form

x "+' ~q+ . (61)

where p+q = even and p )2r. So it is convenient to in-
troduce an operator S2, such that

/2
(a2)i ( par( rq(a2)i@ y (a2)ispq(a2}J'@ ( p'r) rq

r=0
(62)

Hence we may write

/2a1. -
aping] pq ~ ~pq 1 p'Y1 Yq

Z U S2rg 2r
r=0

(63)

2p —r
(a')'sg-

(i —P + r)! C(p+q)/2 r—(a2)i+(q p)/2

for i &p —r . (64)

Note that Sg-Sg 2„"q "'. Hence, denoting S—:So,
we can write

where the symbol —means "equal to in the sense of Eq.
(62)." By a simple combinatoric calculation we find

space-time. First we consider a most general fourth-order
minimal operator

M =(V2)2+B"r V„VrVs+C"rV„Vr+D"V„+E, (67)

where the tensors 8"~ and C"~ are fully symmetric in
their indices. Even if torsion is present, we can use Eq.
(67) again, since torsion can be regarded as a tensor field.

First we should find M and expand it by t. Before do-
ing this, let us consider a second-order operator V . Using
Eq. (51), we find

(68a)

sp-s"
In this case, Eq. (64) reduces to

(65) py a 5 l Q 2+ a ( —iz Rap;r (2 Raycrp' + T ~Isa;r }

p;a+TZ"Oq ' (68b)

(a')'s~- 2p

C(p +q)/2
(a )'+'q P'/2 for i&p.

(66)

Given p and q, only a subset of g2, 's

(r =0, . . . , [ min(p, q)/2]) are linearly independent. For
example, g4 ——gz —go for p =4 and q =2, and g2 ——go for
p=3 and q =1.

where V„=tV„.Here R „~'shave been replaced by A&z's
if they sit on the right-most side of each term. Note that
R „zoperates on any tensor index following it, whereas

Q&r does not. For instance, [R„r,z ]=Roars z Since.
we are interested in a2 and a4, from now on, we shall
contract tensors with O(t ) in advance, as described in
the last section. In this way, we obtain

(V ) ——, S' '[R + , —(R R s.+ —', R—)'rsR „s}]
III. APPLICATIONS

In this section we calculate a2 and a4 for various
higher-derivative operators defined in four-dimensional

+ —S'2OQ 0»
4

where S' ' =S '+S and S'
Now we turn to M. In a similar way, we find

(68c}

M, =a" B„s,M2=[a, (V )2I+z"a" B „+aC.
M = [a,(V ) )+ , z" ar (B „—B„,R '„)+z."—a ( )2B, R '„+, B— 0„+C„)—+ai'D.

M4 can be also found by contracting indices in advance:

M4 —[a', (V')4]+(V')2(V')2+S "B„s'"r+ ,
' (S"+S")B—

SB . R—"r+
2 (S +S")(3Ba . Q)')'+2B 0 "'r)

(S +3S )B~ R~rs+S C~r)' + (S +S )C 's S C sR +S D +E

(69)

(70)

where the tensor with dotted indices is symmetrized in these indices. Hereafter we shall use this notation to represent the
symmetrization.
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Inserting Eqs. (69) and (70) into Eq. (55) and calculating the combinatoric factors using Eqs. (58) and (66), we can find
a2 and a4. az is given by

m. l/2
2(x} 2

(TiR + 4 C —
8 g Buoys;a 256 g BpysBaaE}

64m
(71)

where C —=C . Next let us consider a4. Because a4 contains many terms, it may be necessary to write down the results
systematically. Our result on a4 is

1a4(x)=
2 (hp+h|+hz+h3),

32%2
(72)

where

hp ————,OR gR + —,0R~pygR " + —,6R +—,0 gA ——,'C gR + —„CR

+ ,6 {b,D—}+6B s
' , b '

s
—+ , (b—R—s+3b As )'s+ —,', [b,Qs 's]

++([B s C" 1
—[B s

' C']+[C s b "]—[C s" b ])++s[b *C'1
1 3

h 2: ~80 Bppp Bppp B~ppBg@ + 80 b B gy + by gB

—„,BpppBpppR —+B ppQ Bspo+ „BpoBs—ooA + „RtB —s,b

. [I(Booo} Coo}+BoooCooBoool —480(BoooBooo); ++g(B ooBoos' —BsooBoo; )'

+ w (B oo' Bsoo)"++o(B' b. );.s+ 8'0 [by; B"y;sl
1 1 4

i6X5~,
([B oo»ooo}Booo' +B ooBooo' Booo}+,(Booo}32' 8!

+
32 6, I2(Bee)';p+ [(Booo)»ooo;ol }

1
a4(x) = hp(x) for B s

——0 .
32m2

(73)

with b:—B ~ and the notation Tp. . . p =g ' T
Our results summarized in Eq. (72) include the diver-

gence and the commutatorlike terms which vanish after
taking a trace and integrating over a space-time manifold
without boundary. By careful consideration of Eq. (72),
we can see that our results are in complete agreement with
the previous one, " up to these terms. %'hen B ~

——0, Eq.
(72) is greatly simplified

As noted in our previous paper, ' the divergencelike terms
in Eq. (73) disagree with the results obtained in Ref. (6),
where the multiplicative property of functional deter-
minant had been assumed.

Next we consider 2dth-order operators of the form

M=( —1) (V' +Ci) . (V' +Cd) .

For these operators, M
&

——0 and therefore the calculations
are relatively simple. Here, we omit the detailed calcula-
tions and report only the results, which can be summa-
rized as

a2(x) =—I 1+—g aj~(x),1 I

a4(x) =—g aj4(x) + —,
' Q [Ci,C;]—+, g Cl. [3(J—1)(J—2)+(d —1)(d —2) —6(d —2}(J—1}], (75)"J J)l
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where aj2 and aj4 are the corresponding coefficient func-
tions for the operator V +Cj

1
ajq(x) =

~ CJ,
16m

aj 4(x) = 2 ( —,Ip RasR + ]Ip RaprsR
16m.

1 ~ 1+ 3p;a + 6Cj.a ) (76)

IV. DISCUSSIONS

In the last section we used the algorithm obtained in
Sec. II to calculate the first two terms in the asymptotic

In Eq. (75), the additional factor I/d in a4 disappears
when we express the ultraviolet divergences by a momen-
tum cutoff instead of proper-time cutoff g. Hence we
again find that a4 is an additive quantity up to the diver-
gencelike terms.

series for some higher-order operators. In our formulas
the divergencelike terms are correctly included, which
may have important physical consequences in higher
derivative quantum field theories.

We postpone such considerations in the near future, and
here we would like to discuss the additive property of a4,
which can be tested using Eqs. (75) and (72), for a restrict-
ed class of operators. From Eq. (75) we can see that a4 of
the operator (74) is the sum of those of the individual
second-order operators up to the divergencelike terms.
Using Eq. (72), we can prove that this is also true when
the fourth-order operators are the product of general
second-order minimal operators. We expect that this
property of a4 will be satisfied generally. However, when
we calculate the divergencelike terms, we cannot use the
additive property of a4 at all.
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