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The O(N)-symmetric generalization of A¢* theory is studied in the Gaussian-effective-potential
(GEP) approach. It is shown that the GEP encompasses and transcends the leading-order 1/N ex-
pansion results. We find two distinct, nontrivial versions of the (3 + 1)-dimensional theory: (i) “pre-
carious ¢* theory,” with negative, infinitesimal Ag, which coincides with the 1/N result; and (ii)
“autonomous ¢* theory,” with positive, infinitesimal Az and an infinite wave-function renormaliza-
tion, which is inaccessible to perturbative or 1/N methods, and could well have eluded lattice-based
approaches. “Autonomous ¢* theory” can exhibit spontaneous symmetry breaking, and we specu-

late on its relevance for the Higgs mechanism.

I. INTRODUCTION

In this paper we employ the Gaussian-effective-
potential (GEP) approach!=™* to study the O(N)-
symmetric A¢* theory:

H=+5¢"+5(V$) + +mp’*+A5(9*)?

@°=¢>+ -+ +¢x52). This generalizes the GEP
analysis of N =1 A¢* theory in Refs. 3 and 4, and allows
us to compare the approach with the 1/N expansion.’~ !0
We shall show explicitly that the GEP contains the leading
1/N result as its formal N— « limit. It is also true that
the GEP contains the one-loop result as its formal #—0
limit.>3 Thus, the GEP encompasses both of the other
popular approaches to “effective” potentials: it shares
their virtues, but without necessarily sharing their limita-
tions.

The plan of the paper is as follows. Section II describes
how to compute the GEP, in unrenormalized form, in
theories with several scalar fields. It also shows how the
1/N result is recovered in the N— oo limit. We discuss
the (1 + 1)- and (2 + 1)-dimensional cases very briefly in
Sec. III. The main point is that the absence of “spontane-
ous symmetry breaking!!~!*” (SSB) in the 1/N expansion
is merely a consequence of the limitation of that method
to rather weak coupling (A ~1/N).

In 3 + 1 dimensions we find two distinct versions of the
theory. (i) “Precarious ¢* theory,” described in Sec. IV, is
the O(N) generalization of the results in Refs. 3 and 4. It
is seen to be essentially identical to the theory uncovered
by the 1/N analysis.”~® It has a negative, infinitesimal
Ag, but nevertheless appears to be stable.!®3 (i) “Auto-
nomous ¢* theory” discussed in Sec. V, is a generalization
of the results of Ref. 17, which are in turn related to work
of Consoli and collaborators.'®=2° This theory has posi-
tive, infinitesimal Ap and an infinite wave-function renor-
malization. It may exhibit SSB, but contains massless
particles if the symmetry is unbroken. We show that this

(1.1)
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theory is not accessible to perturbation theory, the loop
expansion, or the 1/N expansion. The existence of a non-
trivial, positive-A, (¢*);,, theory is, of course, contrary to
the “triviality” dogma.?!~? However, we shall argue
that, because of the strongly coupled nature of the theory,
it is quite possible that it would elude the lattice-based
analyses of Refs. 21 and 22. Thus, we believe that we
have found the hiding place of the long-lost nontrivial ¢*
theory.

Our notation follows Refs. 3 and 4 and is summarized,
together with key formulas, in the Appendix.

II. THE GEP FOR O(N)-SYMMETRIC ¢* THEORY

Our first point is that the generalization of the Gauss-
ian ansatz to the case of many fields is slightly subtle.?®
One should not merely write

F=db+41Q)

=¢b+ [ (dk)glah(kle ~**tal(ke* =], (2.1)

giving each component of the field the same mass Q. In-
stead, for full generality, one should put

'=¢h+R(6,,...,08_$IQ,),

and treat the N —1 angles in the rotation matrix R }, as
well as the N different Q;’s, as variational parameters.
The reason for this form is easy to understand in the
quantum-mechanical case:?® The point is that the most
general multidimensional Gaussian wave function is not
“spherical,” exp(— 3 Qe'd;), but “ellipsoidal”,
exp(— %d’iﬂijd’j)- .

For an O(N)-symmetric theory, where only the shift ¢
sets a direction, it is easy to see that the variational solu-
tion for the angles 6,,...,0y_; will be such that the
eigendirections of the Gaussian wave functional are radial
and transverse. Moreover, because of the remaining
O(N —1) symmetry, the N —1 transverse quantum fields

(2.2)
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will have equal mass parameters ),,,s=®, while the radi-
al quantum field will have a distinct mass parameter
Qragiar=Q. Knowing this, we may simplify the calcula-
tion by adopting a coordinate system in which ¢y points
in the i =1 direction, so that (with ¢o= | ¢¢|)

(2.3)

_

A~ N A~
¢ =do +26001 + ;‘ﬁiz )
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~ N A
(@2 =0o* +4¢0°0 1> +260> 3, b, >+
1

N )2
14
1

A~

A ~ N
+4¢0° ) +4d0d > 6% . 2.4)
1

It is now straightforward to compute , (0| #°|0)q , to
obtain?’

V(o Q) =[I ++(mp2— QN1+ (N — DI} + 5 (mp*— o )]+ smp’do’+Apdot

+Ap[3102 4+ (N2 = 1) T2 +2(N — DIoTy + 6T’ +2(N — 1) jdo’]

where Io=1,(Q), I3=Iy(w), etc. Minimization of Vg
with respect to Q) and o leads to two coupled equations:

Q2 =mp+4rg[(N — DI +310+360°] , (2.6a)
@ =mpi+4rg[(N + DIy +To+¢o’] . (2.6b)

Equations (2.5) and (2.6) specify the GEP Vg(¢y) in its
unrenormalized form. For future use we record here
some results which follow directly. The first derivative

is28

dvg Ve X ) X
dés? :5(;07:7{"13 +4Ag[(N —DIo+3Ip+d0° 1}
=3(Q*—8Azdo’) , .7
and, from (2.6),
2
9D aAg[3+4N +2hp0 1174,
déo
dor? (2.8)
L _4ry/A,
déy’
where
A=1+6}\.31_1+2(N+1)}\BI'__1
+8(N +2)Ag2I _ I, . (2.9)
The second derivative is then
d?Vs  2hg
——— = [1—12Agl _ +4ApI_
d(¢02)2 A [ B 1 B 1
—16(N +2)Ag4 _ I ] . (2.10)

We now want to demonstrate that the GEP contains the
leading-order term of the 1/N expansion. We therefore
consider the limit N— oo with (NAp) and (¢¢>/N) held
fixed, which reduces (2.5) to
Vo =Ii++imp? =D+ Fma*($e/N)

+(NAg N2 /NP +(NA [ I5+2(do*/N)]
(2.11)

2.5

f

dropping terms of order 1/N. Note that the  parameter
no longer appears: in this limit effects due to the single
radial field are negligible compared to those of the (N —1)
transverse fields. In the same limit the o equation (2.6)
becomes

Iy=(0*—mg?) /(4NAg)—(¢¢*/N) . (2.12)
Using this to eliminate I in (2.11) one obtains
1 - b 2,2 1 2 2y2
—Ve=Iy+~+ N)— ————(®— :
N G o+ 30 (do"/N) 16(Nk3)(w mg*)
(2.13)

Recalling that I'i=I,(w) can be expressed as a (v+1)-
dimensional Euclidean integral,

dv+1kE
(27T)V+1
one recognizes Eqgs. (2.12) and (2.13) as the standard lead-
ing 1/N result®~!° for the effective potential, up to an ir-
relevant constant. Note that our parameter w’ is to be

identified with the auxiliary field X introduced in the 1/N
approach.®

Il(co):% In(kg?+w?)+const (2.14)

III. RESULTSIN 1+ 1 AND 2 + 1 DIMENSIONS

In this section we briefly discuss results for (1 + 1)- and
(2 + 1)-dimensional theories. In these dimensions only a
mass renormalization is necessary. Defining the renor-
malized mass to be the particle mass in the ¢,=0 vacu-
um, we have

mp?=0%| 4 _o=0| 4 —0=2dVs/ddq’| 40
=mp+4(N +2)Aglo(mpg) .

(3.1

Using this equation to eliminate mpg?, and subtracting the
vacuum-energy constant

Dy=N[I,(mg)—(N +2)A3102(mR 17,

leads to a manifestly finite GEP. Its form can be
described by the following mnemonic:?® take the unrenor-
malized expressions (2.5) and (2.6); write mg? in place of
mp?%; and replace I, I, I,, I by their finite parts [de-
fined by subtraction(s) at Q =mg].
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TABLE 1. Critical values of ’A\., which mark the onset of SSB
(Ref. 11), for various N.

N NAc(14+1) NAgi(2+1)
1 2.5527 3.0784
2 4.6862 5.6464
3 6.5680 7.8949
6 11.3591 13.5173
8 14.1286 16.6929
100 88.9605 89.2581

We have obtained numerical results for the GEP for
various values of N and A=Az/mj~". We shall not
present these in detail, smce the pictures are qualitatively
similar to the N =1 case. Bas1ca11y, one sees the onset of
SSB!! as A increases through some critical value Acm
Table I gives a list of values for N )»Cm for various N’s,
which illustrates the fact that N kcm—> w0 as N—oo. This
explams why one does not see SSB!! in the 1/N expan-
sion:5—10 _The 1/N expansion is restricted to rather weak
coupling X=0(1/N) whereas SSB!! occurs only for much
larger A’s. This is one instance in which the GEP scores
over the large- N approach.

A definite drawback of the Gaussian approach is that
the Goldstone theorem!? is not respected exactly.!* The w
particle mass in the SSB vacuum in not exactly zero, as it
should be. This is because the Gaussian ansatz does not
obey the O(N) symmetry at the operator level. For exam-
ple, substitution of the Gaussian ansatz for the field
operators into the expression for the Noether current, J#

+m*T_{(mg)[(x —1)24(N —1)(x'—1)?]
+mr* AT _(mg)P[3(x — 12+ (N2—

Mass renormalization of the (), @ equations gives

[146Az] _ (mg)](x —1) + 2(N

There are three ways in which (4.1) can give a finite Ag,
but two of them can be rapidly dismissed. First, Az could
be finite, so that A =—2A3. The Q, w equations (4.3)
then imply Q*~w?~mpg?, or more precisely,

(x —1)=2(¢o*/mg® /I_{(mg)+0(1/I_?) ,

and (x'—1)=0(1/I_,%. This causes all terms in Vj to
vanish except for the classical potential terms and two
terms from (4.2), resulting in

Vo —D=(5mg’¢e’+Apdo")+3A5d* — 615"
=L me2det—2Az0" . (4.4)

This potential is unbounded below as ¢y— oo, so the
theory is sick. The above analysis exactly parallels the

—DAgI_(mg)(x'—1)=(4Ag /mg>)[(N — )T+ 3T +3¢y2] ,
2hpI _y(mg)(x —1) + [14+2(N + DAgl _ (mg)](x’ — 1) =(4Az /mg (N + DI’ + T+ 2] .
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does not give 3,/#=0 when ¢, is nonzero. Nevertheless,
there is no reason to think that the problem is fatal. The
resulting potential does satisfy the O(N) symmetry—it is
a function of ¢o= | ¢0| only. Moreover, the Goldstone
theorem does emerge in an approximate sense.'* Our nu-
mencal results show that in an SSB vacuum one always
has ©? < +Q2 and in many cases (especially for large A, or
for large N) one finds w? << Q2 Thus, the » particles,
which should be the exactly massless Goldstone bosons,
are indeed found to be much lighter than the () particle.

IV. PRECARIOUS ¢* THEORY

We now turn to the (3 + 1)-dimensional case. Follow-
ing Refs. 1—4 we define the renormalized mass by Eq.
(3.1) and the renormalized coupling constant by

A=t 47
4 deot o
1 4V
2.d(¢M? o
1—8Agl | —16(N +2)Ag% _,?
B+ 2N +20A5T | J(1+4AgI_,) °

(4.1)

where I_;=1I_;(mg) here.® It is straightforward, if
tedious, to eliminate the bare mass using (3.1). The result
is a somewhat lengthy expression whose form can be
described as follows: copy Eq. (2.5) replacing mg2 by mpg?
and I,,I1,I5,I; by their finite parts A,A",I",T"’ (see the
Appendix); then, apart from the vacuum-energy constant
Dy, the only additional terms in V; are

D(x'—1)P242(N —1)x —1)(x'—1)]
—mg*Apl _(mg){(x —1)[(N — D" +30+3¢¢*]1+(N —1)(x'— D[(N + I+ T +d¢2]} .

(4.2)

(4.3a)
(4.3b)

T
N =1 case, so we may refer the reader to Ref. 3 for fur-
ther discussion. Second, Az could be —1/(4I_,). One
can seen see, however, that this also gives a sick theory,
once one realizes that here the w, () equations are giving a
maximum, not a minimum, of Vg(dg;Q,w). Indeed Vg
has no minimum in Q, @ in such a theory.

The only interesting solution to (4.1) with finite Ag is
with

—1
2N +2)_(mg)
- ! +
2N7LRI_1(mR)

}\.B:

1
(4.5)
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which generalizes the Ap=—1/(6I_,), ‘“precarious,”
theory of Refs. 3 and 4. Note that (4.5) is equivalent to
—1

Apg=———————— | 4.6
BT AN +2I_ () “.8

where the dimensional-transmutation scale p is related to
the renormalized coupling constant by

_ —4r?
T NAg

mRZ

u?

K. 4.7)

In

With this form of Az the Q, w equations yield

—4(¢?/mg?) 1
TP R T , (4.82)
YTXETNI im0\ TP :
4N Ag éo?
(x—1)= I(x)+ —— (4.8b)
X mR2 X N

Noting that the first two of the three terms in (4.2) be-
come proportional to I_;(mg)(x —x’)? and hence of or-
der 1/1_,, it is easy to see that the difference between x
and x’ can be neglected. It is then straightforward to
simplify Vg to

2 mgt

20 TR (x— 124+ Ax)

Vo—Dy=N |7xme’ 5 16N g

4.9

Equations (4.9) and (4.8b) are recognizable as the N =1
result [Egs. (5.7) and (5.8) of Ref. 3] scaled by an overall
N factor, and with Ag —>NAg, ¢o*—do>/N. Thus, noth-
ing changes when the large- N limit is taken, so, in this in-
stance, the GEP result coincides with the leading-order
1/N result:"~'° The terms by which the two approaches
would otherwise differ are either reabsorbed by the slight-
ly different renormalizations (N +2 in place of N), or
simply vanish like 1/71_,.

For a detailed discussion of the interpretation of these
results we can refer the reader to the literature.”~'%* The
main points are as follows. (i) A is negative,>® (ii) the Q
equation (4.8b) has, in general, two solutions. However,
one corresponds to a local maximum of Vg(dp;Q,w) and
is not physically relevant. This was the cause of the
tachyon problem found in Ref. 6 (see Refs. 7 and 8). (iii)
When ¢,> becomes too large, Eq. (4.8b) ceases to have a
positive, real solution. However, before this happens the
Q=w=0 end point takes over as the global minimum of
Vg o5 Q,w), and gives a constant potential.'®3 (iv) The
effective potential can therefore be visualized (for N =2
at least) as a bowl set into a table top. The bottom of the
bowl is at ¢,=0 and represents the O(N)-symmetric vacu-
um. The depth of the bowl below the table top is
N(2k—1)/(1287?%), where « is defined in (4.7), so that
k>~ is needed if the normal vacuum is to be stable.'”?
This means that the renormalized coupling cannot be too
large, and it also precludes a nontrivial massless form of
the theory.®® (v) If an ultraviolet cutoff were present, the
table top would eventually curve downward, proportional
to —¢o*/I_,, rendering the regularized theory unsta-
ble.!%*3 Reference 10 showed that the vacuum decay rate
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of the ¢o=0 vacuum is suppressed by e ~" in the large-N
limit. References 3 and 4 argue that, even for finite N,
the vacuum decay rate should vanish as the cutoff is tak-
en to infinity, because there is then an infinitely wide tun-
neling barrier. Thus, the final theory would be (just)
stable.!® The term “precarious” was introduced®® to
describe this situation where an instability of the regulated
theory disappears once the regulator is removed.

Several other, quite different, approaches also point to a
negative-A theory (see references quoted in Ref. 3). The
“precariousness’ scenario suggests that such a theory can
indeed have a physical meaning, and deserves to be taken
seriously.

The phenomenological relevance of the negative-A
theory is quite another matter. We tend to suspect that it
has none. Since it cannot sustain SSB it is difficult to im-
agine that it has anything to do with the Higgs mecha-
nism. This raises the following question: ‘“Whatever hap-
pened to SSB?” Consideration of this question led to the
discovery of an exciting new possibility,'®!” which we dis-
cuss in the next section.

V. AUTONOMOUS ¢* THEORY

Recently, it has been realized that an alternative renor-
malization of the GEP for (A¢*);,; theory is possible.’!
In this section we shall derive the generalization of these
results to the O(N) case. For convenience we refer to the
new version of the theory as “autonomous ¢*” The name
is meant to emphasize the separateness of this theory
from the precarious version discussed earlier, and also (as
we shall show) its lack of connection with perturbation
theory or the 1/N expansion.

The key to autonomous ¢* theory is an infinite rescal-
ing of the classical field ¢o2— Z ., which is equivalent to
a wave-function renormalization, as is clear from the
standard formula®?

Veie(do)= — 3 [(2n)1]~ o))" T?™(0,...,0)  (5.1)

relating the effective potential to the zero-momentum
Green’s functions of the symmetric vacuum (assuming no
SSB).

We shall show that the following forms for the bare
field, bare mass, and bare coupling constant lead to a fi-
nite, nontrivial GEP:

po’=1_,(n)®o", (5.2)
mpl=—4(N +2)AgIo(0)+mo2/[81 _ ()], (5.3)
kgza/l_l(/.t) N (54)

where a is an N-dependent number such that the numera-
tor factor in Eq. (4.1) vanishes; i.e.,

1—8a—16(N +2)a*=0 (5.5)

(only the positive root is acceptable, see below).

The heuristic reasoning that leads to the above equa-
tions is similar to that described in Ref. 17. The unique-
ness of these forms should become clear as we proceed to
show how they work. Note that Eq. (5.3) means that the
Q, o parameters vanish like O(1/I_,) at the origin [cf.
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Eq. (3.1)], which is necessary if the derivative
dVg/d®y? | o is to be finite in spite of the field rescaling.
We also remark that (5.2)—(5.4) are sufficiently general.
(i) By leaving the argument of I_, in (5.4) as a free pa-
rameter u, it is unnecessary to include an order 1/I_,?
term explicitly. (ii) Terms vanishing faster than 1//_, in
Eq. (5.3) would not contribute to the final result. There-
fore, there is no loss of generality in choosing the argu-

bare parameters mpg, Ap are being exchanged for precisely
two renormalized parameters mg, . The parameter u is
a dimensional transmutation®> or “characteristic scale”
parameter, analogous to the A parameter of QCD.

Proceeding now to substitute the renormalizations
(5.2)—(5.4) into the Q, » equations (2.6), and making use
of formulas from the Appendix, leads to

2 2_ 2
ment of I_, to be u again. (iii) A further finite factor (1+6a)Q2°+2(N —1aw’=12aPy" +€q , (5.6a)
could be incorporated into (5.2)—indeed, later on it will be 20024+ [142 1 2 2
convenient to do so—but this is trivial and without physi- aQ*+[1+2(N + Dalo’=d4a®y’ +e, , (5.6b)
cal consequences. (iv) We note that, as expected, the two where
]
1 2. 2 2 o’ 2 Q?
€q=——F—"—1{m"my " +2a [(N —1) In——1 30° |[In——1 ,
7 87 (w) { 0 © nuz + n,uz
R 5 (5.7)
ea,:—z—l———- mmyt+2a | (N + 1)w? lnw—z—l +0? ln%—l .
8wl _ () 7 7

Taking linear combinations of (5.6) yields

Q*=8a®2+2{[1+2(N +1aleg—2(N —ae,} /B,

(5.8a)
w?=8a®y?/B+O(1/1_;), (5.8b)
where

B=3+4(N +2)a=(1+4a)/(4a), (5.9)

and where crucial use has been made of the fact that a
obeys (5.5). Notice that Q? and w? emerge as proportional
to @2, up to terms vanishing like 1/7_,. Since Q%,0?®y’
are intrinsically positive, only the positive solution for a
in (5.5) is acceptable. _

It is now simplest to calculate Vg from Eq. (2.7) which
becomes

dvVs

— (5.10)
ddg?

31 (u)(Q? —8ady?) .
Using (5.8a), one observes that the divergent terms cancel
leaving a finite term which simplifies to

dV, 2
276 _ 1 ]nw__l‘

2 o
=smoa+——F5_
dQOZ 2 0 + #2

N —1)w?
Ry ( )

+BQ?

2
1n97—1H RENCRT
u

Dropping terms O (1/1_;) one may now use just the lead-
ing terms of (5.8) and thus obtain the result explicitly as a
function of ®,%. Integration then yields

§ 74 1
VG —D'= 7m02a<1>02
24 4

P

8ad,?
+ 2
B

u?

In

{2(3—2)

—(B—4)InB } ,

[

where D’ is the vacuum energy constant. We can tidy up
this expression by defining

q)Oz :aq)oz >

2 1.2 ) (5.13)
v =guexp{l+5[(B—4)/(f—2)]InB} ,
so that**
3 2
- =, 2(8-2) % ) 1
1 2 2 N\ &7 4 Y |2
VG_ =5mMmy CDO —+ 17-23 ‘I’o [111 '}/2 )
(5.14)
Note that, in terms of N,
B=2+(N+3)2. (5.15)
The shape of the potential depends on the ratio
2
B Mo
= , (5.16)
P=1B—2) 2

and is shown in Fig. 1. The figure shows a strong family
resemblance to the lower-dimensional results (cf. Ref. 3).
We may also note that the “Goldstone ratio”

0*/Q*=1/B, (5.17)

which is always less than + and tends to zero as N — oo,
shows the same behavior as in lower dimensions. These
similarities to the better-understood superrenormalizable
cases give us increased confidence that our results reflect
some real physics.

Superficially, Eq. (5.14) shows a startling resemblance
to the Coleman-Weinberg one-loop result.>*> However,
this is illusory.>® If one discards the I,? terms of the
GEP in (2.5), thereby obtaining® the unrenormalized one-
loop result, and tries to renormalize it in the manner used
above, one cannot obtain (5.14), or indeed anything sensi-
ble. When one examines where the #’s should go one
finds that the vanishing of the numerator of Eq. (4.1) [i.e,,
the condition (5.5)] requires a cancellation among dif-
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FIG. 1. The GEP of autonomous ¢* theory for various values
of the parameter p. See Egs. (5.14)—(5.16). The curves
represent a radial slice through the O(N)-symmetric potential,
with 7 =(Vs —D)/[y*B—2)/B] and By in units of .

ferent orders in # thus making any distinction between
classical and quantum terms meaningless. It leads to
Ag=a/[#l _ (u)], and hence to 1/# factors in the GEP,
which clearly shows that autonomous ¢* lies outside the
reach of the loop expansion.

Similarly, autonomous ¢* is inaccessible to perturbation
theory. Some insight into this fact can be gained by intro-
ducing a renormalized coupling constant

Ap

Ar(M)=
R 1—a~ Azl _ (M)

) (5.18)

where M is some arbitrary scale (e.g., one could use
M =m,, as long as my>0). This is designed to be (i) fi-
nite, and (ii) of the perturbative form Ag[1+O(Ap)] in the
formal limit Az—0 (at fixed cutoff). Evaluating (5.18)
gives

__ 87%
In(M?/u?)

which one may use to eliminate the parameter u? in favor
of Ag. This reveals that Vg contains 1/Ag terms, and so
cannot be expanded as a perturbative series in Ag. (One
could absorb the 1/A; by a further field rescaling, but
this would give a InAg which still resists power-series ex-
pansion.) It is interesting to note that (5.19) suggests that
the theory is asymptotically free. Further study is needed
to decide that question, however.

We can also show that autonomous ¢* theory is not ac-
cessible to the 1/N expansion: it is too strongly coupled.
Equations (5.4) and (5.5) imply that NAp does not remain

AR( (5.19)

finite as N— oo, but diverges as V'N does. This recalls
our observation in Sec. III that in lower dimensions the
1/N expansion does not see SSB because SSB occurs at
values of A out of its reach. Another point is the follow-
ing. Autonomous ¢* theory hinges on the cancellation be-
tween the two terms of (5.10), which could alternatively
be expressed as

dVg/d®3=~+1_ () —8rg(Iy—1o)], (5.20)

where again there is a cancellation between the two terms.
In the 1/N expansion the second term would be discarded
as order 1/N, and so the cancellation would not be ob-
tained. In our analysis A is O(1/V'N ) and the V'N fac-
tor is gained back because Q*~V'N w?, making the two
terms of the same order in N.

Nothing resembling autonomous ¢* theory has shown
up in Monte Carlo studies,?! which are all consistent with
the “triviality” picture. However, this too may be under-
standable. In the ®;=0 vacuum, Eq. (5.8) gives
Q?=w?=0(1/I_,), so that the symmetric phase of auto-
nomous ¢* theory is a massless theory. The singularity of
the fourth derivative of ¥ at the origin is another symp-
tom of the infrared complications due to masslessness.
By contrast, the Monte Carlo studies assume that one is
looking for a regular, massive, unbroken-symmetry phase,
and generally start out by fixing the renormalized mass to
some finite, nonzero value.

A related argument is that autonomous ¢* may have
eluded Monte Carlo studies because it is a strongly coupled
theory. This might seem a surprising statement given that
Ag vanishes as 1/I_; does. However, one must take into
account the wave-function renormalization as well, and if
we count ¢2 as O(/_;) then the interaction term Az(@?)?
is large, O(I_;): the kinetic term %(au¢)(a#¢) is of the
same order, but the mass term (if we ignore the quadratic
divergent terms*) is only +[mo2/(81_,)]¢*=0(1). As
remarked by Khuri,?* this situation is difficult to handle
in Monte Carlo simulations.

The points raised above (and also the need for an infin-
ite wave-function renormalization) may perhaps explain
why autonomous ¢* theory escapes the rigorous, lattice-
based analyses,?? which claim a proof of triviality given
certain assumptions. We conjecture that autonomous ¢*
theory can be shown to lie outside this set of assumptions,
though our woefully inadequate understanding of Ref. 22
prevents us from making any definite statement.

VI. CONCLUSIONS

We have shown how, even at the unrenormalized level,
the GEP evidently contains the leading-order 1/N result.
The GEP displays a much richer structure, though, which
enables it to transcend the limitations of the large-N ap-
proach. In 1+ 1 and 2 + 1 dimensions the GEP results
smoothly approach the 1/N results in the appropriate
limit, but the GEP also shows that SSB'' can occur for
couplings A >>1/N out of range of 1/N methods.

In 3+ 1 dimensions we find two quite distinct Ag*
theories. One is precisely the theory found in the 1/N ex-
pansion.”~1® Two points are added by the GEP analysis:
(i) a strong indication that the earlier results are not mere
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artifacts of the N— « limit, but correspond to real phys-
ics at finite N, and (ii) some illumination of the puzzle of
the theory’s stability, even though A is negative, through
the notion of “precariousness.”>* In this version of the
theory Vg has a weak-coupling expansion, which is relat-
ed to perturbation theory.’

The other (3 + 1)-dimensional A¢* theory!”!® is new
and surprising—and extremely elusive. We have shown
that it is inaccessible to perturbation theory, the loop ex-
pansion, or the 1/N expansion. We have also argued that
it would probably have eluded the Monte Carlo studies?!
and the rigorous analyses,?? principally because the new
theory is strongly coupled, and in its symmetric phase the
quanta are massless.

Of course the sceptical reader may prefer to attribute
our findings to some artifact of the Gaussian approxima-
tion. We think there is a strong point against that view.
If the situation had been reversed, and we had found only
triviality in a theory which was known to be interacting, it
would be very reasonable to believe that our free-field an-
satz was simply inadequate. However, it is very difficult
to understand, if (A¢*);,, genuinely were a free theory,
why a variational approach based on a free-field ansatz
would fail to confirm that fact. If the theory wants to be
free, our Gaussian ansatz gives it every opportunity to say
so.

The most exciting aspect of autonomous ¢* theory (if
one accepts its reality), is that it can display SSB. This
clearly raises the question of its relevance for the Higgs
mechanism in the standard model. The usual picture has
SSB “preexisting” in the scalar sector which gives the
gauge bosons masses once these are coupled. This picture
has been questioned because of the triviality scenario.’’
However, if autonomous ¢* is relevant, the usual picture
would be right for the wrong reasons. In particular, the
quantitative description of the Higgs phenomenon in clas-
sical or semiclassical terms would be completely wrong,
but qualitatively the outcome would be similar. We hope
to examine these questions in the near future by studying
scalar electrodynamics in the GEP approach.*®

Note added. A recent article by Y. Brihaye and M.
Consoli [Nuovo Cimento A 94, 1 (1986)] overlaps with
our results somewhat. In particular, it contains results
corresponding to the autonomous ¢* theory, though for
the special case my=0 only.
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APPENDIX: NOTATION AND FORMULAS

This appendix summarizes some notations and formu-
las from Refs. 3 and 4. In v+ 1 dimensions

(dk)ns(zTgZ;ﬁ, w’=k*+Q%, (A1)
and the integrals

Iy = [ (gl )] (A2)
have the property

dly/dQ=02N —1)QIy _, . (A3)

The presence of an ultraviolet cutoff in these integrals is
implicit. In 3 + 1 dimensions the integrals I,,1,,1 _, are,
respectively, quartically, quadratically, and logarithmical-
ly divergent. They obey the algebra

I(Q)—I,(m)=1(Q*—m)Iy(m)

— 5 Q2 —mHHU _ (m)+Ax) ,
I(Q)—Ig(m)= — 3 (Q*—m>I_;(m)+T(x),
I_(Q)—I_i(m)=—Inx/(87%),

where
A(x)=m*[2x%nx —2(x —1)—3(x —1)?]/12872%,

(A4)

[(x)=m?[x Inx —(x —1)]/1677%, (AS)
x=0%/m?.
Useful special cases are
1 (0)—I,(m)=—3my(0)++m*T_,(m)
4

+ 12817_2m R (A6)

Io(0)—To(m)=2m? |I_ om)+ - | .
872

(Note that I_; is infrared singular when its mass argu-
ment tends to zero.)

We shall systematically use a prime to indicate when
the mass argument is w rather than Q; e.g., Iy, A', T, x',
etc. A distinction is maintained between Vg, which is a
function of ¢y, Q @ separately, and the GEP itself Vg,
which is a function of ¢, alone; ) and w having been

fixed so as to minimize V.
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