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In this paper we introduce some mathematical tools to further study the classical adiabatic holo-

nomy effect known as Hannay's angle. In particular, we prove with purely classical methods that
the area (or angle) two-form associated with this effect can be seen as a modification of the symplec-
tic structure of the slow-variable dynamics. We also show that, as in the quantum case, degeneracies
cause singularities in this two-form. We conclude with some considerations concerning the triviality
or nontriviality of the phase-space bundle associated with this phenomenon.

I. INTRODUCTION

The remarkable quantum adiabatic effect known as
Berry's phase' has recently attracted considerable interest.
This phenomenon occurs in certain systems which depend
on a number of external parameters and consists of an ad-
ditional phase acquired by the wave function during adia-
batic transport around a closed loop in parameter space.
Berry's phase has found applications in molecular and
solid-state physics, in the understanding of anomalies in
quantum field theory, and its classical limit has even
been detected in an optics experiment performed recently.

Our understanding of Berry's phase and its implications
has been deepened by a beautiful mathematical interpreta-
tion of this phenomenon given by Simon and studied in
some detail by Kiritsis. It is possible to introduce a bun-
dle of eigenstates of the parametrized Hamiltonian and a
natural connection on it. Berry's phase is the bundle
holonomy associated with this connection. The curvature
of this connection, integrated over a closed two-
dimensional surface in parameter space, gives the first
Chem class which characterizes the topological twisting
of the bundle. Using this formalism, Simon was able to
relate the quantization of this characteristic class to the
appearance of integers in the analysis of the quantum Hall
effect by Thouless, Kohmoto, Nightingale, and Nijs.

It has recently been found ' that Berry's phase
possesses a classical counterpart now known as Hannay's
angle. This consists, for integrable systems, of an extra
shift picked up by the angle variables of the system as the
parameters undergo a closed adiabatic excursion. We
have found this classical phenomenon worthy of study"
and for a further introduction to the subject we suggest
Refs. 9—11. In view of the great insight brought on by
the differential geometric interpretation of Berry's phase,
we thought it interesting to develop a similar mathemati-
cal framework for Hannay's angle. This is the purpose of
this paper. Naturally the mathematical tools we will pro-
vide in this paper are only preliminary and we do pretend
to exhaust the whole mathematical structure hidden

behind the Hannay-angle phenomenon.
The paper is organized as follows. In Sec. II we review

briefly the interpretation of Berry's phase as the holono-
my of the connection in a Hilbert line bundle and set up a
similar framework for the classical case, introducing an
analogous structure which we call a phase-space bundle
and deriving the parallel-transport equation in this new
bundle. In Sec. III we promote the adiabatic external pa-
rameters to slowly changing dynamical variables and ob-
tain a system with coupled fast and slow degrees of free-
dom. To obtain effective equations of motion for the slow
variables, we have to average over the fast degrees of free-
dom. Then we find that the connection associated with
Hannay's angle shows up as an effective gauge potential,
as is familiar in the case of the quantum adiabatic holono-
my. ' What is new is that the curvature of this connec-
tion can then be interpreted as an additional term in the
symplectic form on the slow variable -phase space. This
additional term modifies some Poisson brackets and the
canonical structure of phase space. Based on this phase-
space analysis of the classical adiabatic holonomy, we put
forward in Sec. IV some new ideas about the possible in-
terplay between Hannay's angle and the quantum imple-
mentability of symmetries. Some mathematical details
are confined to two appendices.

II. THE PHASE-SPACE BUNDLE

Let us begin by reviewing the geometric setting in
which Berry's phase arises. In this case there is a family
of Hilbert spaces, each one spanned by the eigenstates of a
parameter-dependent Hamiltonian H (B). This family
forms a Hilbert bundle over parameter space. Anandan
and Stodolsky' have shown how to describe Berry's phase
as the holonomy in this bundle, for the case that the Hil-
bert space is finite dimensional, by considering all of the
eigenstates of 0 together. Since in the adiabatic limit an
eigenstate at a given energy level stays at the same level as
the parameters change, one can also consider the Berry
phase acquired by a single nondegenerate eigenstate. We
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find it more convenient for our purposes to follow this
latter approach. When we restrict our attention to a sin-
gle energy level

~
n(8) },we obtain as a subspace of the

Hilbert bundle a line bundle in which the fiber at each pa-
rameter space point B consists of the ray in Hilbert space
above

~

n (8)}.
When the initial state

~

n(BO)} is adiabatically trans-
ported in this bundle around a closed loop C in parameter
space it acquires a dynamical phase exp[i E„(8(t)}dt]

C
and the additional Berry phase e'~' '. Berry's phase has a
purely geometric nature and cannot be written in terms of
an integral of the instantaneous energy E„(B(t)). It is
convenient to eliminate the dynamical phase by rescaling
the Hamiltonian so that the nth level has zero energy. We
can then introduce a local section in the Hilbert line bun-
dle by choosing a particular phase for the solution

~

n(8)} «H(8)
~

n(8)}=&„(8)
~
n(8)},at each point of

some neighborhood in parameter space.
Let us consider the evolution of the state

~
P(t) }, ini-

tially given by
~

g(0) }=
~

n (Bo ) },as the parameters 8 (t)
change adiabatically. According to the quantum adiabat-
ic theorem, ' the adiabatically transported state

~
g(t) )

can be written in terms of the local section
~

n (8) ) as

This is not invariant under parameter-dependent changes
in the choice of phase for

~

n(8)} unless 8(T)
=8(0)=80, in which case the phase accumulated by

~ P) is given by Berry's expression'

y„(C)=i f (n(8)
~
Vz

~

n(B) }.dB (4a)

which can be rewritten as the surface integral

y„(C)=i f f (dion(8)
~

A
~
drain(8))

= —f, fv„,
~here BS=C and

(4b)

V„=Im[(diin(8)
~

h
~
dgn(8)}]

~
p(t) }=e'r'"

~
n(8(t)) } .

Simon6 showed that the adiabatic transport of
~

i)'lit)& is
equivalent to a parallel transport in the Hermitian line
bundle given by the condition

(f(t+5t)
~
P(t)) =1+0(5t') .

Physically this means that after the dynamical phase has
been eliminated, the evolution of the state

~
P) is so slow

that the projection of
~
g) at time t onto

~
P) at the infin-

itesimally later time t +5t is just 1 to first order in 5t.
Equation (2) implies that

which with the help of (1) yields

y(t)+(n
~
Vii

~

n) =0.dB
dt

is called the phase two-form.
In considering Hannay's angle we must restrict our at-

tention to parameter-dependent Hamiltonians H (8)
which are integrable so that the system can be expressed
in action-angle variables. The classical analog to the Hil-
bert bundle of the quantum case is a "phase-space bundle"
in which the base space is again the parameter manifold

(1)
and the fiber at the base space point B is the phase space
for the system, filled by the invariant tori of H(8). Local
coordinates for points in the phase-space bundle are given
by (8;(e,I)), where 8 stands for the M parameters
characterizing a point in the base space, while (8,I)
represent the % angles and % actions characterizing a

(2) point in the fiber above 8. We are interested in the evolu-
tion of a system whose trajectory starts on a given torus,
fixed by the N actions I =(Ii, . . . , I~), in the fiber above
an initial parameter space point B0, as the parameters
change adiabatically. Since the actions are adiabatic in-
variants, we need not consider the entire phase-space bun-
dle but can restrict our attention to the bundle of phase-
space tori with the fixed set of actions I. This bundle of
tori, with one torus at each point in parameter space, is
the classical analog of the Hilbert line bundle discussed
above.

In order to develop a notion of parallel transport in this
(3) torus bundle, we take the classical limit of Eq. (2). We

use the semiclassical expression'
This is the parallel-transport equation for the phase y
with the "gauge field"

A=i(n(8)
~

Vii
~

n(8) } .

g( q;8) = g a~ )(q,I;B)exp S' '(q, I;8)—
a

(6)

Integrating Eq. (3) from t =0 to t = T, we find the total
phase

T dBy(T)=i f (n(8(t))
~
V ~n(8(t)}} dt .

0 dt

where a~ ~

——det(BO'; '/Bqj )(1/2~) and a labels different
branches of the multivalued generating function
S' '(q, I;8) When (6) is . substituted into the left-hand
side of (2) only products of terms from the same branches
of a survive, as explained by Berry, ' giving

(P(t+5t)
~

f(t) }= f d q g a~ )(q(t +5t),I;8(t+5t))a) )(q(t),I;8(t))

Xexp [S '(q(t+5t), I;B(t+—5t)) —S' '(q(t), I;B(t))]

Expanding to first order in 6t we get
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r s"'
(P(t+5t)

~
P(t)) = f dq g a( ) +5t a( ) +a( )

—— +O(5t ) .
dt R dt

=1+5t f dq ——(a( ) )+ f d~g

d~e ~ ds"
(2')~

( )
dt

i ~dS() '

() dt
+O(5t')

as" dq; as'" d~i

aq; dt aB, dt
+

as= ~"'+ aa, ~'aa,

where we have introduced the single-valued function'

~(Q,I;B)=S' )(q(H, I;B),I;B) (0 & 8 & 2') .

Thus we have obtained the parallel-transport equation

Bq; dBt
(P"'&+ ~B1 I

(7)

Let us recall that in the defintion of p the dynamical
phase has been eliminated by the energy normalization.
Therefore, from Eq. (8) we see that the quantity which
gets parallel transported is the total surplus area in phase
space swept by the system, left over after the "dynamical
area" has been subtracted off. In order to obtain the total
"surplus" AW acquired by the system during adiabatic
transport around a closed circuit, we integrate (8) from
t =0 to T with B(0)=B(T):

dB. (p;Vttq; &

where we have dropped the term (Vs&).dB/dt smce ~t

does not contribute to the line integral around a closed
loop, and introduced the connection

A=(p;dsq;) . (10)
To obtain the familiar expression' for the jth Hannay an-
gle we differentiate with respect to the jth action

60~ = — b,W= — f (p;dsq;) .

AM and 60~ can be reexpressed as integrals over the sur-
face S whose boundary is C:

AW= f f (dsphdsq)= f f W,

Because of the Jacobian a( ), the integral over q has be-
come an integral over angles. Equation (2) then implies
that the coefficient of 6t vanishes

d 0 dS''qt IBt
(2~)~ (.)

dt

H(q p;Q, P)=H, (q p;Q)+H2(Q, P), (15)

where H& is the Hamiltonian ordinarily appearing in dis-
cussions of Hannay's angle and H2 depends only on the
slow variables.

We assume that the system is instantaneously integrable
in its fast degrees of freedom, which can be written in
action-angle variables (8,I). The transformation
(q,p)~(O, I) is implemented by the many-valued generat-
ing function S' '(q, I;Q) satisfying

as" ) as"
aq,

'
aI,

Since Q depends on t this generating function is explicitly
time dependent and hence the Hamiltonian 0&, expressed

ae) ——— f, f (dttp/dsq&= —
5I f, f W

1 J
(13)

where we have introduced the area two-form

W=(dsp hdsq) (14)

which is the curvature of the connection A.
Further properties of the phase-space bundle, including

its triviality or nontriviality in the presence of Hannay's
angle and the relationship between classical degeneracies
and singularities of W, will be discussed in Appendix A.

III. THE SYMPLECTIC STRUCTURE CONNECTED
WITH THE CLASSICAL ADIABATIC HOLONOMY

In the previous section the parameters play a passive
role and their adiabatic evolution is prescribed from the
outside. However, in many systems of physical interest
the adiabatic parameters are themselves dynamical vari-
ables which evolve very slowly in comparison with the
subsystem which depends on them. It is therefore of in-
terest to consider systems with coupled, fast, and adiabat-
ic degrees of freedom. In the quantum case one can elim-
inate the fast degrees of freedom either by integrating
them out of the path integral' or in a Bom-Oppenheimer
treatment. ' Then one finds that the quantum adiabatic
holonomy induces an effective gauge field acting on the
slow variables. In this section we develop a similar ap-
proach to the classical adiabatic holonomy.

Let us consider a system with X fast degrees of free-
dom, described by coordinates and momenta (q,p), cou-
pled to M slow (adiabatic) degrees of freedom, with coor-
dinates and momenta (Q,P), in such a way that the fast
variables depend only on the slow coordinates Q and not
on their momenta P. The coordinates Q then take the
place of the parameters B of the last section. A generic
Hamiltonian for such a system is
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in action-angle variables, becomes

aS"'
Hi(O, I,Q(t)}=A (I;Q}+ at

as"=A (I;Q)+Q(
I

aw=~(I;g)+g, (16)

Bq;
=~(I;Q)+Q(

~
p~— (17)

where the angular brackets denote the average over all an-

gles. (We are ignoring here the possibility of parametric
resonance in which a natural frequency of the fast vari-
ables is commensurate with a natural frequency of the
slow variables. ) Thus after averaging over the angle vari-

ables, we obtain the Hamiltonian

where A (I;Q)=Hi [q (O,I,Q),p (O,I;Q)] and again we

have introduced the single-valued function

W(O, I;Q)=S' '(q(O, I;Q),P(O, I;Q);Q) (0(O(2 ),
following Berry. '

Now, in order to find approximate equations of motion
for the slow variables, we average over the fast degrees of
freedom. The influence of the fast variables on the slow
ones is then given to a "good approximation"' by the
averaged Hamiltonian

d 0—
(Hi) = f Hi(O, I;Q)

(2~)

H,„(I;P,Q) =A i(I;Q)+Hp(P, Q)

We insert the averaged Hamiltonian into the Hamil-
tonian variational principle

T
6Seff —5 d P1 1 Hgy I pPp 0

to obtain equations of motion for Q and P. The term

,Q((BW/BQ() in H,„,being a total time derivative,
will not affect the equations of motion and hence we drop
it from the action principle. Grouping together terms
proportional to Q, we obtain the effective action

r

Bq.
S,ff= J dt P(+ p; Q( H—

0 'ag,

where have defined the effective Hamiltonian
H(I;P, Q) =A, (I;Q)+H2(P, Q).

We see that the averaged fast motion induces an effec-
tive "gauge field" which acts on the slow variables
through the minimal coupling replacement

Bq;
Pl ~PI + pi'

~Q(

This is the same connection that was associated with
Hannay's angle in the previous section. Varying the effec-
tive action independently with respect to Q and P, while
keeping the end points fixed, we obtain

Bq; . Bq;5S ff= f dt 5P(+5 p Q(+ P(+ p 5Q( — 5Q(—
0 'ag, ' 'dg( BQ( dP(

from which, after integrating by parts, discarding the boundary term, and noting that (p;(Bq;/BQ() ) depends only on Q
and not on P, we get

BH
5Seff =0= J dt 5P( Q( — +5Q(

0 .g, ("g.)-.g. ( ",) g--", -'

Setting the coefficients of 5P( and 5Q( equal to zero we
obtain the equations of motion

Bq;
'-=ag, (" ag ) ag (~ ag, )

aH
a

ag,
+

ag, (~'ag. ) ag. ('ag, ) g-

The effective gauge potential

(208)

(20b)

Bp; Bq;

ag( ag
Bp; Bq;

ag ag,
(22)

which exerts a velocity-dependent force on the slow de-
grees of freedom.

Now we substitute for Q from (20a) into (20b} to obtain
the following equation for P:

(21)
~ BH BH+ (23)

appearing in S,ff, has a curvature (or field strength) We can put Eqs. (20a) and (23) into canonical form
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I f(Q, P),g(Q, P) I
=

ap, ag,
af ag

agl aPl

Q=tH, QI and P=IH, PI by introducing the modified
Poisson brackets on the slow-variable phase space:

Qk =Pk,
Qk Ql

Pk ——I +I&kl~ 3 P~ .

Combining (30a) with (30b) we get

(30a)

(30b)

af ag (24)
~ . Qk QrQ

Qk = —I +I&kt (31)

tv =dpt Q dgt + , cvtm—dgt h dgm . (25)

Because of the coupling of the slow variables to the fast
degrees of freedom, the symplectic form on the slow-
variable phase space has an additional piece

Bp; Bq;
=2 ag, ag

Bp; Bq;
dgl hdg

aQm a l

It is shown in Appendix 8 that this modified Poisson
brackets correspond to the symplectic form

which corresponds to motion of a unit charge with unit
mass in the field of a "magnetic monopole" of strength I
and with an additional constant force of strength I direct-
ed towards the origin in Q space.

Essentially the same result can be obtained using
Berry's bosonic model' for a spin coupled to a magnetic
field Q. In Berry's model the action is given by

d lRd (26)

E 2H = — eklm gk1|l gm + z Pk (27)

where all indices are summed from 1 to 3, 11/1 are three
Grassmann variables, Q is the external magnetic field,
and P its conjugate momentum. After transforming the
11/'s to action-angle variables and averaging over the angles
we obtain the effective Hamiltonian

which is just precisely the area two-form 8' found in the
previous section. Thus we see that the classical adiabatic
holonomy reveals itself as an additional term in the sym
plectic form on the slow variable p-hase space.

As an example, let us consider the classical Grassman-
nian model" for a spin- —, magnetic dipole coupled to an
external magnetic field with an additional "kinetic ener-
gy" term for the external field. This model is a classical
version of the "spinning solenoid" discussed by Stone. '

The Hamiltonian for this system is

where S is the classical spin vector. This action will then
play exactly the same role in (31) as the monopole
strength and the strength of the constant central force.
The difference between Berry's bosonic model and the
Grassmannian model is that while Berry's action is a c
number, the Grassmannian action, although bosonic, is
constructed from anticommuting variables.

Finally, we would like to remark that if, following
Stone, ' we constrain the magnetic field to lie on the unit
sphere, the effective Hamiltonian becomes H =I + —,P,
the constant central force in (31) disappears, and the sys-
tem becomes equivalent to a charge constrained to a
sphere moving in the field of a magnetic monopole at the
center of the sphere. ' This is precisely the result that
Stone finds at the quantum level by integrating the fer-
mionic degrees of freedom out of the path integral.

IV. CONCLUSION

H =( I2+I3)g+ ,
' —P— (28)

k
elm= I

3 &klm . (29)

where

g (g 2+g 2+g 2)1/2

p (p 2+p 2+p 2)1/2

I2 ———,
'

tl/2 g2 is the action of the normal mode
$2(t) =ttt2(0)e' ', I3 = —,

'
11/31t/3 is the action of the normal

mode 1(t3
——11/2, and I =I3 I2 ——g 3 p3. The—area two-

form co, which modifies the symplectic form in the (Q, P)
phase space was found in Ref. 11; its components are

The reader might ask what is the purpose of the formal
analysis presented in the previous sections. The use we
have in mind for it is related to a semiclassical interpreta-
tion of anomalies and we will briefly sketch here the main
ideas. These ideas will be further expanded in a forth-
coming paper. '

We know that systems with anomalies (non-Abelian
chiral anomalies, or global anomalies), must develop
Berry's phase when they are treated in a Hamiltonian for-
malism. To explain this, let us review the nice argument
given by Niemi and Semenoff: Consider a single Weyl
fermion 1t in a complex representation of a non-Abelian
gauge group 6 and let us work in the gauge for which

=0. The object we are interested in is

Notice that this two-form has a singularity at Q =0.
This is the point in Q space where the frequencies of the
originally fast variables g vanish.

Substituting Eqs. (28) and (29) into (20a) and (23), we
obtain the equations of motion

Z(A)= f dpdp exp i f dt p [ia, +H(t) j@

= rr~. (32)
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where d x is understood and the path integral has period-
ic boundary conditions on A and antiperiodic on p. The
operator H is the usual Dirac operator

H(t) = i—(df+A~ )yj . (33)

The background field A belongs to the infinite-
dimensional manifold M of all static gauge fields. A t-

dependent A field describes an orbit in M . In the path
integral (32) the trajectories in p space, on which we sum,
have a different operator H associated to them at each in-
stant of time. This family of H's describes a closed loop
in A . The calculation of Z(A) can be done once the
eigenvalues A,„of

i[8, +H(t) jg„=A,„P„ (34)

are known. This (for more detail see Ref. 4) boils down to
solving the Schrodinger-type equation

H(x
~

r;t) =E„(x
~

r;t), (35)

where r is an index for the zero modes of (34). As H
(through its dependence on A) is a time-dependent Hamil-
tonian, we have to find an approximation to solve (35).
We can use, for example, a Born-Oppenheirner approxi-
mation and consider A as an adiabatic parameter upon
which the solution of (35) depends. The solution will have
the form

T

(x
~
r;t) =exp i f dt E„(t')+iy(t)

where y is the Berry phase associated to the loop in M .
Niemi and Semenoff proved that y has to be different
from zero if the system has anomalies. Conversely if the
Hamiltonian H has a y&0, then when we couple Weyl
ferrnions to it, the system will develop anomalies. Thus
Berry's phase is an indicator that the operator H might
"get in trouble" when coupled with Weyl fermions.

Now we want to go back to the Hannay angles. Let us
recall' '" that if a system has a Hannay angle b,8 dif-
ferent from zero, then the corresponding Berry phase is
also different from zero. In fact, in an expansion in
powers of A we have

By =58+0(A)
Bn

and so if 50&0 then By/Bn&0 which implies that y&0.
Because of this fact we can limit ourselves to study the
operator H of (33) at the purely classical level and calcu-
late the corresponding Hannay angles. If they are dif-
ferent from zero then we know that also y will be dif-
ferent from zero, and this indicates that the system will
develop anomalies (once coupled to Weyl fermions).

The reader may ask how we can treat H classically.
This has been done in the literature. The idea is to write
down a Lagrangian L for coupled x; and g;, where x; are

the position variables and g; the Grassmann variables.
This Lagrangian has a corresponding Hamiltonian and,
once it is quantized, the algebra of the g; goes into the
algebra of Dirac y matrices reproducing the operator H
of (33). Using this classical Lagrangian and considering
A as an adiabatic external parameter, the calculation of
the corresponding Hannay angles goes along the same line
as in Ref. 11. This calculation will be reported in a forth-
coming paper. '

What is nice about this analysis is that, even at the clas-
sical level, we have an indicator 66 of possible anomalies.
This means that the system even "feels" classically if,
once quantized, it can develop anomalies. Of course this
does not mean that classically certain symmetries are not
preserved: it means something more subtle is happening
at the classical level that will show up at the quantum lev-
el as the nonconservation of certain currents. We would
like to give an indication of the "something more subtle"
that is happening at the classical level.

We are usually taught that a symmetry can always be
implemented at the classical level with canonical transfor-
mations. This is true locally but it might not be the case
globally on the whole of phase space. Those symmetry
generators which cannot be implemented globally in a
canonical way are called nonglobally Hamiltonian.

We believe that the presence of generators that are not
globally Hamiltonian at the classical level may be a neces-
sary condition to have anomalies at the quantum level.
For some systems it might even be a sufficient condition
and we are currently exploring this possibility in several
models. Our belief that it might be, for some models, a
necessary and sufficient condition, has to do with the fol-
lowing simple (and maybe naive) idea: if a generator of a
symmetry is not globally Harniltonian, then it means that,
"at some point" the transformation it generates is not
canonical any more. If it is no longer canonical, then the
volume of phase space is not preserved by the syrnrnetry
transformation around that point (designating a break-
down of the Liouville theorem). This means that the sym-
metry transformation can shrink any volume of phase
space down to an infinitesimally small volume. This, of
course, will clash at the quantum leveI with the P1anck-
Heisenberg principle that tells us that the minimum
amount of phase space that can be occupied by a system is
ApAq =h. So quantum mechanics will reject such a
transformation as a symmetry transformation, because it
violates the principles of quantization. The reader may
ask how quantum mechanics can detect something that is
happening only at some points. The answer is that quan-
tum mechanics naturally feels if the symmetry is doing
"something wrong" even at "some points only, "because it
has a "global detector": the wave function (an extended
object). Classical mechanics, on the contrary, probes
phase space only locally. To detect global effects, we have
to go beyond the Lagrange equations of motion and build
some "global detector. " This is what the Hannay's angle
is—a global detector at the classical level —and it is for
this reason that it gives us information on the possible ap-
pearance of anomalies. Of course these are just specula-
tions for the moment, but work is in progress to confirm
them.
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Note added. While we were completing this work it
came to our attention that S. Iida and H. Kuratsuji had
proposed Report No. PHANTOM 865 [Kyoto University
(unpublished)] that Berry's phase is associated with a
modification of the symplectic structure of phase space,
using a mixture of classical and quantum mechanics. In
contrast, we have established this result at the purely clas-
sical level.

Wj(IB):d(de)): (de'Rdl'))a

j
(A2)

sum over l only. Let us recall that the Hamiltonian H is
a function of the n action variables Iz,

H =H(Ii, . . . , I~),
and that it is an invertible function ' so that
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APPENDIX A

I ) F) (——H, I2, . . . , I~ )

and in general

IJ =F,(I), . . . , H, . . . , I~)
From (A3) we have

BFi BF((Ii, . . . , H, . . . , I~)
dI) —— dH + dIk

aH BIp

that is,

(A3)

(n ~dH ~m)h(m ~dH ~n)
(E E)— (Al)

where d denotes throughout the exterior derivative in pa-
rameter space and we sum over m for m different from n.
For details on how to derive this expression we refer the
reader to the paper of Berry. From (A 1) we see that
quantum degeneracies [occurring at some point B* of the
parameter space in which E„(B*)=E (B*)]cause singu-
larities in the phase two- form V. Moreover it has been
proved ' that a circuit C, which passes close to this
singularity, picks up a contribution different from zero
for the Berry phase. So quantum degeneracies act as
sources for the phase two-form. Of course they might not
be the only sources.

It would be interesting to see if, in an analogous way,
classical degeneracies cause singularities in the angle two-
form 8'~ of Hannay. The angle two-form is given in
terms of the area two-form 8' introduced in Sec. II by
8'J. ——8 8'/BI& ~ This two-form can be written in many
ways. ' We find it convenient here to use the expres-
sion

In this appendix we will explore some facts about the
phase-space bundle introduced in Sec. II ~ We will basical-
ly be concerned with the topics listed below.

(1) We prove that classical degeneracies, caused by
changing the parameters B, produce singularities in the
angle two-form 8' analogously to what happens at the
quantum level. '

(2) We analyze how the angle one-form 3 changes
under B-dependent canonical transformations in the fast
variables (p, q). Using these trans formations we will prove
that the Hannay's angle can (in principle) be obtained as a
dynamical angle of a canonically equivalent Hamiltonian
only if the relevant bundle is tri Vial.

1 . Classical degeneracies and singularities
of the angle two-form

Berry, in his first paper on this subject, found a way to
write the phase two-form V„(B) in a form different from
the one introduced in Sec. II of this paper. His expression
1s

dH aFl
dI( —— + dI,aI.

where co~ is the frequency associated to the angle 0&. We
can insert this into (A2) and obtain

(d8, n, dH)
+ d0( P, (A4)

0) ——0]—02, I )
——I)

02 ——02, I2 ——I) +I2
and in these new variables co

&

——0 due to the fact that
co

~
——co2 and that co

&
——co ~

—cu2. Thus we can conclude that
classical degeneracies cause singularities in the angle two-
form, in complete analogy to the quantum case.

The next question to answer is whether these singulari-
ties can act as sources for Hannay's angle. Let us consid-
er a circuit C in B space which passes close to B*. The
angle two-form in (A4) is then dominated by the term
with the frequency that goes to zero. Let us suppose this
frequency is co2. Then we have in (A4)

d(d9') = dept
)

. (A5)
C02

As only two frequencies are involved in the degeneracy,
we can choose, as interpolating Hamiltonian in (A5), a
Hamiltonian with only two degrees of freedom. Of course
H has to have the property of being integrable and having
a degeneracy for some value of the parameters. There is a
whole family of Hamiltonians that can do the job without
losing generality. One possibility is

H=BiPt +B2P2 —B3glg2

From here we see that if, for some value of B, let us say
B*, one frequency ~~ goes to zero, then the angle two-
form 8'J. becomes singular. We should remember that a
frequency that goes to zero is a signal of a degeneracy (see
Ref. 16). In fact, let us imagine a system with only two
degrees of freedom (8&,82, I&,I2) which has a degeneracy
co

&

——co2. Then it is possible to go to new canonical vari-
ables (8'&, 82,I|,I2) given by
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For this Hamiltonian the calculation of 50 can be done
along the same lines as in the model studied in Ref. 11
and it is not difficult to see that the 60 is different from
zero. So going back to the fu11-fledged system with n de-
grees of freedom from which we started we see that the
singularity (i.e., the classical degeneracy) acts as a source
for the angle two-form. Of course there may be other
sources for Wz.

2. Hannay's angle and the nontriviality
of the phase-space bundle

The issue we want to address in this part of the appen-
dix is whether Hannay's angle 50, given by

T
OJ(T)= f cubi

(t)dt+. bOi. ,

where co=OH/BI is a real "geometrical" part of the angle
variable of the system, or whether it can be obtained
dynamically by using a set of variables different from
(q,p). It might in fact happen that, as we are allowed to
do canonical transformations on our system, we find a set
of variables (q',p') and a new Hamiltonian H' (canonical-
ly equivalent to the previous one) such that the new fre-
quency co associated with it is enough to describe the fu11

angle swept. This means that
T BH'

O~(T) = f cd(t)dt, coj. =
J

This would not indicate that the phenomenon and the
physics connected with the Berry phase (or the Hannay
angle) could be taken away. It would mean that this
phenomenon has become a dynamical effect absorbed into
the new frequency ~'.

In these new variables (q',p') the Hannay angle would
be zero

aO, = f f W,'=0

or equivalently, the new angle two-form W~ would have
to be zero. The first question to ask is if there is any fun-
damental reason which forbids this possibility and the
second is which transformation of variables would do the
job. We will answer only the first question and prove
that, if the phase-space bundle is trivial then there is noth-
ing to forbid the existence of a set of coordinates (q', p')
such that its associated two-form W' is zero. The second
question can only be answered partially: we will only
prove that the set of canonical transformations, allowed
on (q,p), deform A in a way that can in principle make
the two-form W' zero. We will also set up the formal dif-
ferential equation for the generating function of the
canonical transformation that achieves this.

Let us first see which transformations can change W'.
Certainly they are not the gauge transformations exam-
ined by Berry

O'=8+a(B)

(a 8-dependent change in the origin of O). Under such
transformations A = (dO) behaves like a gauge field

A'= A +do.

and W is left invariant. (Here we are omitting indices; A

is not to be confused with the connection discussed in
Secs. IE and III.) On the other hand, a general 8-
dependent canonical transformation on (O,I) causes A to
transform differently from a connection, and so it modi-
fies W. Let us perform, for example, the transformation

I'=I+f(O, I,B),
O'=O+g(O, B) .

(A6)

(I' and O' are no longer action-angle variables). The f and

g ( C' "' functions) have to satisfy the constraint

df Bg df Bg
ar+a0+ al a0= (A7)

(for the transformation to be canonical). This is a partial
differential equation in two variables with two unknowns.
So, most probably, the solutions are underdetermined.
This means that we will have a whole family of solutions
f and g for this equation. The new angle one-form
A'=(dO') is

A'=A+(dg) . (A8)

Note that this transformation is not a gauge transforma-
tion such as

A'=A+d(g) (A9)

the function g is a and, as it is not dependent on 0, it can
be pulled out of the angular brackets. Therefore
d(a) =da() =k da.

So we see from (Ag) that a 8-dependent canonical
transformation on (q,p) deforms A in a very general way.
This is exactly what we need, in fact it is possible to
prove that any continuous deformation of the connec-
tion A ~A' will only change the two-form W by an exact
differential d Q ( A, A '):

W'= W+dg .

The one-form Q is obtained once the deformation is
given. If we want now to deform A so that W'=0 then
Q has to satisfy the relation

W= —dg . (A 10)

This means that the W has to be an exact form and this is
always possible for a trivial bundle. So, once W is given,
it is always possible to find Q. Having Q, it is easy to
find which transformations g of (AS) on (q,p) will deform
A so that W' is zero: Combining (A8) and (A10) we get
the following equation for g:

d(dg)=dg . (Al 1)

Thus (All) combined with the constraint (A7) are the
equations that determine the canonical transformation we

because the d cannot be pulled out of the angular brackets
(see Hannay, Ref. 9). In fact the average is 8-dependent
so that d(g)~(dg).

In the case of the simple canonical transformation ex-
amined by Berry

O' =O+ a(B)
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were looking for. We do not see, in principle, any ob-
struction which prevents these two equations from having
solutions. Of course we have not proved an existence
theorem which states that, for sure, these two equations
have a solution. Resorting to a familiar case with a trivial
bundle (the Aharonov-Bohm effect) we see that there the
phase is already dynamical. In fact the bundle connection
there is the same as the gauge potential of the current pro-
ducing the effect. This gauge potential is already in the
Hamiltonian, so that the phase generated by it is dynami-
cal.

For nontrivial bundles, on the contrary, we cannot find
a globally defined Q that makes W'=0. This implies that
we will also not be able to find globally well-defined solu-
tions g to Eq. (All). Physically this means that, in the
case that the bundle is nontrivial, the Berry phase (or Han
nay angle) can never be obtained as a dynamical phase (or
angle) through a globally well defined -unitary (or canoni
cal) transformation This .is what happens in most cases
and that makes the effect a truly "geometrical" one.

The Poisson brackets are defined abstractly by

where

a
Xf = (Xf )p + (Xf )g' BPI I c)g

(83)

(84)

is the Hamiltonian vector field corresponding to the ob-
servable f(Q,P) and is given in terms of the symplectic
form by

l~ co = —dff (85)

[(Xf)p + (Xf )g cl)Q g ]dg

+[(Xf)p,cop, p —(Xf)g ]dP

where the left-hand side denotes the contraction of the
form co with the evector field Xf. In (Q, P) coordinates,
we have

APPENDIX B =-
ag. "g- aP. "- (86)

In this appendix we show that the symplectic form (25)
corresponds to the Poisson brackets (24): Combining (83) with (84) and comparing with (Bl), we

find
I f(Q, P),g(Q, P) I =

af ag'- aP, aP
(81)

t)f "df
f )PI gg +~1m gP

(87)

The term in large parentheses corresponds, as is well
known, to the symplectic form dP& hdgi. The symplectic
form which we seek then has the form

co=dPi hdQi+ 2 cog, g dgi hdg~

Then, substituting (87) into (86) and comparing coeffi-
cients of dg and dP we obtain cop p ——0 and

~g, g = —~~I ——~I~. Our final result is therefore

+ Tlap p dPI Q dPm (82) co=dPi ~dgi+ 2~ coimdgi ~dg~ .

~M. V. Berry, Proc. R. Soc. London A392, 457 (1984).
2C. A. Mead and B. G. Trular, J. Chem. Phys. 70, 2284 (1984);

J. Moody, A. Shapere, and F. Wilczek, Phys. Rev. Lett. 56,
893 (1986); R. Jackiw, Ibid. 56, 2779 (1986).

J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51
(1983);J. E. Avron and R. Seiler, ibid. 54, 259 (1985).

~P. Nelson and L. Alvarez-Gaume, Commun. Math. Phys. 99,
103 {1985);H. Sonoda, Phys. Lett. 156B, 220 (1985); Nucl.
Phys. B266, 410 (1986); A. J. Niemi and G. W. Semenoff,
Phys. Rev. Lett. 55, 927 (1985); A. J. Niemi, G. W. Semen-
off, and Y. S. Wu, Nucl. Phys. B276, 173 (1986).

5A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

7E. Kiritsis, Caltech Report No. 68-1338, 1986 (unpublished).
D. Thouless, M. Kohmoto, M. Nightingale, and M. den Nijs,

Phys. Rev. Lett. 49, 405 (1982).
J. H. Hannay, J. Phys. A 18, 221 {1985).

~ M. V. Berry, J. Phys. A 18, 15 (1985).
E. Gozzi and W. D. Thacker, preceding paper, Phys. Rev. D
35, 2388 (1987).
M. Stone, Phys. Rev. D 33, 1191 (1986).

' J. Anandan and L. Stodolsky (unpublished).
'~A. Messiah, Quantum Mechanics (North-Holland, Amster-

dam, 1962), Vol. 2.
'~H. Kuratsuji and S. Iida, Prog. Theor. Phys. 74, 439 (1985);

G. W. Semenoff, report, 1986 (unpublished). See, also, Stone
(Ref. 12).

V. I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1978).

~7M. V. Berry, in Fundamental Aspects of Quantum Theory,
edited by V. Gorini and A. Frigerio (Plenum, New York, in

press).
'8A. P. Balachandran, G. Marrno, B. S. Skagerstam, and A.

Stern, Gauge Symmetries and Fibre Bundles (Springer, New
York, 1983).

' E. Gozzi and W. D. Thacker, MPI report (unpublished).
R. Casalbuoni, Nuovo Cimento 33, 389 (1976); 33, 115 (1976);
Phys. Lett. 62B, 49 (1976); P. Di Vecchia and F. Ravndal,
ibid. 73A, 371 (1979).
B. Zumino, in Relativity, Groups and Topology II, edited by B.
DeWitt and R. Stora (North-Holland, Amsterdam, 1984).
N. Woodhouse, Geometric Quantization (Clarendon, Oxford,
1980).

T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213
(1980).


