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Using phenomenological methods, we analyze the decay mechanism for dibaryon resonances
based on the diquark-cluster model, and discuss the possibility of observing the following states:
I =0 and J =1+ at 2.08 and 2.14 GeV c.m. energy; I =0 and J =3 at 2.25 GeV; and I =1 and
J~=O+ at 2.02, 2.08, and 2.14 GeV. The analysis leads us to the conclusion that the decay of di-
baryons can be attributed to the production of a pion followed by the transformation of the system.
We describe the dynamics of the decay by the use of an effective interaction V which involves the
operators of one-pion production and a system transformation. All the parameters in V are deter-
mined by the use of the experimental data concerning I =1 dibaryons. When an appropriate fine
structure for the mass spectrum in the diquark-cluster model is chosen, the P~ ~d phase shift (T
matrix) calculated using V is in close agreement with reported phase-shift-analysis data
[B~ (2. 14)1+]. The predictions of the present model are quite consistent with the existing data both
for the narrow dibaryon resonances observed in various reactions, as well as for the broad dibaryon
resonances.

I. INTRODUCTION

One of the most interesting problems in intermediate-
energy physics is the existence of NN and/or red reso-
nances, the dibaryon. ' This is a problem both for the
theorist and for the experimenter. Briefly, the problem
lies in explaining the structure of a dibaryon. There are
two compelling approaches to understanding the di-
baryon. In one approach, the dibaryon is interpreted as a
m.NN three-body resonating state ' on the basis of a Fad-
deev calculation, and in the other, the dibaryon is viewed
as a six-quark bound state q (Refs. 6—11). Since 1977
the latter view has been emphasized by Yokosawa in his
path-breaking experimental works. ' Many ~d scattering
experiments have been carried out in the energy regions
where two established dibaryons B~(2.14)2+ (Refs. 1—3
and 12—14) and B~(2.22)3 (Refs. 1—3 and 13—15) exist,
in order to measure both the vector analyzing power iT»
(Refs. 16 and 17) and the tensor polarization T2o (Refs.
18—21). In the measurements of i T~ ~ (Ref. 17) the exper-
imental values have agreed fairly well with the predictions
of the ~NN model and supporting evidence for the q
model has not been obtained. One result, suggested by
Yokosawa and Hoshizaki, that would be favorable for
the q model, would be the existence of a Bo(2.22)3 hav-
ing a rather narrow decay width: I —50 MeV (Ref. 23).
But this dibaryon resonance has not yet been established
experimentally. Based on these facts, some authors have
suggested the possibility that all dibaryon resonances can
be explained solely by using the ~NN model.

However this situation was changed by the work of the
ETH group, ' ' who reported the discovery of a new di-

baryon resonance of B~(2. 14)1+ with a very narrow width
of 10—30 MeV, together with a broad dibaryon resonance
of a B &(2. 14)2+. Since the existence of the dibaryon with
such a narrow decay width has never been predicted by
the m.NN model, it has been suggested that the q model
advanced by Yokosawa should be revived as an alterative.
Although the presence of this dibaryon has not been com-
pletely confirmed yet, one can say at least that the q
model has recovered some of its experimental base. This
viewpoint has been supported by reports on missing-
mass and invariant-mass experiments using light nu-
clei in which several narrow dibaryon resonances have
been observed. Yokosawa's experimental analysis with
respect to the Bo(2.22)3 dibaryon may also support this
viewpoint. Considering that a new experimental analysis
of np scattering has started in LAMPF for the purpose
of establishing of the Bo(2.22)3 dibaryon and finding
other I=0 dibaryons with narrow widths, it is very ap-
propriate to present a theoretical analysis and predictions
for the properties of dibaryon resonances based on a q
model. The present analysis is one such attempt and is
based on the diquark-cluster model" that we proposed
previously.

There are two major tasks for any model of dibaryon
resonances, the reproduction of experimental data con-
cerning both the mass spectrum and partial decay widths.
As will be discussed in Sec. II, our prediction using the
diquark-cluster model for the mass spectrum agrees well
with the experimental analysis of Yokosawa. ' At
present our analysis concerning the mass spectrum is con-
sistent with all reported experimental data. ' It should be
noted that at present the diquark-cluster model is the only
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theory which can explain why the 8 ~(2. 14)1+ and
8 (2.14)2+ have the same masses as the Bo(2.22)3 and
8 ~(2.22)3 . Concerning the second problem, explaining
the experimental data on partial decay widths, there are
no reliable methods for calculating the partial decay
widths I, I, and I~™vfor the nNN, nd, and NN
channels based on the q model. In fact, even the
diquark-cluster model based on QCD gives us little infor-
mation on the details of the dynamics which dominate the
decay process of the q system. For this reason, we make
a phenomenological analysis for the dynamic part of the
decay mechanism. The kinematic part related to the
structure of the q system is analyzed exactly using the
diquark-cluster model. Of course, in such an analysis,
those observable phenomena which are less dependent on
the uncertain dynamic aspect are likely to be more con-
sistent with the experiment data.

In this paper we first analyze the reported I and I
data for the 8 ~(2.14)2+ and B,(2.22)3 and also the I "
and I data for 80(2.22)3 . Then, we set up a scheme
for the decay dynamics which may be able to reproduce
these experimental data. We describe the decay dynamics
by the use of an effective interaction V and calculate the
partial decay widths I "~+, I ", and I ~+ with the use of
V„. The parameters in V are determined by the use of
the experimental data for I=1 dibaryons. The P& ~d
phase shift ( T matrix) calculated using V„depends
strongly on the fine structure of the energy level of
8 ~(2.14)1+, in which four states are degenerate in the di-
quark cluster model. We present a promising case in
which the theoretical T matrix agrees well with the exper-
imental one. Finally we predict the NN and md T ma-
trices for some low-lying dibaryons, which are indicated
by the diquark cluster model but have not yet been ob-
served by phase-shift analysis. In this work we attempt to
provide some guidance for those conducting experiments.

This paper consists of seven sections. In Sec. II we re-
view the diquark-cluster model. In Sec. III we discuss the
decay mechanism of the dibaryon and introduce the V„.
In Sec. IV we establish the calculation method for the par-
tial decay widths of I,I, and I . The method to
calculate the NN and md phase shifts ( T matrices) under
the influence of a group of dibaryons is given in Sec. V.
A comparison of our predictions with experimental obser-
vations is provided in Sec. VI. Some comments on fur-
ther analysis are given in Sec. VII.

II. DIQUARK-CLUSTER MODEL

As discussed in Sec. I we will calculate the partial decay
widths of the dibaryon by using the diquark-cluster
model" for the structure of the q system. In this section
we summarize the ideas of the diquark-cluster model and
add some speculations on the high excitation state of the
q system.

The diquark cluster model is fundamentally based on
the shell model with a jj-coupling scheme like the nuclear
shell model and also based on a cluster model of quarks
which Lichtenberg et al. developed from the string
model. The color configuration of six quarks in the
diquark-cluster model is illustrated in Fig. 1. As in the

FIG. 1. The color configuration of six quarks in the
diquark-cluster model. This system consists of three diquarks
(12), (34), and (56). Two quarks in a diquark are tightly bound
and make a diquark cluster only in the case where both of them
are in 1s z shell.

+53 (qq) . (2.1)

Here M(lj) is the single-particle excitation energy from
the 1 s —, shell to the shell with the orbital angular momen-
tum 1 and total angular momentum j, and n (Ij) indicates
the number of quarks in the shell. The excitation for the
shell characterized by j & —,

' is neglected. In accordance
with the nuclear shell model, a harmonic-oscillator poten-
tial is taken as the common central force, in addition to a
common induced I.S force. The excitation energy M(lj)
is a function of the quark mass m and the angular fre-
quency co. It is assumed that the interaction energy 5$(qq)
in the (diquark) system of two quarks, i and j, whose
color state is the 3' state, takes a nonvanishing value
when they are in the 1s—,

' shell. In other words, two
quarks in a diquark are tightly bound to make a cluster
(diquark cluster) only if both of them are in the 1 s —,

' shell.
The interaction energy 5$(qq) for the diquark cluster de-
pends on the spin of the system and its value is deter-
mined by using the mass of N and h. The values for pa-
rameters m and co adopted by the authors are both
around 0.3 CxeV. Setting m =u, we adjusted the parame-
ter m to reproduce the resonating energy 2.14 GeV of
B,(2.14)2+ and obtained m =0.300 GeV. Using these pa-
rameters, the calculated mass spectrum are shown in Fig.
2 together with a list of experimental dibaryon candidates.

The dibaryon in which the quarks are excited only to
the 1p —,

' shell is referred to as the 1p —,
' -shell dibaryon. In

Fig. 2, all of low-lying 1p —,-shell dibaryons with rest mass
below -2.3 GeV are given. As for the high-lying levels
above —2.3 CxeV, we illustrate a series of dibaryons

nuclear shell model, the dibaryon mass spectrum is given
by the following simple equation:

M =6m +M(p —,
'

)n (p —, )+M(p —,
'

)n (p —, )

+M (d 2 )n (d 2 )+5312(qq)+533'(qq)



35 ANALYSIS OF THE DECAY MECHANISM OF DIBARYON RESONANCES 241

Conf igurat jon

Exp

2.9-
6,5', ----.0 ———————————

I ( in~) ( ii~l I

28-

2.7— 5-0 5,4, --,0
I ( i iik) ( i iki ] I ( I (j~) ( i il) I

25-

2.3—

3+Q

4;3',2'.1,0'
4,3,2,1,0

3, 2 .1.0
2,1,0

2,1,0

4
3-c

2-0

4',3,2', 1,0 '

4,3,2, 1,0

2', 0'

3,2 , 1,0
01

1 Q

I

l(lp+)(l, ~~i] I&]A~i(l.~~)j
I(]i~+&(1~+]] I(i@+)(i~+)]

i 1 ~~]
I I j ]ii ( is/) ] I i ]pe&

2

&jp~)(1~4]]
) )

&1~~) I I&ip~](1~%)]

21-

2or0
2'1" 0' 2+ 1+ 0+

—---- ——-----I i I s. i I I ( I] ~) & I ~i) I

1 2

FIG. 2. The mass spectrum of dibaryons and the predictions of the diquark-cluster model with the respective configurations. The
predicted spectrum is independent of the isospin I of system. The experimental data are from Ref. 3 but (a) from Ref. 33, (b) NN
spin-triplet J=L=odd state, assumed to be J=5, (c) NN spin-triplet J =L=odd state, assumed to be J=3, (d) from Ref. 40, (e)
from Ref. 20, (f) from Ref. 39, NN spin-singlet J =L =even state, assumed to be J=O.

(1d —,-shell dibaryon) which are obtained by a successive
transfer of the quarks in Bo i(2.22)3 from the lp —,

' shell

to the ld —, shell. It is very interesting to note that the
1d—,-shell dibaryons with maximum angular momentum
in the allowed configuration are found in the same posi-
tion as the dibaryon candidates suggested by Yokosawa.
In the diquark-cluster model, the series of 1d —,-shell di-
baryons should coexist with another series of dibaryons
(lp —', -shell dibaryon) having the same mass spectrum,
which corresponds to the transfer of quarks from the 1p —,

'

shell to the lp —, shell. A dibaryon candidate B i(2.43)(?)
(Ref. 31) found by Yokosawa ' can be assigned to a
1p —,-shell dibaryon. However, the other member of the
1p —,-shell dibaryon has not yet been observed. In a previ-
ous paper, "we assigned a candidate Bo(2.38)3+ (Ref. 33)
to a dibaryon with the configuration
[(lp —,

' )(ls —,
'

)) [(lp —, ) ]. Although the empirical rest mass
2.38 GeV is well reproduced by this assignment, it is also
possible to assume that this candidate belongs to a family
of 1d—,-shell dibaryons, as illustrated in Fig. 2. In fact,
the observed energy shift between Bo(2.38)3+ and
Bo(2.43)(7)+ (Refs. 2, 3, and 32) can be understood in
terms of the fine structure of the dibaryon mass spectrum,
as will be discussed in Sec. VI.

It is inferred from these results that the excitation pro-
cess of quarks in the q system is dominated by the fol-
lowing rules: (1) At most, three quarks can be excited; (2)
the major high-lying states above 2.3 GeV are a series of
1d —,-shell dibaryons with the maximum angular momen-
tum in the allowed configuration; (3) the coexisting 1p —,-

shell dibaryons are less important except in some specific

cases. The physical implications of these rules are uncer-
tain at present.

The configurations of the major members in the di-
baryons, given in Fig. 2, are listed in Table I. It should be
noted that a few Ip —,-shell dibaryons exist above 2.3 GeV
including the state with the configuration [(is—,

'
) ] at

2.31 GeV. The reason why these pure S-wave dibaryons
lie in a rather-high-energy region (& 2.3 GeV) is as fol-
lows. The interaction energy 6$(qq) for the diquark clus-
ter is given by

5$(qq) =a +b s;.sj. , (2.2)

where s; and sz are the spin of the quarks i and j, respec-
tively. The values for the parameters a and b are
a=0.186 GeV and b=0.195 GeV. The state of a diquark
is denoted by [ TS] where T and S represent the isospin
and spin states, respectively. There are two possible states
[00] and [11] for the diquark cluster as the constituent
quarks are both in is —, state. The states [00] and [11]
have interaction energies of 0.040 and 0.235 GeV, respec-
tively. Then, by the inclusion of a [11) diquark cluster,
the q system acquires a large extra energy 0.235 GeV.
The pure S-wave dibaryons must involve at least two [11]
diquark clusters because the wave function of the q sys-
tem is symmetrical for the constituent three diquarks.
The resultant large amount of extra energy raises the di-
baryon energy level above 2.3 GeV. In another example,
the state with the configuration [(ls—,

'
) ] [(lp —,

' )(ls —,
' )]

acquires an extra energy of 0.235 GeV or more because it
involves at least one [11]diquark cluster. This extra ener-

gy raises the energy level above 2.2 GeV.
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TABLE I. Classification of q states by configuration, isospin I, and spin and parity J . Generally a bracket [ ] represents a di-
quark. For example, notation [TS] indicates the isospin T and spin S states of a diquark. The member of each group is character-
ized by the [TS] combination of three diquarks with notation A, 8, C, and D which indicate the number of T = I diquarks in the sys-
tem. The contribution of each term of Eq. (2.1) to dibaryon mass E, (=M) is given in GeV explicitly, in the following manner:

(1) (2) (3) (4) (5) (6) (7)

E, =6m+~(p —, )n(p —, )+~(p —, )n(p —, )+~(d—, )n(d —)+&3 (qg )+~3 (gg)+~3

For 1d 2 -shell dibaryons, the states with the maximum J in each configuration are shown and, as for the other states, only the state

number X is given. Note that lp 2
-shell and Id 2 -shell dibaryons have the same mass spectrum with the same [TS] combinations,

since ~(p —,
' )= —,'~ »d M(p —,

' )=~(d—', )= 4~.

1p —,-shell dibaryons

Configuration
[TS] combination E„=(1)+(2)+(3)+(4)+ (5)+(6)+(7)

2+
0+
1+

[( I )2]3

C [00][11][11]
C [00][I I][I I]
C [00][11][11]

E, = 1.800+0+0+0+0.040+0.235+0.235=2.310

[(Is2 ) ] [(lp2 )(Is2 )]
I 2 8 [00][11][01]

I 8 3 [00][11][01]
0 8 [00][11][01]

0 2 C [00][11][lI]
I C, [001[11][11]
0 C [00][I I][I I]

[00][I I I I: I I I
[oo][11][ao]
[00][I I][11]

C2 [00][I I ][10]

C3 [00)[11][11] C2 [00][11)[10)

E, = 1.800+0. 150+0+0+0.040+0.235+0=2.225

[(Is 2 ) ][(lp 2 )(Is 2 )]'
2+ 8 [00][01][11]
I + 8 3 [00][01)[11]
0+ 8 3 [00][01][11]
I + 2 3 [00][01][01]

C
B2
B2

[00][11][11]
[00][00][11]
[00][00][10]
[00][00][01]

B3
CI
Cl

[00)[0I][I0)
[00][11][11]
[ool [11)[11]

C
Cp

C2

[00)[I I I [IoI
[00][10][10]
[00][11][10]

E„=1.800+0. 150~2+0+0+0.040+0+0=2. 140

0

0 3

0

[(Ip —, )(

C
B)
Cj
DI
B)
C)
C5

D)
Bi
Ci
Di
D
Ci

DI

ls 2 )]'
[01][11][11]
[0 I ) [oil [I I I

[oil [I11[11]
[11)[I 1][11)
[01][01][11]
[oI) {[11][11])32
[01][10][10]
{:I II [I ll [11]
[oI)[oil {:111
[01][11][10]
[11][11][11]
[I 1][1I][I I]
[01][I I ][I I )
[oI][oil [00]
[ I 1][11][1I]
[01][01][01]

B2
C2
D2
B2
C2

D2
B2
C,
D2

C2
CI
D2
C

[01][00][11)
[00][I I][I I]
[10][11][11]
[01][00][11)
[01]{[11][11])3o

{[11][1I]]01[10)
[01][00][11]
[00][I I][11]
[I 11[1 II[la]

[01][11][10]
[01][11][11]
[I I][10][10]
[01][11][11]

C3 [01][11][10]

B3
C3

[01][01)[10]
[01][11][10]

B4
C4

[01][00)[Io)
[00][I I ][10]

D3 {[I 1][lI] )2i[10] D4 [I l][10][10]

C3 [00][10][10]

[11][11)[IoI
[00][11][1I]

Di [11][11][10]

C3 [01][10)[ I I ] C4 [00][ I I ][10]

D2 [10][10][10]

E„=1.800+0.150&(3+0+0+0+0+0=2.250

[( I s —, ) )[( lp —, )( ls —, ) ][(lp —, )']
I 2 8 [00][01][I I]

I 8 3 [00][01][11]
0 8, [00][01][ I I ]

0 2 C [00][I I][11)
1 [ool [oI][00)
0 [oo)[oo][ao]

C
B2
B2

CI
C

[00][11)[00]
[00)[11)[11)

B3
C

[00][11][11]
[00][I I][11]

[00][10][I I ]

E, = 1.800+0. 150&(3+0+0+0.040+0+0=2.290
[ooI[11)[11)
loo) [ool [11] C3 [00][11][11] C
[00)[I0][00)

[00][10][I I]
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TABLE I. ( Continued).

Configuration

[(1p—, )(1s 2 )] [(1d—, )(1s 2 )]
I =1, J =4+
B [01][11][02]
I=O, J =4+
C [01][11][12]

1d z-shell dibaryons with the maximum J
E, =(1)+(2)+(3)+(4)+(5)+(6)+(7)

E,= 1.800+0. 150&(2+0+0.375+0+0+0=2.475

Ci [01][11][12] Cp [11][11][02] D [11][11][12]

D [11][11][12]

[(1p—, )(1s 2 )][(1d2 )(1s 2
)]'

I=1, J =5
B [01][02][12]
I =0, J =5
C [11][02][12]
[(1d 2 )(1s 2 )]
I =1, J'=6+
C [02][12][12]
I =0, J'=6+
D [12][12][12]

E„=1.800+0.150+0+0.375 ~ 2+0+0+0=2.700

C, [01][12][12] C, [11][02][12] D [11][12][12]

D [11][12)[12]
E,= l.800+0+0+0.375 ~ 3+0+0+0=2.925

State number N of 1d z -shell dibaryons with the configuration [(1p 2 )(1s 2
)]' [(1d 2 )(1s 2 )]

I=1 I =0
Jga

18
44
44
22

4

27
62
67
49
22

4

12
31
37
29
17
7
1

Jga
10
24
24
12
2

15
35
37
27
12
2

8
17
19
17
9
3
1

Here we make a short comment on the physical impli-
cations of the parameter a, which experimentally takes a
positive value 0.186 GeV and vanishes as the diquark is
excited. In Lichtenberg's model, the excited q system
has a rodlike shape and the parameter a represents the
color-flux energy of the diquark cluster at the ends of the
system. Consequently, the sign of parameter a should be
positive but the magnitude may increase as the diquark
cluster is excited. In the usual shell-model picture, how-
ever, the cluster is enveloped by the system and is formed
by the attractive short-range residual interaction between
particles. Adopting this picture for the diquark cluster
model, the parameter a represents the binding energy of a
diquark cluster in the q system and therefore the sign
would be negative though the magnitude would be re-
duced as the diquark cluster is excited. It is an open ques-
tion concerning the shell-model picture as to why the pa-
rameter a is positive.

III. DYNAMICS OF THE DECAY PROCESS
OF DIBARYONS

In this section we provide a phenomenological analysis
of dibaryon resonances based on the diquark-cluster
model, and develop the discussion with the use of experi-
mental data for the two dibaryons B&(2.14)2+ and

B,(2.22)3 . In the context of the discussion we assume
the existence of the Bo(2.22)3 and adopt the results of
Hoshizaki's analysis. Although this dibaryon has not
been experimentally established yet, it is natural for us to
use the data because it is one of major members of the di-
baryons that are predicted by the diquark-cluster model.
From the phenomenological point of view, we point out
that as a q picture is adopted for dibaryon resonances
there are generally two critical problems concerning the
mechanism of dibaryon decay.

(1) Since a q system is of small size generally, the
emission of a low-energy particle with high orbital angu-
lar momentum is suppressed strongly. This indicates that
the decay widths I for the dibaryons with high angular
momenta and low-Q values are rather small. For two ma-
jor dibaryons B&(2.14)2+ and B,(2.22)3, the experimen-
tal values for I are -70 and —140 MeV, respectively.
These values seem to be inconsistent with the above sim-
ple conjecture. In order to fit the theory to the experi-
ment, the effective radius of the dibaryon should be much
larger than anticipated from mass spectrum data.

(2) The experimental value for I of the B&(2.22)3
is not so small compared with that of the Bt(2.22)3 . In
fact, the I -40 MeV obtained by Hoshizaki's phase-
shift analysis amounts to almost —,

' of that of the
B&(2.22)3 . It is usually thought that the decay of the q
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to the ~NN channel occurs mainly via a one pion-
production process from the 6 in N 6 intermediate state,
with a strong enhancement due to 6 resonance. However,
the large width of Bo(2.22)3 is difficult to justify by this
approach since the NA intermediate state is not allowed
for I=0 cases.

There may, of course, be separate factors causing each
of these two difficulties. In this paper, however, we try to
solve those two problems simultaneously. We are
motivated by a bag-model picture presented by Ui and
Saito recently. They suggested that the deformation of a
bag can take place easily and that the original form of the
bag is preserved by the high pressure of the virtual-pion
field outside the bag which has been discussed by many
authors. We apply this idea to the q system
described by the diquark-cluster model.

Our modeling of the decay process of the q system fol-
lows. Imagine a q system, at first, without a virtual-pion
field outside. The q system immediately starts to
transform and may become a rodlike shape due to centri-
fugal force. It is natural to consider that the quarks
which have moved independently are collected into two
clusters at both ends of this transformed q system. If
both of the end clusters are baryons, the major part of the
color-electric force vanishes and it cannot bring the sys-
tem back to the original state, and the fission of the sys-
tem occurs. In the real q system, however, the pressure
of the virtual-pion field outside operates in this step as a
restorative force and thus the fission of the system is
prevented. But what will happen if a real pion is emitted
from the baryon cluster immediately before the restorative
force operates? It may be that the virtual-pion field is
considerably disturbed and any restorative action is inhi-
bited. The transformation of the system would then
proceed. When the emitted real pion leaves, the virtual-
pion field becomes stable, but the q system does not re-
turn to its original state and ultimately fissions into two
baryons. Pion emission is thus characteristic of the decay
mechanism. The mechanism can be summarized as fol-
lows.

(A) The decay of the dibaryon is initiated by the emis-
sion of a pion from a baryon cluster that is in either of the
two ends of a rod-shaped transformed q system. The q
system then continues to transform until it results in a fis-
sion. There is no direct transition to the channels where a
pion is not involved (NN, Nb, , b, b, channels).

In this picture it is almost self-evident that the above-
mentioned two problems automatically resolve them-
selves. The q system transforms immediately before de-
caying and the distance between the baryon clusters be-
comes large and a pion is not produced by way of 5 but
directly produced from the q .

Assuming the mechanism (A) for the decay of the q,
the transition to the NN channel comes as a secondary ef-
fect. It must occur via the reabsorption of the pion emit-
ted from q by one of the produced baryons. Generally,
the matrix element for the transition to a channel becomes
a strongly decreasing function of the momenta of the em-
itted particles when the system expands as in process (A).
Since the momentum in the NN channel is considerably
larger than the momenta of the particles in the other

channels, the matrix element for the NN channel should
be smaller than the others. This would explain the rela-
tive smallness of I ~~.

Here we briefly explain the phenomenological implica-
tions of the mechanism by which the matrix element for
the NN channel decreases. We take out of the configura-
tion which consists of two baryon clusters 8, and 8,' in
the q system, the relative orbital angular momentum be-
tween B, and B,' is represented by l. The q models can
be classified into two groups with respect to L, the max-
imum value of I. One group involves the B,(2.14)2+ and
B&(2.22)3 corresponding to L=0 and I.= 1, respective-
ly. The other involves the same states but with L=2 and
L =3, respectively. Our diquark-cluster model belongs to
this second group.

The experimental result for the ratio I" /I is quite
small (about 0.2). Since the orbital angular momentum in
the NN channel is L+ 2 in the first group of models,
transition to the NN channel accompanies a change in or-
bital angular momentum. This may be consistent with
the above experimental finding because in such cases the
transition is generally suppressed. In contrast, in the
second group the transition to the NN channel can occur
without the change in orbital angular momentum and
therefore the transition may be superallowed. This con-
tradicts the experimental finding. This small ratio
I ++/I "+~ can only be explained by rather restrictive as-
sumptions concerning the decay mechanism. The decay
mechanism (A) proposed in this paper incorporates these
assumptions.

The next question involves the determination of the ef-
fective interaction V from the process (A), which de-
scribes the dynamic part of the decay process of the di-
baryon. Hereafter the term 4' will be used to denote one
component of the q wave function 4, a two-baryon clus-
ter without internal excitation. The B, and B,' in Fig. 3
represent the baryon cluster that emits a pion and the
spectator cluster, respectively. The momenta of the pion
and the B,' in the c.m. system are q and —h, and the mo-
menta of B„before and after the production of the pion,
are h and h' (=h —q), respectively. Using the momen-
tum representation, the component 4 is written as 4 (h).
We describe the B,-B,' system in terms of the harmonic-
oscillator eigenfunction 1(„~(h) in the momentum repre-
sentation, where n denotes the principal quantum number
of the system. Thus, 4 (h) is given by a linear combina-
tion of 1(j„~(h). Using a parameter Ro which represents an
average separation between B, and B,', 1(„~(h) is written as

Ant(h) =N„tRo

Y((h)(Rob�)

fnt(Ro h )e

(3.1)

where h=h/h, Y~(h) is the normalized spherical harmon-
ics, f„I(x) is the polynomial of x, and N„I is the normali-
zation constant. Throughout this paper, the magnetic
quantum number is omitted.

According to the scheme (A), the effective interaction
V (nl) for Q„I(h) is the product of three factors:

V (nt)=(2') 5 (h'+q —h)X„H (q)g„~(h', h) . (3.2)
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where f &~ is the coupling constant of the P wa-ve vrN, N,
interaction and P(N, ~mN, )[P(b,, ~mN, )] is the opera-
tor which changes the N, (N-cluster) [b., ] state to the P
wave nN, state. The recoil of N, [b,, ] in pion emission is
neglected. Although the ~B,B,' interaction generally ac-
companies the form factor caused by the expansion of B„
this is omitted in formula (3.8). This point will be dis-
cussed further. Strictly speaking the f zz must be dif-
ferent from the coupling constant of a system of a "real"
nucleon and a pion. In the present analysis, however, we
identify the baryon cluster B, with the real baryon B and
use the empirical +XX coupling constant in place of the

xx ~e

(3.10)

C- X

In the diquark-cluster model, the mass spectrum of the
dibaryon is originally given by

Mp ——6m +neo . (3.11)

The difference b, between the mass M of an actual lp —,'-
shell dibaryon and Mp is caused by the strong LS force in
the q system. With the parameters given in Sec. II, 5 is
estimated to be

260 MeV for n =2 [B,(2. 14)2+],
450 MeV for n =3 [8~(2.22)3 ) .

(3.12)

Since the LS force between two real nucleons is rather
weak, it is inferred that the LS force between two baryon
clusters is also weak and the energy for the baryonic com-
ponent 4' in the q wave function 4 is given by (3.11) as
a first approximation.

In the description of (A), it is assumed that the system
transformation occurs easily for the baryonic component

and the effective separation parameter R' may be
close to R which is considerably larger than R p. Upon
an increase in separation, the excitation energy co may di-
minish to co', and formula (3.11) becomes

Mp ——6m +nmz,

where the parameter z ( & 1) is

(3.13)

(3.14)

In the diquark-cluster model, the baryonic component +
occupies a small portion of the q wave function, i.e., only
a few percentage points in probability. However this
small component 4' is enhanced by the above-mentioned
energy reduction because generally the amplitude of a
small component in a state is inversely proportional to the
difference between the proper energy of the component
and state energy as a first approximation. The enhancing
factor P„reflects this mechanism and is given by the ratio
of the energy difference

Mp —M

Mp —M

This can be written as

K
+n

]c—1+z
where

(3.15)

0.43 for n =2,
0.50 for n = 3 . (3.16)

With z=0.7, for example, one obtains enhancing factors
that are quite large:

g2 ——3.2, g3 ——2.5 . (3.17)

Of course, formula (3.15) can be used only if the mixing
probability

~

X„'I'
~

is smaller than unity.
Note that the strong enhancement of the amplitude by

the above mechanism may not occur in the baryonic com-
ponents involving internally excited baryons with n=1.
As pointed out by Isgur and Karl, the energy for the P-
wave excitation of the baryon is unusually large ( —520
MeV) compared with co ( —300 MeV). This indicates that
the energy of the system is shifted higher by -220 MeV
resulting in the strong reduction of 7„. In fact with this
modification (3.17) becomes

X2 ——0.87, g3 ——1.13 . (3.18)

IV. CALCULATION OF PARTIAL DECAY WIDTHS

In this section we outline our calculation of the partial
decay widths 1 "++, I "", and I ++ based on the diquark-
cluster model and decay dynamics presented in the previ-
ous section.

The following approach is adopted in the calculation of
the matrix elements.

(1) The wave function of the system is completely an-
tisymmetrized with respect to the color, flavor, spin, and
space coordinates of constituent six quarks.

(2) The Born approximation involving the S, NN
final-state interaction is adopted.

(3) Complete partial-wave expansion is carried out to
calculate each partial amplitude precisely, involving the
effects of the interference among various processes.

First of all we consider a system which consists of two
baryons with relative momentum k and a pion with
momentum q in the c.m. system. We assume that the
first baryon B and the second baryon B' involve quarks
q I,qz, q3 and q&, q&, q6, respectively. We write the wave
function as

%~( 123,456) = 4&( 123,456)e (4.1)

i
N(123, 456)

i

=1 . (4.2)

The full wave function 0 of this two-baryon system is

where r is the separation between the two baryons, r„ is
the separation of the pion from the center of the two
baryons, and @(123,456) describes the color, isospin, and
spin states of the system as well as the internal motions of
the quarks in the baryons. We antisymmetrize and nor-
malize &1&(123,456) for both of the subsets (q, , q2, q3) and
(q4 q5 q6).
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obtained by the antisymmetrization of 4 (123,456):

'P =XFg( —)4' (123,456), (4.3)

where the summation runs over the set of all possible par-
titions of the six quarks into two subsets of three quarks
each. The factor ( —) is + 1 for even permutations and
—1 for odd ones. As a first approximation each of ten
terms in (4.3) is orthogonal to the others, so that the nor-
malization constant NF is

(4.4)

Adopting the Born approximation, the matrix element
for the production of one pion can written as

(4.5)

where V operates on all possible baryon clusters in 4' .
Because the q wave function %' is antisymmetrical with
respect to the constituent six quarks, each of the ten terms
in (4.3) contributes equally to ~„in (4.5). Therefore (4.5)
becomes

FIG. 4. Coordinate system for q system.

~ =V 10(+R(123,456)
~

V
~
+) . (4.6)

In the following scheme we present the calculation of the
matrix element ~ .

A. q wave function 4

baryon cluster B, and (q4, q5, q6) form the other cluster
B,', provides a nonvanishing contribution in (4.6). To dis-
cuss this we introduce a new coordinate system
(g, r, s&, s2, t&, t2), illustrated in Fig. 4, where r; is given by

where

~( )~ @JJ I) l2 . . l6 ~ "I +~2 + + "6 )/2R
7) P2 'r6 e

(4.7)

(4.8)

As stated in Sec. II, within the quark shell model with
the jj-coupling scheme, we assume the form for the
harmonic-oscillator wave function. The full wave func-
tion can be written as

r3-——g+ —,
' r+ —', s&,
1 2r4=g ——,r+ —,s, ,

1 1 1

r6 0 r s2 t2

(4.10)

(4.9)L =1)+l2+ - . . +l6 .

B. Extraction of the effective component 4' from 4

Among the various components of 4 in (4.7), only the
baryonic component + in which (q&, q2, q3) form a

I

and r; represents the distance of the ith quark q; and its
origin, N is a normalized color-isospin-spin-angular
wave function within the jj-coupling scheme, N, and N,
are the normalization constants for a single term and full
wave function, respectively, l; the orbital angular momen-
tum of q;, and the summation runs over all possible per-
mutation of the constituent six quarks. For simplicity we
assume that none of six quarks is radially excited. The
maximum orbital momentum L in the system is then
given by

With these variables, one can write

g&; =6/ + —&'+ —,(&)'+&2')+ —,(f)'+f2') . (4.11)

1 1

r3 2 r r4. r5 r6 2 r ~ (4.12)

The result can be written as

JJ 1 2The factor 4& r& 'r2 ' r6 in (4.7) is a polynomial of
r; and, among the components of r;, only the vector r is
responsible for the excitation of the two-baryon system.
Therefore, we can extract the effective component %"
from + by the following simple substitution in

I 16'7.
1 2 6

jeff ~ g( )( 1 )L(4 )5/26 L/2C @JJ(r)~ ~ —3/2 — " 0 P
0

(4.13)
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where

(4.14)

L =14+1q+16,

[r( —, )]'r(L, + —', )

r(/, + ', )r(—/, + ', )
.—r(/, + ', )—

1/2

(4.15)

(4.16)

—[6/2+ 2 s
1
2+s22) + ] /2(t l

2+ t22) )/2g 2

Nle (4.17)

and @ (r) is the function of r obtained by substituting r for r; in 4 . The wave function P with the normalization
constant NI describes the spurious motion of the center of mass as well as the states of quarks inside the baryons.

C. Extraction of %' from 4' with partial-wave expansion

(I/SJ:r)f„((r IRO )
Ro

Next we carry out the partial-wave expansion of 4" in terms of the eigenfunctions of the harmonic oscillator 8, —8,'.
The eigenfunctions can be written as

—r /2RQ Ie

Here N (I/SJ:r) represents the color-isospin-spin-angular wave function of the B, B,' system-with an isospin I, orbital
angular momentum 1, spin S, and total angular momentum J within an LS-coupling scheme. The nonbaryonic com-
ponents of +' are automatically eliminated in this procedure, and %" becomes the baryonic component 4 . Taking the
Fourier transform with respect to the relative momentum h of B, B,', the mo-mentum representation + (h) can be ob-
tained. The result is

'0 (h)=(2vr) 6 g ( i) NI(RO f—iI(RO h )(Ro/g)~e O g g e (I/S)&pR (I/Sg::h)p,
s BB'

(4.18)

where the summation with respect to B,B' runs over two baryonic cluster states N, and &, (the subscript c is omitted for
simplicity). The decay strength parameter e (n/S) is given by

e (n/S) =( i )" 'C—
g NLLN„I 'a„~i Z (/S), (4.19)

where a„IL is the coefficient of expansion

X' " = g a„, f„,(X) (4.20)

and

Z"'(/S) =(4~)'"N.g( —)( —1)'f[e"(I/SJ:r)]''e"(r)dn, . (4.21)

In Appendix A we tabulate the values for e (L/S) for
low-lying lp —,-shell dibaryons. Note that, in Eq. (4.18),
there is no contribution from states with n&L. This is
because none of the six quarks in P are radially excited.
We also note that the separation parameter Ro in (3.1) is
given by (4.14).

D. Approximation

The matrix (4.6) can be written as

h=k+ —,
'

q

h'=k ——,
'

q

h=k ——,
'

q

h'= —k ——'q

for the case in which B,
'emits a pion

(as illustrated in Fig. 3),

for the case in which B,'

emits a pion .

(4.22)

m =v 10(%'~(123,456)~ V„ ~i/f )

and expression (4.1) shows that this formula involves the
integration with respect to variables r and r . When this
integration is performed for V

~

4 ), it becomes the
momentum representation V 4 (h), in which two mo-
menta h and h' are

The matrix element (4.6) is expressed as a function of the
isospin and spin coordinates of the two nucleons in the fi-
nal state and momenta k and q. The matrix element for
the transition to each mNN channels is constructed with
this function. This procedure is equivalent to the partial-
wave expansion of V 4 (h) for the final m.NN state, and
the matrix elements are given by the coefficients of the
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series. Operating with V on + (h), each term in (4.18) is
multiplied by V (Ll) as it is a linear combination of
g„i(h). Then each term of V 4 (h) involves the factor

—R h/2
gLi(h', h)fLi(RO h )e

Using expression (3.5) and Eq. (3.4), this factor is approxi-
mately

Since all of the arguments in the exponential function in
V 4 (h) become independent of the angle between k and
q, with this approximation, the partial-wave expansion of
V 4 (h) can easily be performed. As will be shown in
Sec. VI the actual value of Ro /Ri is sufficiently small
(-0.07) so that the error caused by this approximation is
negligible. For this reason, we hereafter adopt the ap-
proximation (4.25).

where

f (X) —x/2 (4.23)

R '(h'+h')
X=

2

Ro (h' —h )
(4.24)

E. Matrix elements for q ~mNN transition
without NN final-state interaction

X-Ri k + (4.25)

Using (4.22), one obtains

X=Ri k + + +Ra kq.

In the case Ro /R
& &~1, the second term can be neglect-

ed and
2

The matrix elements m(lklql, Sk) for q ~irNN transi-
tion are given by the coefficients in the partial-wave ex-
pansion of V + (h) using the normalized color-isospin-
spin-angular mNN wave function N (Ilklql, SkJ:k,q) for
the exit channel. The terms lk and lq represent the orbital
angular momenta of the NN subsystem and of the pion in
the c.m. system. The total angular momentum of lk and

lq is l„ the total spin is Sk . The %X final-state interac-
tion is not taken into account in this step. The result is
given by

m (IklqIP'k) =(2~) ~106 R i e e ' H(lkl I,Sk.k, q),
m qo

where

H(lklql, Sk ..k, q) =2+( i)'NLi&LfL—i(X)G(l„lq1,S„,LI;k,q),

(4.26)

(4.27)

(4.29)

G(lklql, Sk,LI:k,q)= g e (LIS)F (lklql, SI„IS:k,q)+ e (LIS)F (lklqI, Sk, IS:k,q)
5

F (lklql Sk, IS:k,q) = I jdQkdQq(Rib)'[N (Ilklql SkJ:k,q)] P(B,~AN, )N (IISJ:h),
—R02q 2/2

and X is given by (4.25). In Eq. (4.26), the factor e represents a form factor which is related to the emission of a
pion from a quark in the baryon cluster and is calculated with the use of the baryon cluster wave function in (4.17).

Since the factor h'P (IISJ:h) is a polynomial of h( =k+ —,
'
q), the formula (4.29) can be written as

I —lk

F (lklql, Sk, lS:k,q) =(R ik)" R,
2

(Iklql, Si, .IS), (4.30)

where A+ (lkl I,Sk IS) is a con.stant. It should be noted that F (Iklql, Si„IS:k,q) vanishes outside the range

(4.31)0( lk ( l lq l lk + 1

and this simplifies the calculation. The values for 3 (lklql, Sk.lS) for the low-lying ip —,
' -shell dibaryon are tabulated in

Appendix B.

F. Inclusion of the NN final-state interaction

The q ~~NN transition with lk ——0 and Sk ——1 is influenced by the strong S& XX final-state interaction. We take
this effect into account simply by subtracting the deuteron component from matrix element m (Olqlq 1) given in (4.26).

—R 2k2/2
Specifically, for the factor H(OIqlq 1:k,q)e ', we perform the substitution

—R k/2 —R 2k2/2
H (Olqlq 1:k,q)e ' ~H (Olq lq 1:k,q)e ' —

3&& P, (k)Hd(lq. q),
(2nRi) ~

where

(4.32)
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3/2

Hd(lq. 'q) = f P*(k)e H(Olqlq 1:k,q)k dk
(2m. )

i (4.33)

and p, (k) represents the S-wave component of the deuteron wave function in the momentum representation and is nor-
malized as

f i P, (k)
i

k dk =1 .
(2'�)

In this paper P, (k) is taken to be

(4.34)

p, (k) =Ad
1

I 2+y2
1 & 2 3y2 4&P(P+) )

k +P vr(P y)— )' = Qm~B (4.35)

where m~ and B represent the nucleon mass and deuteron binding energy, respectively, and the parameter P is taken as
P= S.87y.

G. Matrix elements for the q ~m.d transition

In the dibaryon with I=1, a transition to the ~d channel can also occur. Neglecting the contribution from the D-
wave component of the deuteron wave function, the matrix element md(lq) for the q ~md transition is given by

md(lq) = j P*(k)m (Olqlq 1 )k dk
(2n )

Using (4.26) this can be written as

(4.36)

Pl~ qo
(4.37)

H. Matrix element for the q ~NN transition

In this section we discuss the q ~NX transition. As previously stated, this process is not a direct transition but is
caused by the reabsorption of the pion into the baryon B which is produced by the transition q ~~NB. The Feynman
diagrams for this process are illustrated in Figs. 5(a) and 5(b). The first diagram (a) in Fig. 5 is of a self-energy type
which involves two intermediate states: ~N and mA. The contribution from these intermediate states to the matrix ele-
ment can be written by the one factor V~ which is independent of the isospin and spin states of the system.

1+3/2
3f~~~ g(h)X. q —R q /2 —A (h —q)2/4Vx=-

2m Rp (2~) q

1

qp+[(h —q) +m~ ]' —(h +m~ )'

32 1+
25 qp+[(h —q) +m~ ]' —(h +m~ )'

Xfrt((R&' —R ')(h q)'+R 'h') .— (4.38)

Since the value of h is much larger than R ' and m„ in the integrand, for the terms that do not appear in the argu-
ments of the exponential functions, we make the approximations

q-h, qo-h .

In this manner V& can be written as

—uP 2$&/2 R )
V~ ——Vpg(h)e

Ro

' I +3/2

XLfLt(R~ h l2), (4.39)

where
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6 f~» 1 1

4~ (Rzm„) Rz
1— h

(h 2+ m 2)1/2+ m
1—32 h

(h +m )' +m
mg —m~+

and

R2 =(R~ +2Rp ) u =(R /Rp)

Using (4.39) the matrix element m~ (lk ) in the first diagram in Fig. 5 can be written as

—(1+u)R 2h2/2
m~'(Ik)=2(2m) v 106 ( i)'R—)+ Vpg(h)XLNL(e (LIS)fL((R h )h'e

(4.40)

(4.41)

(4.42)

where l =lk.
The second diagram in Fig. 5 is of a vertex type which involves a one-pion-exchange potential. According to process

(A), the two baryon clusters in the transformed q system are quite separate from each other when the fission of the sys-
tem takes place. Therefore, the matrix element m&"(lk ) for the process (b) may be negligible in magnitude, except in the
special case when 1=0 (separation between the two baryon clusters is relatively small when the system is in the S state).
Discarding the contributions from the 1&0 states and using the same approximation as in m~ (lk ), one obtains

m~"(lk) =2(2n. ) ~10 6 (u'R &) Vpg(h)X XLpLB(lk)fL p((R &

—R )h )e

where

Rg=QR~ +4Rp, u'=(R2/R4)

and 8 (lk ) represents the kinematic constants which are given below.
For I=1 and J~=2+

(4.43)

(4.44)

B(0)=0, B(2)=—„(—, )'i e (202) ——„e (202) .

For I= 1 and J~=O+

(4.45)

8(0)= ——e" (200)+ e (200), B(2)=0 .
3 15 5

For I=O and J~=1+

8(0)= ——e (201)+ e (201), 8(2)= — e (201)+ e (201) . (4.46)

The total matrix element m&(lk ) is given by

mx(lk)=me'(Iq)+mN (lk) . (4.47)

I. Calculation of the partial decay widths

The calculation of the partial decay widths is straightforward. We define the partial widths and total width at total
energy E by

r ~"(E)=gr ""(I„II,S„:E), (4.48)

I (lklql Sk.'E)= f f 2m5 E 2m& ——
(2m)

rm'd(E) arm'd(1

—qp I
m (1klq I Sk )

I

d q d k (4.49)

(4.50)

I (lq:E)= f 2n5(E 2mz+8 —. —qp) I
md(l )

I

d q,
(2m)

0 q

I ~ (E)=+I (lk.E),

r»(I„:E)= f2n5(E —2(h +m~ )' )
I
m~(lk)

I
d h,(2')

r(E) = r~ (E)+r~d(E)+ r (E)

(4.51)

(4.52)

(4.53)

(4.54)
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in this case). The matrix element M,~(E) for the coupling
between g; and gi at an energy E is written as

M J (E)=Eij — I—i) (E), (5.1)

(a)

where the imaginary part —,
' I;J(E) represents the contribu-

tion from the coupling via the intermediate states. The
real part of (5.1), E;j, arises from the two-body interaction
which is independent of E. The possible contributions
from the virtual intermediate states are neglected simply
because the estimation is very difficult. Hereafter, we use
the n )&n matrix representation for M~&(E):

M11,M12) ~ ~ ~ ) M1n

M21&M22& ~ ~
& M2n

M(E) =[M;J ]=

Mn1 Mn2 ™nn

(5.2)

FIG. 5. The Feynman diagrams for the q ~NN transition.
The solid lines represent three quark subsystems while the shad-
ed region represents the gluon system.

where the argument E is omitted from each of the ele-
ments. E;& and I,J are also expressed in a matrix form:

Eo=[E, ], I (E)=[I,"] . (5.3)

The decay of a q system is described by a set of decay
strength parameters e (LlS). For simplicity, we use a
new notation ek (k =1,2, . . . , m). In B&(2.14)2 +, for ex-
ample, five decay strength parameters are employed to
describe the decay and they are denoted as

The summation runs over all possible states.
The partial and total widths are given by

I vrNN I mNN(M)'

I NN I NN(M)

where M represents the dibaryon rest mass.

V. CALCULATION OF THE 774j AND
NN PHASE SHIFTS ( T MATRICES)

(4.55)

(4 56)

(4.57)

(4.58)

ei ——e (220), e2 ——e (221),

e3 ——e (222), eq ——e (202),

ez ——e (202) .

From (4.26)—(4.28), (4.37), and (4.42)—(4.46), matrix ele-
ments depend on eI, in a linear fashion. Therefore, the to-
tal decay width I (E) at energy E is given by the quadra-
tic form

I (E)= y ykh(E)~k~h ——u~G(E)u
k, h

As shown in Table I the major dibaryons Bo,(2.22)3
are of a single state and another major dibaryon
B~(2,14)2+ involves two states. In the diquark-cluster
model, however, many states ()4) with the same quan-
tum number degenerate to a single energy level in general.
The theoretical analysis of the ~d and NX phase shifts in-
fluenced by the group of these degenerate states may not
be easy, because they may correlate with each other caus-
ing energy shifts and configuration mixing among them,
which in turn change the phase shifts sharply. In this sec-
tion we present one method for calculating the m.d and
NX phase shifts in such a situation.

Let g; (i =1,2, . . . , n) be the n degenerate q states
with the same quantum number, each one orthogonal to
any other. There are two principal mechanisms that cause
the energy shift and configuration mixing among them.
One is the coupling between g; and gj. via the intermediate
states (the ~NN, ~d, and NN states in the present case).
The other is the residual two-body interaction, well known
from nuclear-structure theory (the residual qq interaction

where

[rhk(E) Pkh(E)] (5 4)

and

G(E)= [ykh ] (5.5)

&m

~11~~12~ . . ~ ~1n

~21~ ~22~ ~ ~2n
(5.6)

[~m 1~ ~m 2~ ~ ~mn

We denote the decay strength parameters for g; by ek; and
introduce a m &&n matrix:
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Since this matrix transforms

0

1 (ith)

0

function of four parameters 6oo, ho~, A~o, and A~ &
which

represent the energy shifts of the [(lp —,
' )(ls —,

' )] diquarks
[00], [01], [10], and [11], respectively. The possible re-
strictions imposed on these parameters will be discussed
later. In the following we show the method for calculat-
ing the vrd phase shifts using the matrix M(E).

The S matrix S(E) for the m.d scattering at energy E is
written as

to
S(E)= [S p], (5.8)

and I;;(E) is the total decay width of g; at energy E, it is
evident that the matrix I (E) can be written as

I-(E) HrG(E)H (5.7)

The actual value for y««(E) is easily calculated using the
formula for I (E) obtained in the previous section.

Concerning the residual qq interaction on E,J, we can
say only that very little is known. In this paper we evalu-
ate them with the following assumption: a part of the
color-electric interaction as well as the color-magnetic in-
teraction still remains in the [( Ip —, )(ls —, )] diquarks pro-
ducing energy shifts. Then, the matrix Eo becomes a

I

where a and P represent the states of the exit and entrance
channels. For the case l~=J, s(E) is composed of one
element S» and the phase shift is given by the relation-
ship Sii ——e ' . For the cases l~=J+1, s(E) is a 2X2
matrix. It is convenient to use the T matrix T(E) defined
by

S(E)=I 2miT(E—), . (5.9)

2niT p(—E)=e P 1. — (5.10)

But a quite different expression is used in NN scattering
as will be seen shortly.

Except for the initial- and final-state interactions, the
contribution from t g; I to T(E) is given by

where I represents the unit matrix (Appendix C). The md

phase shift 5 p is commonly defined by an equation

T q(E) , f6(E —2m'+—B—qo) & V V B)o& q
1 1

(2')
(5.11)

where H represents the total Hamiltonian for the g; system (Appendix C). Inserting the identity operator g,.
~ g; ) (g;

~

before and after the energy denominator, (5.11) becomes

T q(E)= ', f6(E 2me+B —qo)—g &a
I

V
I i & 6 i )&i I)V I

)P&d q .
(2n. )' ' z —a (5.12)

Since the Hamiltonian H can be written as MI+M(E) in
matrix representation, one obtains

g)) =([(E—M)1 —M(E)] '(q . (6.12)~ ~

ad(E) = f5(E —2m~+B —qo)d q
1 3

(2~)'
1

qqo . (5.17)

In general, the matrix element for the decay of g; to nd.
channel at energy E is a linear combination of e«;. Then,
one can write

(u
~

V
~

g';)=md(l~)=C «(E)e«;, (5.14)

where /q is the orbital angular momentum of a pion in
state a. Using (5.11)—(5.14), one obtains

T(E)=ad(E)C(E)H[(E M)I M(E)] 'HrCT(E)— —

It should be noted that the partial decay width I (l~:E)
of g; is given by 2nad(E)

~
[C(E)H]~;

~

The T matrix in XN scattering is obtained in almost
the same manner. The factor ad(E) in (5.15) should be re-
placed by

az(E)= f 6(E —2(h +mz )'~ )d h
(2ir )

where

(5.15) 1
ii(ii 2+m 2)1/2

4~
(5.18)

and

C(E)=[C «] (5.16) It is noted that in NN scattering, using two phase shifts
5&(E) and 52(E) and one mixing parameter e(E), the S
matrix is commonly written as
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2i5) i(5]+52) .
e 'cos(2e) e ' ' sin(2e)

(s, +s, ) . 2i52
e ' ' sin(2e) e 'cos(2e)

(5.19)

[ KNN+ [ Kd ( g~y)

In the present analysis, we use a simple method that
directly illustrates [S(E) I—] ~/2i (= —AT ~) by the use
of an Argand diagram. This circumvents the complexity
caused by the difference between the definitions of the ~d
and NN phase shifts.

Concerning the orthogonal set [g; ) in the above discus-
sion, as shown in Table I, the q states g; are classified in
terms of the type of constituent diquark clusters and their
combinations. Although the wave functions q; are not
necessarily orthogonal to each other, the original [q; I, be-
fore antisymmetrization, is an orthogonal set and there-
fore [g;] retains the orthogonal property as a first ap-
proximation. For this reason, we use [r);] in place of
Ig;] to simplify the calculation in the present analysis.
Taking [r); ] as the basis matrix Eo becomes diagonal be-
cause the energy shift of g; from the residual qq interac-
tion is the sum of the AT~ of the constituent diquarks. In
more exact analysis, however, one should construct an
orthogonal set [g;) from [g;] by a linear transformation.

1p

Ip
Rx(f m)

FIG. 6. I +I" in MeV for I=1, J =2+ and 3 states
as a function of R in fm (g2 ——g~ ——1).

VI. COMPARISON BETWEEN EXPERIMENTS
AND PREDICTIONS g2 ——2.4, g3 ——4.8 . (6.3)

Rp ——0.54 fm . (6.1)

This is estimated from (4.8) and (4.14) with the values
m =co=0.300 GeV obtained by an analysis of the di-
baryon mass spectrum. As was expected, quite small
values of I" +++I d are obtained from small R values.
The maximum values are obtained at around R„=1.8 fm
for both B,(2.14)2+ and B)(2.22)3, but they are still
smaller than the experimental values, which indicates that
the factors 72 and p3 are considerably larger than unity.
Hereafter, we continue our analysis in the region of the
optimum value

In the analysis of the 1p —,-shell dibaryons with L=2
and 3, the formulas of partial decay widths I ",I
and I, given in Sec. IV, involve three free parameters
R„, 72, and 73. These parameters are determined by the
use of experimental data for I=1 dibaryons. Although
two states, B and C, are degenerate in B)(2.14)2+ as
shown in Table I, it seems that the general feature of
B)(2.14)2+ is determined solely by the state B, because if
one calculates I ++, I " and the elasticity x of the NN
scattering for B and C separately, the results for C are
only ——, that of B. Therefore, for the time being, we
analyze B,(2.14)2+ simply as a single state B Amore.
detailed analysis is given shortly.

We show in Fig. 6 the theoretical values for r ~~+ r "
as a function of the parameter R „where we set
g2 —g3 —1 and the parameter R p is taken to be

Here we examine the consistency of these values. Consid-
er the generalized baryonic component 4 which involves
internally excited baryons. From the analysis in Sec. IV
the ratio

I

O'
I

/
I

+
I

is estimated to be roughly
6 Cg . Therefore, one obtains

0.27 for B)(2. 14)2+,
I&n I I I '041

These results seem to be quite reasonable, and lend sup-
port to the present analysis. We emphasize that, if one
tries to fit theoretical I s with small R„ to experimental
ones, the absolute condition X„O

I
& 1 is severely

violated. Note that the mixing probability
I
4

I
of the

generalized baryonic component in q is not small, ——,

on average.
The calculated elasticity x ( =I /I ) for B,(2.14)2+ is

0.14 for R =1.4 fm and 0.05 for 1.5 fm. These values
agree with the experimental value -0.10. However, the
theoretical x for B)(2.22)3 is much smaller (only ——,

'
)

than the experimental value, -0.18, for B,(2.22)3 . This
difficulty is caused by the excessively rapid decrease in the

—R A /4
function g(h)(=e ) as the argument h increases.
In order to solve this problem phenomenologically, we as-
sume that the function g(h) involves at least two com-
ponents, one of which is not sensitive to a change in h.
Namely, in formulas (4.42) and (4.43), we modify the
function g(h) using two positive parameters a and P:

R =1.4—2.2 fm . (6.2)
—R 2A 2/4g(h)=Max[e, e ~" ], (6.5)

The parameters g2 and g3 are determined using the exper-
imental values for I" of B,(2.14)2+ and B,(2.22)3
respectively. The results are

where a and /3 are to be determined using the N1V phase-
shift data for B)(2.22)3 . It is true that the above modi-
fication may have some effect also on I "', I ", and Vp,
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but we neglect this in the following analysis. We note
that the partial decay widths I (E) and I (E) for
E &2.22 GeV (2.14 GeV), calculated by (4.26) and (4.37)
are not influenced by this modification, provided that
R & 1.8 fm (2.2 fm), and that the parameter a absorbs
the variation of Vo. Therefore, the results for E &2.22
GeV (2.14 GeV) are correct on the condition that R„&1.8
fm (2.2 fm). We now proceed to show the variations of
the T matrix with respect to the energy E by means of
Argand diagrams. Our calculation employs the formulas
given in Secs. IV and V for the major low-lying dibaryons.
The possible phase change 60 of the matrix elements
caused by the initial- and final-state interactions are not
taken into account in these calculations. Therefore, the
comparison of the calculated Argand diagrams with the
experimental ones should be done with an appropriate ro-
tation around the center of unitarity circle.

We use the notation E, for the theoretical resonating
energy predicted by the mass formula (2.1) and, hereafter,
classify the theoretical dibaryon states by I, J, and E, as
in Table I, in order to distinguish them from the dibaryon
candidates BI(M)J observed experimentally. The num-
ber of the states in each group is denoted by N. The fine
structure of the mass spectrum in each group is illustrated
in next to the corresponding T matrix.

We begin with the analysis of B&(2.14)1+ because the
experimental P& md phase shift is available. Valuable in-
formations can be extracted on the parameter R and en-

ergy shift Az-z and are shown below.

A. I=1, J =1+, E, =2.14 GeV, N=4

where y, C, and b, ( & 0) are the parameters which depend
on H, and Hg, respectively (Appendix D). We tried to fit
the T matrix calculated by expression (6.6) to the empiri-
cal one, but this did not yield satisfactory agreement.
However, a good fit is obtained by the elimination of the
tensor force from Hg which eventually results in an ex-
pression

(6.7)

The parameter 6 is taken to be larger than 40 MeV. With
this expression, the energy shift is given by

oo=~oi =~ii=0 ~&o= —6 & —40 MeV . (6.8)

In this case, two states B] and Bz keep their original
resonating energy E„(=2.14 GeV) while the remaining
two, B3 and C, are degenerate at the energy E, +6&o. We
show In Fig. 7 the T matrix for 5&0

———60 MeV with
R =1.6 and 2.0 fm by means of an Argand diagram
( —~T is illustrated in the complex plane). As will be dis-
cussed shortly, the existing data for the narrow dibaryon

This level involves four states B], B2, B3, and C. The
configurations of these states are given in Table I. The di-
baryon candidate B~(2.14)1+ (Refs. 20 and 21) is as-
signed to this group. Adopting the one-gluon-exchange
potential Hg plus the extra two-body confining potential
H„AT~ can be written as

(6.6)

2 14QeV

2.08

E = 2.11GeV
2 212
3 213
4 214
5 215
6 216

-0.1 0.1

FIG. 7. The predicted md T matrix with I=1, J =1+ for
App= Ap& =Al &

=0, Alp= —60 MeV, and R„=1.6 fm (dashed

curve) and 2.0 fm (solid curve) as a function of c.m. energy E.
The single element —~T~~ ——((S» —1)/2i) is illustrated in the
complex plane. Therefore, the radius of unitarity circle is 0.5.
The fine structure of mass spectrum is illustrated on the right-
hand side. The possible phase change 5p by initial- and final-

state interactions is neglected.

and

A]o= —60 MeV,

(6.9)

in which B] and B3 are shifted to 2.15 and 2.09 GeV,
leaving B2 and C at the original level 2.14 and 2.08 CreV,
respectively. We show in Fig. 8(a) the theoretical T ma-
trices for R =1.8 and 2.15 fm together with the empiri-
cal ones, where the rotation angle 5o in the theoretical dia-
gram is taken to be 13 . The agreement between the two
is much better at R =2.15 fm than at R =1.8 fm, but
even in the poor case there is general agreement. In the
following analysis, we examine both cases, R„=1.8 and
2.15 fm, with (6.9).

The question of whether the double circles illustrated in
Fig. 8(b) really exist or not will be settled only by future
experiments.

B. I=1, J =3, E„=2.25 CzeV, N=1

The dibaryon candidate B~(2.22)3 is assigned to this
single state whose resonating energy is shifted to 2.26
GeV. The calculated NN T matrix contains two positive
adjustable parameters: a and p. The optimum sets of
their numerical values, i.e., the sets giving best fit to the
empirical T matrix for E & 2.26 GeV, are obtained as

a=3.31, P=1.00 (GeV/c) for R„=1.8 fm,
(6.10)

a=2.64, P=3.68 (GeV/c) for R =2. 15 fm .

resonances are well explained with this A&o value. The ra-
pid change in the T matrix at E-2.14 CseV is due to the
small decay-strength parameters of B2, and the reduction
of the decay width of B2 caused by the configuration mix-
ing of B& and B2. The agreement with experimental data
is improved considerably by the following small correc-
tion for Ao] ..

Aoo =6
~ ] ——0, Ao~ ——10 MeV,
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215 0 eV

2 14
B2

2 09

208

2.26 GeV

01 I-

1 T =117 MeV

2 125

3 134

4 142

5 151

P=1.2 GeV/c

2 1.3

3 1.45
4 16
5 1.7

(a)

I

-0.2

indi

01
8

1 T = 53MeV

2 61
3 65
4 66
5 67
6 68
7 77
8 1Q1

9 117

5

01

FIG. 8. Comparison of theoretical and experimental ~d T
matrices with I=1, J =1+ by means of an Argand diagram.
The dashed and solid curves are the predictions for R = 1.8 and
2.15 fm, respectively, with energy shift (6.9), while the dashed-
dotted curve is from phase-shift analysis by Ref. 21. The
theoretical diagrams are rotated by 50 (=13 ) around the center
of unitarity circle. (a) The result for T) 117 MeV ( T: pion lab-
oratory energy). (b) The result for T(117 MeV. There is no
phase-shift analysis for T& 117 MeV.

FIG. 9. The Argand diagram for the NN T matrix with
I=1, J =3 as a function of laboratory momentum P. The
dashed and solid curves are the results for R =1.8 fm, g3 ——4.8,
and R =2.15 fm, P3 ——4.0, respectively, with parameter (6.9)
and 5O

———18'. The dashed-dotted curve stands for the phase-
shift analysis by Hoshizaki (Ref. 14).

C. I=1, J =2+, E, =2.14 GeV, N=2

Candidate B1(2.14)2+ is assigned to this level in which
state B is shifted to 2.15 GeV. The T matrices are given
in Figs. 11 and 12. The small structure observed at 2.14
GeV in the NN T matrix (5o——15 ) and the P-wave, nd T
matrix is caused by C. This C-induced small structure
becomes a prominent circle with I -4 MeV in the I'-wave
md T matrix through the interference with B. At this
point, this structure is not small and careful analysis is re-
quired for ther md phase-shift analysis at 2.14 GeV.

As was expected, the influence of C on the general
features of the T matrix is not important except for the
F-wave, md channel.

Z.d, T1,

The Argand diagrams of the calculated T matrix are illus-
trated in Figs. 9 and 10 where a slightly smaller parameter
g3 —4.0 is taken for R =2. 1 5 fm. In the comparison
with the empirical NN T matrix (50 ———18'), the result
for R„=1.8 fm seems better than for R =2.15 fm case.
But a definite conclusion may not be obtained because the
results for R„=2.15 fm should be corrected in this energy
range for the modification given in (6.5). As shown in
Table II, the decay-strength parameters with l&L vanish
in this state. Therefore, the ratio E (= T1z/T11) for the
~d T matrix defined by Kubodera et al. , is determined
only by the decay-strength parameters and kinematical
constants A (lkl~l, Sk.lS). It is expected to be

E
v3

2
(6.1 1)

It should be noted that this constant reflects the q struc-
ture in the diquark-cluster model and is independent of
the decay dynamics.

O.l- P =1.2 GeV/c

2 1.3
3 1.45
4 1.6
5 1.7

I

0.1

FIG. 10. The predictions for —m. T&~ with I=1, J =3
(5o——0'), where the matrix

T$ ] T]2

represents the m.d T matrix. The subscripts 1 and 2 represent
l~=J —1 and J+ 1 states, respectively. The other elements
T~q(=Tq~) and Tqq are given by formulas T~q ——(~3/2)T~& and

3
T22 4 T$]
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TABLE II. The decay-strength parameter eD (LIS) and factor D~. Unnecessary elements are not
listed.

I J

3 (
2 )1/2
3

eD (331)

—,V 10

e (220)

eg) (331)

5
——( —)

16 1

eg) (221)

eg) (332)

eg) (222)

NA(312)

eg) (202) eD (202)

2+ —( —)
4 1 1/2
3 15

—( —)
2 1

9 15

2
(

1 )I/2
3 5

2( 1 )1/2
3 5

——( —)
2 7 1/2
3 15

——( —)
2 7 1/2
9 15

15( )1/2

——( —)
2 1 1/2
9 15

eD (221) e (222) eg) (201)

]+ Bl

B2

B3

9

——,'v2
—,
' V2

2 2
9

——( —)
2 1 1/2
9 5

2( 2 )1/2
9 5

——( —)
2 1 1/2
9 5

eD (222) eD (200) eg) (200)

1 0+ Bl

B2

Cl

C2

(
8 )1/2
11

—', v2
—,'v2
—,'V2

—( —)
2 1

3 3

2
3

9 3

2
9

——( —)
2 5
3 3

——( —)
2 1 1/2
3 5

4( 1 )1/2
9 15

2( 1 )1/2

—( —)
8
9 3

4
9

(
2 )1/2
3

Eg) (330)

—( —)
2 2 1/2
3 15

eP)(221 ) eg~)(201) eD (201)

0 1+

Cl

C2

—', v 2

—', v2
(

8 )1/2
11

(
8 )1/2
ll

2
3

2
3

—( —)
4
9 3

—( —)
1/2

9 3

4
(

1 )1/2
3 5

2( 1 )1/2
3 5

14
(

1 )1/2
9 15

3
2

(
5 )1/2

—( —)
4 1 1/2
9 3

8
(

1 )1/2
9 3

2.15 GeV

2.14

1 P = 1. 1 Ge&c
1.2

3 13

FICx. 11. The Argand diagram for the NN T matrix with
I=1, J =2+ as a function of P. Dashed and solid curves are
the results for R =1.8 and 2.15 fm, respectively, with the
resonating energy E,=2.14 CxeV and the parameter +2 ——2.4, en-
ergy shift (6.9), and 50——15. The dotted curve is the result for
R =2.15 fm and E,=2.15 GeV calculated dropping the ex-
change term. The dashed-dotted curve stands for the phase-
shift analysis by Hoshizaki (Ref. 14).

At first sight it seems as if there existed non-negligible
discrepancy between theoretical and experimental XX T
matrices. Actual discrepancy, however, may be smaller,
because we have to take into account the effect of the
nonresonant absorption caused by S-wave SA intermedi-
ate state, which may show rapid increase around the XA
threshold, 2.17 CzeV. Incidentally, restricting ourselves on
this part of the XN T matrix, a clear agreement between
theory and experiment would be obtained, if we assumed a
slightly higher resonating energy, E,=2.15 CseV, and, at
the same time, omitted the exchange term m&"(lk) in
(4.47). It is shown in Fig. 11. We, however, cannot adopt
this choice, because of the following two reasons. First,
this modification in E„affects the T matrix with I=1,
J =1+ in an undesirable manner. Second, the omission
of the exchange term makes the clear resonance at 2.14
GeV disappear in the calculated %N T matrix with I=1,
J =0+, and thus makes impracticable the analysis in the
next paragraph, in which we assign one of the four states
with I= 1, J =0+ to a narrow resonance observed at 2.14
CxeV by the Rice-LAMPF group.
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+d s T11

0.2—

1=1, J =2+

1 E = 2.11 GeV

2 2.13

3 2.14

4 215
5 218

INNI

10 2

0.5

~2.15

C
214

2.08

2.02

1 E = 2.Q18 GeV

2 2.Q2P

3 2021
4 2080
5 2.136
6 214Q
7 2.15P

I

—0.1

(a)

1=1, J =2

FIG. 13. Predictions for the NN T matrix with I= 1,
J =0+ (5o——0') as a function of E. The same parameters R,
g~, and ATq as Fig. 11 are used.

I

—0.1

d.Ti2.

0.2—

0.1

1 E = 2.1 30 GeV
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1=1 J =2+

0.1

E = 2.130 GeV
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3 2.140
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5 2144
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IT(; dI I
r = i, a' = O'I

shown in Fig. 13, where two clear defined circles are
found at 2.02 and 2.14 GeV and a structure at 2.08 GeV is
observed. The narrow resonance (circle) with x -0.4 and
I -10 MeV, at 2.14 GeV, is due to C& ~ This resonance
may be consistent with a sharp peak at 2.14 GeV which
was found by the Rice-LAMPF group in their experi-
mental analysis of the Ao. T in pp scattering. In fact, this
peak can be interpreted as a 'SQ pp resonance with x -0.4
and I -20 MeV and is consistent with our result as
shown in Fig. 13. Further support for the existence of
this narrow resonance at 2.14 GeV comes from the invari-
ant mass experiments of the dp~(np)p breakup reactions
by Siemiarzuk et al. , in which they found narrow, two
nucleon enhanced peaks at 2.13 and 2.02 GeV. Of course,
the partner at 2.02 GeV can be assigned to the large (nar-
row) resonance C2 at 2.02 GeV as shown in Fig. 13. The
effect of B2 on the NN T matrix is small and observed as
a structure at 2.08 GeV.

Concerning the T matrix of the md channel (Fig. 14), a
prominent B2 resonance with I -30 MeV is observed at
2.08 GeV. A relatively large elasticity xd ——0.2—0.3 indi-
cates a strong coupling of B2 to the ~d channel, and the

FIG. 12. Predictions for the m.d T matrix with I=1, J =2+
(50 ——0') as a function of c.m. energy E. Case (a) shows —AT»,
(b) —vrT2p, and (c) —mT)2 (= —m. T2)).

0.5- E = 2.06Q GeV

2 2.Q8Q

3 2. 102
4 2, 130
5 2.140
6 2.1 7Q

7 2.260

D. I=1, J =0+, E, =2.14 CseV, N=4

Four states B&, B2, C&, and Cz are involved in this lev-
el. One state C& stays at E=2.14 GeV while B&, B2, and
C2 are shifted to 2.15, 2.08, and 2.02 GeV, respectively.
The predicted Argand diagram for the NN T matrices are

0. 1

FICx. 14. Predictions for the ~d T matrix with I=1, J =0+
(50——0'). The same parameters R„,g2, and b Tq as Fig. 11 are
used.
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mixing probability of the B2 n component in He may not
be small. Therefore, dibaryons Bz should be produced in
large numbers in the reaction

He+ p ~d +B2

via a neutron pickup from the B2 n component. The nar-
row peak at 2.12 GeV with I -50 MeV, observed in the
missing-mass experiment ( He + p ~d + anything) can
be interpreted as the production of B2. We remark that
the observation of B2 by XN invariant-mass experiments
may be difficult as B2 has a small x value ( -0.05).

E. I=O, J =3, E, =2.25 GeV, N=1

INN. Tii
I

0.5-
A2-

r=o, j'=&

4) ~2.16 GeV
2.15

C2 208

2.14 GeV. The T matrix is illustrated in Fig. 16. The
large resonance at 2.08 GeV with I -20 MeV is caused
by Cz. The relatively small resonance at 2.14 GeV with
I -10 MeV is dominated by C&. %'e emphasize that
these two resonances have sufficiently large elasticity and
moderate I value and, therefore, they should be observ-

Candidate Bo(2.22)3 is assigned to this level, which is
composed of a single state, as its partner B r(2.22)3 . The
T matrix is given in Fig. 15. Our theory predicts the fol-
lowing values for the partial decay widths:

I =40.8 MeV and I =7.7 MeV for R =1.8 fm,

(6.12)

I =20.5 MeV and I +~=4.0 MeV for R =2.15 fm.

These values are consistent with Hoshizaki's results

I —50 MeV and I ++-6 MeV,

obtained by a phase-shift analysis. It is easily seen from
(4.42) and (4.53) that the ratio of the I s for Bo(2.22)3
and B r(2.22)3 equals the square of the ratio of the corre-
sponding decay-strength parameters. Namely, the present
model predicts

I (B (222)3 )/I (B,(2.22)3 ) =, . (6.13)

Note that this ratio reflects the q structure of the
diquark-cluster model as the parameter e given in (6.11).

F. I=0, J =1+, E, =2.14 GeV, N=4

{a)

(b)

Q3

1 E = 2.070
2.080

3 2.088
2.118

5 2140
6 2.145
7 2156

1 E= 2.050 GeV

2 080
2.088

4 2]40

0.5

This level involves four states A&, Az, C&, and Cz.
The resonating energy of A~, A2, and C2 are shifted to
2.16, 2.15, and 2.08 GeV, respectively, while C& stays at

fNN, Ti2
I

1=0, J =3

2.25 GeV

1 E=223 GeV

2 224
3 2.25

2.26
5 227 FIG. 16. Predictions for the NN T matrix

1 E= 2050
2 2.080

2.088
4 214O

-01 0.1

Tl I Tl 2

T21 T22

FIG. 15. Predictions for the NN T matrix with I=0,
J =3 (5O ——0 ). The same parameters R„,g3, and 6» as Fig.
9 are used.

with I=O, J =1+ (5o ——0'). The subscripts 1 and 2 represent
Ik ——J —1 and J+ 1 states, respectively. Case (a) shows —~T»,
(b) —vrT22, and (c) —m.T» ( = —m. T&l ). The same parameters
R, gz, and hTq as Fig. 11 are used.
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able in the experiments of np scattering which has started
in LAMPF.

As shown in Fig. 2, several observable 1p —,-shell di-
baryons remain in the energy region 2.10—2.30 GeV.
These dibaryons involve many states ( ) 10) with the same
quantum numbers in a narrow energy range and extremely
careful and sophisticated analysis is required. Our
analysis will appear elsewhere.

Three groups of q states with I=1 and J =2
1,0 having configurations [(1s —, ) ] [( lp —,

'
)( ls —,

' )],
[(lp —,

' )(ls —,
' )], and [(ls—, ) ][(lp—, )(ls —,

' )][(lp—, ) ], are
distributed over a range 2.19—2.29 GeV for J =2, and
2.13—2.29 GeV for J =1 and 0 . The ~d and NN T
matrices influenced by these q states likely have a very
complicated structure. In fact, all of the experimental
phase shifts for the J =2,1,0 channels exhibit com-
plex structures. The existence of two dibaryon candi-
dates with J =2 at -2.19 GeV suggested by Yoko-
sawa ' and the one at 2.32 GeV suggested by Hoshizaki
may reflect this situation. The diquark-cluster model
predicts that similar complex structure will be observed in
the T matrix of 'P& NN scattering, because this channel is
under the strong influence of a group of q states with
I=O and J =1 distributed in the range 2.13—2.29 GeV.

When many states with the same quantum numbers ex-
ist in a narrow energy region as in the above cases, under
some circumstances, a clear resonating state with a nar-
row decay width can be produced by the mixing of dif-
ferent configurations. The narrow dibaryon candidates at
2.19 GeV with I -50 MeV and at 2.24 GeV with I -32
MeV, observed in missing-mass experiments with light nu-
clei, can be interpreted as one of these special resonating
s:ates.

We point out that, in a family of 1d—,'-shell dibaryons
with I=O and J =4+,3+, . . . , 0+, E, =2.475 GeV, and
the configuration [(lp —,

'
)( ls —,

' )] [( ld —', )( ls —,
' )], the

members with J =3+ involving a [10] diquark can be in-
terpreted as Bo(2.38)3+ because their rest mass is shifted
by b, &0 ( ——60 MeV) and it becomes close to -2.38 GeV.

In conclusion we note that the diquark-cluster model
seems to be successful in reproducing the general features
of the dibaryon spectrum involving the partial decay
widths.

VII. CONCLUDING REMARKS

Utilizing a semiphenomenological approach for model-
ing the decay dynamics of dibaryons, we were able to gen-
erate predictions for the ~d and NN T matrices.

With the diquark-cluster model, we have succeeded in
reproducing the experimental T matrix for a narrow di-
baryon B&(2.14)1+ coexisting with a broad B,(2.14)2+.
The calculated partial decay widths for Bo(2.22)3 are
quite consistent with Hoshizaki's results. We remark that
the diquark-cluster model can predict the existence of the
narrow dibaryon resonances at 2.02 and 2.13 GeV found
by Siemiarzuk et al. , and the one at 2.12 GeV found by
Tatischeff et al. , as well as the one at 2.14 GeV suggested
by the Rice-LAMPF group. In future experiments, con-
firmation of the existence of the narrow dibaryons with
I=O and J =1+ at 2.08 and 2.14 GeV should be the
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APPENDIX A: DECAY-STRENGTH
PARAMETER e (LlS)

In order to calculate the e (nlS) in (4.19), one must
look more closely at the expression of Z (IS) given in
(4.21). The wave function N can be written as

=N, (12,34, 56)@,(l(lp l6), (Al)

where @,(12,34,56) and 4&, (l&l2 . . l6) are normalized
color and isospin-spin angular wave functions, respective-
ly, of the q system as illustrated in Fig. 1. The subsets
(q~qz), (q3q4), and (q&q6) form three diquarks d, , d2,
and d3, respectively. Because the N, (12,34,56) is an-
tisymmetrical with respect to the exchange of the two
quarks involved in a diquark, as well as for the inter-

,change of the two diquarks, formula (4.7) can be written
as

4= N g'( —)N, (12,34, 56)@,(12,34, 56),

N =N, /N.

where

(A2)

(A3)

ical goal of diquark-cluster model analysis. Further pre-
cise experimental analysis of the P&vrd phase shift at
around 2.08 GeV and the 'So pp phase shift at 2.02 and
2.14 GeV may provide other tests for the diquark-cluster
model. We have found phenomenologically that, by the
elimination of the tensor force from the one-gluon-
exchange qq interaction, a favorable expression for the en-
ergy shift AT& in the P-wave diquark is obtained. The
reason why the tensor force vanishes in the P-wave di-
quark is a theoretically open question. Concerning fur-
ther analysis, in Sec. II we concluded that the major
high-lying q states (above 2.3 GeV) are a series of 1 d —,-

shell dibaryons. Our task is, of course, to calculate the
partial widths of these ld —', -shell dibaryons as well as the
remaining minor p —,-shell dibaryons. An important
difference between the reactions with energy below and
above 2.3 GeV may be the relative weight of any two-
pion-production processes. In the present analysis, we as-
sumed that the transformation of the q system proceeds
via a one-pion emission from a baryon cluster until the
fission of the system occurs. But what will happen with a
two-pion emission from baryon clusters? If the spectator
baryon cluster B,' in Fig. 3 emits the second pion, it may
also take part in the system transformation. This implies
that the two-pion-production processes of a q system are
not simple replications of the one-pion-production pro-
cesses and a more sophisticated analysis is required. We
will discuss this problem in a forthcoming paper.
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A (lklql, Sk.31)

TABLE III. Coefficients A (/klql, Sk ..lS). Unnecessary elements are not listed.
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TABLE III. (Continued).
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I1 12+,(12,34, 56) =N, N, g" ( —) "&b,(l, 1, . l, )r, 'r2' r, 'e (A4)

The summation g runs over all possible permutations which produce different partitions of six quarks into three di-

qua«s. The summation g" runs over the possible interchange of diquarks d, , dz, and d3, and also the exchange of two

quarks involved in a diquark. The factor ( —)" is + 1 for even permutations of d~, dz, and d3 and —1 for odd ones, be-

ing independent of the exchange of two quarks in a diquark. The normalization constant N, is determined by a condi-
tion

f ~+,(12,34, 56)
~

d r~d r2 d r6 —1.
On the other hand, the wave function @ (IlSJ:r) can be also written as

C&ss (IISJ:r)=&0, (123,456)N, (IISJ:r),

(A5)

(A6)

where @, (123,456) and &1&, (IISJ:r) represents normalized color and isospin-spin-angular wave functions, respectively.
Calculating (4.21), with use of expressions (A2) and (A6), among 15 terms for the summation g, nine of those produce
an identical result and the remaining six terms vanish. By a simple calculation, one obtains

(123,456)
~
@,(12,34, 56) ) =-

v'3

Therefore formula (4.21) becomes

Z (lS) = —3v 3N N, g" ( —)"(—1) f [4&, (IlSJ:r)] N, (l, l~ 16.r)dfl, ,

(A7)

(A8)
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where @,(l&l2 . l6.r) is a function of r obtained by sub-
stituting r for r; in 4, (l, l2. I6). Because the 15 terms
in (A2) are orthogonal or nearly orthogonal with each oth-
er, all values of X are equal or nearly equal to I/V 15.
Therefore, in actual calculation, it is convenient to use the
quantities

D~ v15——N
ep (nlS)=e (nlS)/D~ .

(A9)

(A10)

The e~ (LIS)s for the lp —,-shell dibaryons calculated

by formula (A10) are tabulated in Table II together with

Dx

APPENDIX C T MATRIX

APPENDIX B TABLE OF COEFFICIENTS
( lk /q /, Sk./S )

The coefficients A (tkl~l, Sk.lS) in formula (4.30) for
major 1p —,-shell dibaryons are tabulated in Table III.
Note that the calculation of partial decay widths is simpli-
fied remarkably by the use of expression (4.30).

S =1—2miT . (C2)

From unitarity property SS = 1, it follows that

T —T = —2niTT (C3)

The T matrix T ~(E) for exit channel a and entrance
channel Il with energy E; =E is obtained from T~; by
means of the partial-wave expansion. The result is

7' p(E)=
& f 6(Ef—E)&a

i
VQ+

i
P)d qf, (C4)

1

(2'�)'

where &a
i

VQ+
~
P) represents the element for the chan-

nel a and P in the partial-wave expansion representation
of the matrix element &qf ~

VQ+
~
q;) using the normal-

ized color-isospin-spin-angular wave functions. The ex-
pression (5.11) is obtained by the application of formula
(C4) to vrd resonating scattering with interaction V put-
ting qf ——q and Ef ——2m& —B+qo.

in final and initial states, respectively. Note that the 5
function in (Cl) is dropped in conventional definition.

With definition (Cl), the S matrix is written as

In the scattering between particles 3 and B, we adopt
the definition of T matrix as

Tf o(Ef E. ;
——)&qf

~

—VQ+
~ q; )

0+ =1+ V,1

E —H +is

(C 1)

where V and H represent the interaction between 3 and B
and the total Hamiltonian, respectively, qf (Ef) and q;
( E; ) are the relative momenta (energies) between A and 8

APPENDIX D: ENERGY SHIFT hz-s

In this appendix we calculate the energy shift A~q of a
[(lp —,

'
)( ls —,

' )] diquark with isospin T and spin S assuming
that b, z-q is derived from a qq two-body Coulombic in-
teraction Hg, and the residual central qq force H, (the ex-
tra confining potential). Denoting the constituent two
quarks by 1 and 2, Hg and H, can be written as

2
Hg ————,a,S12,

1S12
7 2m

(pt'p2) r (r pt)p2+
7

3

8m. 1

~
5 (1)sl's2 —

2 ~ [(rXP&) s& —(rXp2) s2]
3m 2m 7

1 1

m 7

[(rXP&).sz —(rXp2) s&]-
m r

3(s, .r)(s2 r)
r2

—S1'S2 (D 1)

4
(D2)

&» ——&H, )+&H, ) . (D3)

where r represents the separation between quarks 1 and 2,
a, is the effective gauge coupling constant, and y and C
are free parameters. The energy shift Azs is given by

where y and C are the parameters which depend on y and
C.

We present here one interesting modification of expres-
sion (D4). Eliminating the tensor force in (Dl) and taking

By a straightforward calculation, one obtains an expres-
sion

y= — —1
15

m 2(mR)
(D6)

~rs = —
24 b [1—y( —1) + ][1+2(—1) ]+C,

1 /2
4 2 m

as
(mR)

D4)

(D5)

with an appropriate value for C, one obtains

~rs= ——[1—( —1) ][1+(—1) ] .
4

(D7)
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For R =m ' and 6=60 MeV, the value of a, and y be-
comes

a, =0.564 and @=1.3 . (D8)

Since the qq confining potential for co=m is given by

4 m r, the extra confining potential is nearly equal to the

original one. This result may be reasonable because, from
the analysis of I'-wave excited baryons, it can be inferred
that a strong extra confining potential exists in the n=1
excited diquarks. In fact, if one tries to reproduce the
large empirical angular frequency co=520 MeV for P-
wave baryons by including extra confining potential (D2),
one obtains y =2.0.

We denote the dibaryon candidate by Bl(M)J where M, I, J,
and P represent the dibaryon mass in GeV, isospin, spin and
parity, respectively.

2See, for example, A. Yokosawa, Phys. Rep. 64, 47 (1980); A.
Svarc, in Particles and Nuclei, proceedings of the Tenth Inter-
national Conference, Heidelberg, 1984, edited by B. Povh and
G. zu Palitz (North-Holland, Amsterdam, 1985) [Nucl. Phys.
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