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The O(N)-symmetric generalization of XP theory is studied in the Gaussian-effective-potential
(GEP) approach. It is shown that the GEP encompasses and transcends the leading-order 1/N ex-
pansion results. We find two distinct, nontrivial versions of the (3+1)-dimensional theory: (i) "pre-
carious P theory, with negative, infinitesimal A.e, which coincides with the 1/N result; and (ii)
"autonomous P theory, " with positive, infinitesimal A, ti and an infinite wave-function renormaliza-
tion, which is inaccessible to perturbative or 1/N methods, and could well have eluded lattice-based
approaches. "Autonomous P theory" can exhibit spontaneous symmetry breaking, and we specu-
late on its relevance for the Higgs mechanism.

I. INTRODUCTION

In this paper we employ the Gaussian-effective-
potential (GEP) approach' to study the O(N)
symmetric A,P theory:

H = —,
'
P '+ —,

'
( VP )'+ ,

'
mt' 'P'+ k—ti( P')'

(P—:t()i + ' ' +/tv ). This generalizes the GEP
analysis of N =1 A, iI) theory in Refs. 3 and 4, and allows
us to compare the approach with the 1/N expansion.
We shall show explicitly that the GEP contains the leading
1/N result as its formal N~ co limit It is al. so true that
the GEP contains the one-loop result as its formal iit'~O
limit. ' Thus, the CJEP encompasses both of the other
popular approaches to "effective" potentials: it shares
their virtues, but without necessarily sharing their limita-
tions.

The plan of the paper is as follows. Section II describes
how to compute the GEP, in unrenormalized form, in
theories with several scalar fields. It also shows how the
1/N result is recovered in the N~ oo limit. We discuss
the (1 + 1)- and (2+ 1)-dimensional cases very briefly in
Sec. III. The main point is that the absence of "spontane-
ous symmetry breaking" ' " (SSB) in the 1/N expansion
is merely a consequence of the limitation of that method
to rather weak coupling (A, —1/N).

In 3+ 1 dimensions we find two distinct versions of the
theory. (i) "Precarious P theory, " described in Sec. IV, is
the O(N) generalization of the results in Refs. 3 and 4. It
is seen to be essentially identical to the theory uncovered
by the 1/N analysis. It has a negatiue, infinitesimal
A.tt, but nevertheless appears to be stable. ' ' (ii) "Auto-
nomous P theory" discussed in Sec. V, is a generalization
of the results of Ref. 17, which are in turn related to work
of Consoli and collaborators. ' This theory has posi-
tive, infinitesimal Xz and an infinite wave-function renor-
malization. It may exhibit SSB, but contains massless
particles if the symmetry is unbroken. We show that this

theory is not accessible to perturbation theory, the loop
expansion, or the 1/N expansion. The existence of a non-
trivial, positive-k, (P )&+i theory is, of course, contrary to
the "triviality" dogma. ' However, we shall argue
that, because of the strongly coupled nature of the theory,
it is quite possible that it would elude the lattice-based
analyses of Refs. 21 and 22. Thus, we believe that we
have found the hiding place of the long-lost nontrivial P
theory.

Our notation follows Refs. 3 and 4 and is summarized,
together with key formulas, in the Appendix.

II. THE GEP FOR O(N)-SYMMETRIC P4 THEORY

Our first point is that the generalization of the Gauss-
ian ansatz to the case of many fields is slightly subtle.
One should not merely write

P'=Pc+/ '(0)

=P'o+ f (dk)n[aIi(k)e '"'"+an(k)e'" "],
giving each component of the field the same mass Q. In-
stead, for full generality, one should put

4'=No+&'J(9», i)tv»k'«, »
and treat the N —1 angles in the rotation matrix RJ', as
well as the N different Ot's, as variational parameters.
The reason for this form is easy to understand in the
quantum-mechanical case: The point is that the most
general multidimensional Gaussian wave function is not
"spherical, " exp( ——,QP'P;), but "ellipsoidal",
exp( ——,

'
Q~Q;Jg).

For an O(N)-symmetric theory, where only the shift Po
sets a direction, it is easy to see that the variational solu-
tion for the angles 0&, . . . , 0& ~ will be such that the
eigendirections of the Gaussian wave functional are radial
and transverse. Moreover, because of the remaining
O(N —1) symmetry, the N —1 transverse quantum fields
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will have equal mass parameters Q«,„,=co, while the radi-
al quantum field will have a distinct mass parameter
Q„d;,&—=Q. Knowing this, we may simplify the calcula-
tion by adopting a coordinate system in which Pp points
in the i = 1 direction, so that (with Po= l Pp l

)

N
(4')'=Co'+44oV'i'+20o' g 0 '+

1

+40oV i+40oki g 4
1

2

(2.4)

P'=go'+24oki+ g4' '
1

(2.3)
It is now straightforward to compute n(0

l
A

l
0)n to

obtain

VG(go, A, cg)=[I&+ —,
'

(m~ —Q )Ip]+(N —1)[I'i+ 2 (mg —co )Ip]+ , mg —Pp +ksPp

+Aa[3Io +(N —1)Io +2(N 1)IoIo+6Iogo +2(N 1)Iogo ], (2.5)

Q~=mz +4As[(N —1)Io+3Io+3go ]

cu =ms +4As [(N + 1 )Io +Ip+ Po ] .

(2.6a)

(2.6b)

Equations (2.5) and (2.6) specify the GEP VG(gp) in its
unrenormalized form. For future use we record here
some results which follow directly. The first derivative
is"

d VG BVG I

Imp +4As[(N 1)Io+3Io+Po ]I2
Qp

2

where Ip =Io(Q) Ip —=Ip(ct)), etc. Minimization of VG

with respect to 0 and co leads to two coupled equations:

Ip ——(co ms )/(4N—A,&)—(Po2/N) .

Using this to eliminate Ip in (2.11) one obtains

(2.12)

—VG =Io+ ,
' ~'(Pp'/N—) —(cu' m~')' —.

16 NAs)

(2.13)

dropping terms of order 1/N. Note that the 0 parameter
no longer appears: in this limit effects due to the single
radial field are negligible compared to those of the (N —1)
transverse fields. In the same limit the cu equation (2.6)
becomes

=-,' (0 —8A,~go ),

and, from (2.6),

dQ =4As [3+4(N+2)AsI' i]/A,
d4o'

dc' =4k,g/A,2

where

A =1+6AsI i+2(N+1)AgI'

+8(N+2)A, g I,I'
i .

The second derivative is then

d VG 2k'
d(p 2)2 [1—12AsI i+4k gI' i

—16(N+2)As I,I' i] .

(2.'7)

(2.8)

(2.9)

(2.10)

Recalling that I& =Ii(co) can be—expressed as a (v+1)-
dimensional Euclidean integral,

d kEI, (co)=—J in(k~ +co )+const,(2~)"+' (2.14)

one recognizes Eqs. (2.12) and (2.13) as the standard lead-
ing 1/N result ' for the effective potential, up to an ir-
relevant constant. Note that our parameter co is to be
identified with the auxiliary field 7 introduced in the 1/X
approach.

m& =+'I y, =o=~'ly, =o=2dVG/dpo'l ~, o

=ms +4(N+2)A&Io(mz) .

III. RESULTS IN 1 + 1 AND 2+ 1 DIMENSIONS

In this section we briefly discuss results for (1 + 1)- and
(2+ 1)-dimensional theories. In these dimensions only a
mass renormalization is necessary. Defining the renor-
malized mass to be the particle mass in the Pp ——0 vacu-
um, we have

We now want to demonstrate that the GEP contains the
leading-order term of the 1/N expansion. We therefore
consider the limit N~oo with (NAz) and (Pp /N) held
fixed, which reduces (2.5) to

(3.1)

Using this equation to eliminate m~, and subtracting the
vacuum-energy constant

D~—:N [I,(m~ ) —(N +2)A~Ip'(m~ )],—VG =I;+ —,
' (ms' —co')Io+ —,

' mg'(pp'/N)

+(NAs)(yo /N) +(N&g)Io[Io+2(yo /N)]

(2.11)

leads to a manifestly finite GEP. Its form can be
described by the following mnemonic: take the unrenor-
malized expressions (2.5) and (2.6); write mR in place of
ms, and replace I, , I'„ Io, Io by their finite parts [de-
fined by subtraction(s) at fl =mz].
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1

2
3
6
8

100

Nk, ,(1+1)
2.5527
4.6862
6.5680

11.3591
14.1286
88.9605

NA, ,„,(2+ 1)

3.0784
5.6464
7.8949

13.5173
16.6929
89.2581

TABLE I. Critical values of k, which mark the onset of SSB
(Ref. 11), for various N.

does not give B&J"=0when Pp is nonzero. Nevertheless,
there is no reason to think that the problem is fatal. The
resulting potential does satisfy the O(N) symmetry —it is
a function of (()o=

~ Po ~
only. Moreover, the Goldstone

theorem does emerge in an approximate sense. ' Our nu-
merical results show that in an SSB vacuum one always
has co & —,Q, and in many cases (especially for large A. , or
for large N) one finds pi &~Q . Thus, the co particles,
which should be the exactly massless Goldstone bosons,
are indeed found to be much lighter than the 0 particle.

We have obtained numerical results for the GEP for
various values of N and A, =AR/mR '. We shall not
present these in detail, since the pictures are qualitatively
similar to the N =1 case. Basically, one sees the onset of
SSB" as A, increases through some critical value A,„;,.
Table I gives a list of values for NX„;, for various N's,
which illustrates the fact that NA, , t + QQ as N~ QQ This
explains why one does not see SSB" in the 1/N expan-
sion: ' The 1/N expansion is restricted to rather weak
coupling A, =O(1/N) whereas SSB"occurs only for much
larger A, 's. This is one instance in which the GEP scores
over the large-N approach.

A definite drawback of the Gaussian approach is that
the Goldstone theorem' is not respected exactly. ' The ~
particle mass in the SSB vacuum in not exactly zero, as it
should be. This is because the Gaussian ansatz does not
obey the O(N) symmetry at the operator level. For exam-
ple, substitution of the Gaussian ansatz for the field
operators into the expression for the Noether current, J"

1 —8A,RI i
—16(N+2)A, R I

[1+2(N+2)ARI, ](1+4ARI, )
(4.1)

where I i I i(mR)——here. It is straightforward, if
tedious, to eliminate the bare mass using (3.1). The result
is a somewhat lengthy expression whose form can be
described as follows: copy Eq. (2.5) replacing mR by mR
and I„Ii,Ip, Ip by their finite parts b,h', l, l" (see the
Appendix); then, apart from the vacuum-energy constant
D~, the only additional terms in VG are

IV. PRECARIOUS P4 THEORY

We now turn to the (3+ 1)-dimensional case. Follow-
ing Refs. 1—4 we define the renormalized mass by Eq.
(3.1) and the renormalized coupling constant by

d Vg

4' d4o' o

d VG

2 d(4o')' o

—,mR I i(mR)[(x —1) +(N —1)(x'—1)2]

+ —,mR AR[I i(mR)] [3(x —1) +(N —1)(x'—1) +2(N —1)(x —1)(x'—1)]
—mR ARI &(mR)[(x —1)[(N —1)I"+3I +3pp ]+(N —1)(x'—1)[(N+1)l '+I +pp ]I . (42)

Mass renormalization of the 0, pi equations gives

[1+6&RI i(mR )](x —1) + 2(N —1)&RI i(mR )(x' —1)=(4&R/mR' )[(N —1)I +3I +3pp ],
2A&I &(mR)(x —1) + [1+2(N+1)ARI i(mR)](x' —1)=(4A&/mR )[(N+ 1)l '+I +pp ] .

(4.3a)

(4.3b)

There are three ways in which (4.1) can give a finite AR,
but two of them can be rapidly dismissed. First, A,R could
be finite, so that A.R = —2A.R. The 0, p~ equations (4.3)
then imply 0 =co =m&, or more precisely,

(x —1)=2(pp /mR )/I i(mR )+O(1/I i )

and (x' —1)= 0(1/I, ). This causes all terms in VG to
vanish except for the classical potential terms and two
terms from (4.2), resulting in

I

N =1 case, so we may refer the reader to Ref. 3 for fur-
ther discussion. Second, A.R could be —1/(4I i ). One
can seen see, however, that this also gives a sick theory,
once one realizes that here the co, 0 equations are giving a
maximum, not a minimum, of VG(go, Q, p~). Indeed VG
has no minimum in Q, co in such a theory.

The only interesting solution to (4.1) with finite A,R is
with

VG D=( —,mR pp +A.Rpp )+—3ARpp —6AR4'o

TmR '6 2~BNo
2 2 4 (4.4)

This potential is unbounded below as Po~oo, so the
theory is sick. The above analysis exactly parallels the

—1

2(N +.2)I i(mR )

2NARI i(mR )

1

2
(4.&)
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which generalizes the A,ti ———1/(6I i ), "precarious, "
theory of Refs. 3 and 4. Note that (4.5) is equivalent to

—1

2(N+2)I i(p)
(4.6)

where the dimensional-transmutation scale p is related to
the renormalized coupling constant by

T

2mg
ln

LM

—4H
NAR

(4.7)

With this form of A,z the Q, co equations yield

—4(go /mg )

NI i (ming )

1

2
(4.8a)

(x —1)=
4NA, g 4o'

I (x)+
mg

(4.8b)

Noting that the first two of the three terms in (4.2) be-
come proportional to I i(m~)(x —x') and hence of or-
der 1/I i, it is easy to see that the difference between x
and x' can be neglected. It is then straightforward to
simplify VG to

2, 0o
VG —D~ ——N —

xmas

4

(x —1) +b,(x)
16NA, g

(4.9)

Equations (4.9) and (4.8b) are recognizable as the N =1
result [Eqs. (5.7) and (5.8) of Ref. 3] scaled by an overall
N factor, and with A,ti~NAti Pp ~Pp /N. Thus, noth-
ing changes when the large-N limit is taken, so, in this in-
stance, the GEP result coincides with the leading-order
1/N result: ' The terms by which the two approaches
would otherwise differ are either reabsorbed by the slight-
ly different renormalizations (N+2 in place of N), or
simply vanish like 1/I

For a detailed discussion of the interpretation of these
results we can refer the reader to the literature. ' ' The
main points are as follows. (i) A,~ is negative, ' (ii) the II
equation (4.8b) has, in general, two solutions. However,
one corresponds to a local maximum of VG(gp,'Q, co) and
is not physically relevant. This was the cause of the
tachyon problem found in Ref. 6 (see Refs. 7 and 8). (iii)
When Pp becomes too large, Eq. (4.8b) ceases to have a
positive, real solution. However, before this happens the
A=co=0 end point takes over as the global minimum of
VG(pp ', Q, co), and gives a constant potential. 'p (iv) The
effective potential can therefore be visualized (for N =2
at least) as a bowl set into a table top. The bottom of the
bowl is at Pp

——0 and represents the O(N)-symmetric vacu-
um. The depth of the bowl below the table top is
N(2~ 1)/(128ir ), where—~ is defined in (4.7), so that
K ) 2 is needed if the normal vacuum is to be stable. '

This means that the renormalized coupling cannot be too
large, and it also precludes a nontrivial massless form of
the theory. (v) If an ultraviolet cutoff were present, the
table top would eventually curve downward, proportional
to Pp /I i, rendering the r—egularized theory unsta-
ble. ' ' ' Reference 10 showed that the vacuum decay rate

of the go=0 vacuum is suppressed by e in the large-N
limit. References 3 and 4 argue that, even for finite X,
the vacuum decay rate should vanish as the cutoff is tak-
en to infinity, because there is then an infinitely wide tun-
neling barrier. Thus, the final theory would be (just)
stable. ' The term "precarious" was introduced ' to
describe this situation where an instability of the regulated
theory disappears once the regulator is removed.

Several other, quite different, approaches also point to a
negative-A, theory (see references quoted in Ref. 3). The
"precariousness" scenario suggests that such a theory can
indeed have a physical meaning, and deserves to be taken
seriously.

The phenom enological relevance of the negative-A,
theory is quite another matter. We tend to suspect that it
has none. Since it cannot sustain SSB it is difficult to im-
agine that it has anything to do with the Higgs mecha-
nism. This raises the following question: "Whatever hap-
pened to SSB?" Consideration of this question led to the
discovery of an exciting new possibility, ' ' which we dis-
cuss in the next section.

V. AUTONOMOUS 44 THEORY

Recently, it has been realized that an alternative renor-
malization of the GEP for (kP )3+i theory is possible. '

In this section we shall derive the generalization of these
results to the 0(Ã) case. For convenience we refer to the
new version of the theory as "autonomous P"." The name
is meant to emphasize the separateness of this theory
from the precarious version discussed earlier, and also (as
we shall show) its lack of connection with perturbation
theory or the 1/N expansion.

The key to autonomous P theory is an infinite rescal-
ing of the classical field Pp ~ZPp, which is equivalent to
a wave-function renormalization, as is clear from the
standard formula

(5.1)

relating the effective potential to the zero-momentum
Green's functions of the symmetric vacuum (assuming no
SSB).

We shall show that the following forms for the bare
field, bare mass, and bare coupling constant lead to a fi-
nite, nontrivial GEP:

Wo =I i(P)@p

ming
—— 4(N +2)A&Ip(0)+ mp —l[8I i (p)],

Ati =a/I, (p),

(5.2)

(5.3)

(5.4)

where a is an 1V-dependent number such that the numera-
tor factor in Eq. (4.1) vanishes; i.e.,

1 —8a —16(N+2)a =0 (5.5)

(only the positive root is acceptable, see below).
The heuristic reasoning that leads to the above equa-

tions is similar to that described in Ref. 17. The unique-
ness of these forms should become clear as we proceed to
show how they work. Note that Eq. (5.3) means that the
Q, co parameters vanish like O(1/I i) at the origin [cf.
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Eq. (3.1)], which is necessary if the derivative
dVG/d@o

~ p is to be finite in spite of the field rescaling.
We also remark that (5.2)—(5.4) are sufficiently general.
(i) By leaving the argument of I, in (5.4) as a free pa-
rameter p, it is unnecessary to include an order 1/I
term explicitly. (ii) Terms vanishing faster than 1/I, in
Eq. (5.3) would not contribute to the final result. There-
fore, there is no loss of generality in choosing the argu-
ment of I, to be p again. (iii) A further finite factor
could be incorporated into (5.2)—indeed, later on it will be
convenient to do sc but this is trivial and without physi-
cal consequences. (iv) We note that, as expected, the two

]

(I+6a)Q +2(N —1)ace =12a@0 +en,
2aQ + [ 1+2(N + I )a]co =4a@0 +e„,

where

(S.6a)

(5.6b)

bare parameters mii, A,ii are being exchanged for precisely
two renormalized parameters mp, p. The parameter p is
a dimensional transmutation or "characteristic scale"
parameter, analogous to the A parameter of QCD.

Proceeding now to substitute the renormalizations
(5.2)—(5.4) into the 0, co equations (2.6), and making use
of formulas from the Appendix, leads to

1
&n=

Sm. I i(p)

2

n mo +2a (N —1)co ln —1 +3Q ln
p p

(5.7)
2 fLe = ir mo +2a (N+1)cg ln —1 +II ln

Sir I i(p) p p

Taking linear combinations of (5.6) yields

0 =Sa@0 +2[[1+2(N+1)a]en—2(N —1)ae„I/P,

where D' is the vacuum energy constant. We can tidy up
this expression by defining

co =Sa@0 /P+O(1/I i),
where

(S.Sa)

(5.8b)

4p ——asap
2 2

y = —,
'
p expI 1+—,

' [(P—4)/(P —2)]lnP],

so that

(5.13)

P—:3+4(N +2)a =(1+4a)/(4a), (5.9)

dVG

d (g) 2
= —,I &(p)(Q —Sa4&0 ) . (5.10)

and where crucial use has been made of the fact that a
obeys (5.5). Notice that Q and co emerge as proportional
to 4p, up to terms vanishing hke 1/I ~. Since O,m, @p
are intrinsically positive, only the positive solution for a
in (5.5) is acceptable.

It is now simplest to calculate VG from Eq. (2.7) which
becomes

2(13—2) —
4

VG —D'= —mp Np + +p ln
~p

Note that, in terms of N,

P = 2+(N+ 3)'~' .

The shape of the potential depends on the ratio

( f3—2) y2

2

2

(5.14)

(5.15)

(5.16)

Using (5.8a), one observes that the divergent terms cancel
leaving a finite term which simplifies to

T

dvG
1 2 a CO

2 2mp a+ (N —1)co ln —1
d@0 4&p p

Q+PA ln —1

p
(5.11)

2q) 4
.2(P—2) ln

8a+p

p

3
2

—(P—4)lnP . , (5.12)

Dropping terms 0 (1/I
&

) one may now use just the lead-
ing terms of (5.8) and thus obtain the result explicitly as a
function of Np . Integration then yields

2 2
VG —D'= —,mp asap

and is shown in Fig. 1. The figure shows a strong family
resemblance to the lower-dimensional results (cf. Ref. 3).
We may also note that the "Goldstone ratio"

co /0 = I/P, (5.17)

which is always less than 4 and tends to zero as N~ oo,
shows the same behavior as in lower dimensions. These
similarities to the better-understood superrenormalizable
cases give us increased confidence that our results reflect
some real physics.

Superficially, Eq. (5.14) shows a startling resemblance
to the Coleman-Weinberg one-loop result. However,
this is illusory. If one discards the Ip terms of the
CxEP in (2.5), thereby obtaining the unrenormalized one-
loop result, and tries to renormalize it in the manner used
above, one cannot obtain (5.14), or indeed anything sensi-
ble. When one examines where the A's should go one
finds that the vanishing of the numerator of Eq. (4.1) [i.e.,
the condition (5.5)) requires a cancellation among dif-
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artifacts of the N~ 00 limit, but correspond to real phys-
ics at finite N, and (ii) some illumination of the puzzle of
the theory's stability, even though A.z is negative, through
the notion of "precariousness. " ' In this version of the
theory VG has a weak-coupling expansion, which is relat-
ed to perturbation theory.

The other (3+ 1)-diinensional AP theory' ' is new
and surprising —and extremely elusive. We have shown
that it is inaccessible to perturbation theory, the loop ex-
pansion, or the 1!N expansion. We have also argued that
it would probably have eluded the Monte Carlo studies '

and the rigorous analyses, principally because the new
theory is strongly coupled, and in its symmetric phase the
quanta are massless.

Of course the sceptical reader may prefer to attribute
our findings to some artifact of the Gaussian approxima-
tion. We think there is a strong point against that view.
If the situation had been reversed, and we had found only
triviality in a theory which was known to be interacting, it
would be very reasonable to believe that our free-field an-
satz was simply inadequate. However, it is very difficult
to understand, if (A,P )3+i genuinely were a free theory,
why a variational approach based on a free-field ansatz
would fail to confirm that fact. If the theory wants to be
free, our Gaussian ansatz gives it every opportunity to say
so.

The most exciting aspect of autonomous P theory (if
one accepts its reality), is that it can display SSB. This
clearly raises the question of its relevance for the Higgs
mechanism in the standard model. The usual picture has
SSB "preexisting" in the scalar sector which gives the
gauge bosons masses once these are coupled. This picture
has been questioned because of the triviality scenario.
However, if autonomous P is relevant, the usual picture
would be right for the wrong reasons. In particular, the
quantitative description of the Higgs phenomenon in clas-
sical or semiclassical terms would be completely wrong,
but qualitatively the outcome would be similar. We hope
to examine these questions in the near future by studying
scalar electrodynamics in the GEP approach.

Rote added. A recent article by Y. Brihaye and M.
Consoli [Nuovo Cimento A 94, 1 (1986)] overlaps with
our results somewhat. In particular, it contains results
corresponding to the autonomous P theory, though for
the special case mo ——0 only.
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APPENDIX: NOTATION AND FORMULAS

This appendix summarizes some notations and formu-
las from Refs. 3 and 4. In v+ 1 dimensions

(dk)n=, cuk =k +Q
(2m. )"2cok (0)

(A 1)

and the integrals

I~(Q)—:J (dk)n[cok (0)]
have the property

(A2)

——,(0 —m ) I i(m)+b, (x),
Ip(Q) Ip(m) =———,(0 —m )I i(m)+I (x), (A4)

I &(II)—I i(m)= —lnx/(8m ),
where

b,(x) =m [2x lnx —2(x —1)—3(x —1) ]/128m

(A5)

x=0 /m
Useful special cases are

Ii(0)—Ii(m) = ——,m Ip(0)+ —,m I i(m)

3+ m
128m

(A6)

Ip(0) —Ip(m) = —,m I i(m)+
8m

(Note that I i is infrared singular when its mass argu-
ment tends to zero. )

We shall systematically use a prime to indicate when
the mass argument is co rather than 0,; e.g. , Io 6' I ' x',
etc. A distinction is maintained between VG, which is a
function of Pp, 0 co separately, and the GEP itself VG,
which is a function of Pp alone; 0 and co having been
fixed so as to minimize VG.

dI~ /d 0= (2N —1 )QI~ (A3)
The presence of an ultraviolet cutoff in these integrals is
implicit. In 3 + 1 dimensions the integrals I],IO,I ] are,
respectively, quartically, quadratically, and logarithmical-
ly divergent. They obey the algebra

Ii(Q) —Ii(m)= —,(0 —m )Ip(m)
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