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Further remarks on particlelike solutions in spinor-connection theory
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In a recent work the author presented a numerical solution for a neutral pionlike particle in

spinor-connection theory. Here, using a more analytical approach and an improved numerical
method, that solution is studied in greater and refining detail. A new solution for an electrically
charged pionlike particle is also given. The results obtained suggest that the electromagnetic and
strong-field coupling constants are closely equal.

I. INTRODUCTION

2~ B)dy =l, (1.2)

is not given any quantum-mechanical probabilistic inter-
pretation. Rather, this condition expresses just the classi-
cal Maxwell-type requirement that the source of the
short-ranged J& field is a "strong" charge q~&~. Likewise,
the value of the mass factor 8 in (1.1) apparently cannot
be determined by a quantum-type energy-eigenvalue prob-
lem.

In EP, attention was concentrated on the energy-
conservation requirement of general relativity. This re-
quirement states that there exits a conserved mass AMp

say, of the form

The field equations of spinor-connection theory have
been given previously' and an exact solution has been
found in the cosmological case. A numerical solution
has been given for an electrically neutral, spinless particle
which exhibits a short-ranged "strong" field, i.e., a neutral
pionlike particle. ' However, that numerical treatment
masked several interesting physical properties of the
theory which are set out here.

For ease of reference we shall refer to that earlier pa-
per' as EP. The symbols and notations used here will be
the same as those in EP. Thus the field equations of the
theory are EP(3.3)—EP(3.6).

As a preliminary remark, an essential requirement of a
true particle solution is that the rest mass of the particle
should be uniquely specified by the solution. In spinor-
connection theory there is a fundamental mass Mp, which
via Eq. EP(3.11), sets the scale of length of the geometry.
Accordingly the rest mass mp of any particle admitted by
the theory should have the form

mp ——OMp,

where 0 is a definite dimensionless number.
Now spinor-connection theory is not, in any conven-

tional sense, a quantum theory. For example the normali-
zation condition EP(4.43) imposed on the spinor-tetrad
field g in EP, namely,

where A, is a constant and U is the pseudoscalar energy
density of EP(4.55). Using the field equations, the three-
space volume integral (1.3) may be expressed as an in-
tegral of the interior and exterior metric, spinor, and
'strong" fields of the particle. This integral is

X= f "Day, (1.4)

where y is the radial marker EP(4.25) and the linear ener-

gy density D is by EP(4.57),

J trf 3A 2

D =8trf )g) + K,B, —
y p& 32y

, &iQi+2~f i(1 —fi')
y

(1.5)

We expect that an acceptable solution should give a fi-
nite integral in (1.4), which places severe restrictions on
the functional form of the fields appearing in (1.5) as we
approach the deep interior (y~O) region of the particle.
But we can give no solution at all without specifying ini-
tial values for the fields in the far exterior (y~ oo ) region.
With regard to the metric field functions f, and g, in
(1.5), there seems to be no reasonable alternative to impos-
ing the exterior Schwarzschild solution g & f&-—
=1—p(8my) ', for a Schwarzschild mass pMo, as was
done in EP. With regard to the spinor, torsion, and
"strong"-field functions P~, Q~, B~, A&, J&, and K& in
(1.5), these must tend to zero in the exterior region. How-
ever, the manner in which these functions tend to zero de-
pends on how the field equations are scaled with respect
to the expectedly very large constant T of EP(3.16). The
scaling chosen in EP, namely, that given by
EP(4.25)—EP(4.28), appears to be the most obvious and
simple scaling and it is retained here.

Having now chosen the Schwarzschild solution for a
mass pMO as the exterior metric field solution, Eqs. (1.3)
and (1.4) raise a question which was not given due con-
sideration in the numerical solution of EP. The pseudo-
scaler density U of (1.3) is expressible in terms of the
metric tensor g„„alone by EP(4.55). Because of this the
integral (1.4) takes the simple form A, =X(oo)—X(0),
where

2

AMp —— g" d x,8~G„gg4~,.
(1.3) X(y)=8m (f~ —1), =D .y8 i 2 dX

ft dy
(1.6)
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Evaluating now X( oo ) with the use of the Schwarzschild
solution, we get the identity

p —X(0)=A, . (1.7)

The equivalence principle might seem to suggest the
equality of the Schwarzschild mass pMO and the con-
served mass AMO of (1.3), or equivalently to require that
the function X(y) of (1.6) vanish at the origin y =0 due to
(1.7). This circumstance is true, for example, in the case
of the interior Schwarzschild solution for a neutral
sphere of perfect fluid. However, the charged-particle
solution in EP does not have A, =iu, with X(0)=0. The
equality A, =iu, was tacitly assumed at EP(4.56) and subse-
quently used to numerically determine the supposedly
unique result p = 1.3 for a solution satisfying the normali-
zation condition (1.2). But, from EP(4.59), we find that
although X(0) is small, of order 10, it is not zero.
Thus the stated result in EP does not express a true parti-
cle property. Instead it gives a measure, by way of (1.7),
of the global inaccuracy of the numerical computations
which were carried out.

The purpose of the present paper is to study EP-type
solutions in analytical detail. It is shown that X(0) must
be nonzero and further that the normalization condition
(1.2) cannot be satisfied unless the Schwarzschild mass
pMp is such that p (p,„, where the value of p,„de-
pends on the magnitude of the "strong" coupling constant

qi ii (4') '. Similar results are found for an electrical-
ly charged particle, for which the electromagnetic cou-
pling constant is known to be very close to, 37 .

Concerning the three mass descriptor 0, p, and A, ,
presumably the rest mass OMo of (1.1) is the inertial mass,
while pMp is the gravitational mass. Accordingly, we
take O=p. Regarding the mass A,Mp, it is known that its
defining integral (1.3) presents quite formidable problems
of interpretation. The function U, besides possessing a
pseudoscalar character, admits no unique expression.
Thus the function X(y) of (1.6) likewise has no unique ex-
pression. For this reason, in this work no intrinsic physi-
cal significance will be ascribed to the value of A, other
than that it should be finite. However, the precision to
which the identity (1.7) is satisfied provides a useful moni-
tor of the accuracy of numerical computations.

In order to fix a particle mass we make a hypothesis
which seems to be reasonable from a classical viewpoint.
This hypothesis is that for a given charge, the mass of the
particle is such that the charge to mass ratio has a
minimum value, i.e., the mass is fixed by the cutoff value

p,„for a normalized solution.
For the electrically charged particle we find, using the

known electromagnetic coupling constant, that

p,„=2.18. Identifying this particle as a charged pion we
obtain T=7&10, which is about three times the value
estimated in EP. Similarly, the fundamental mass Mo
turns out to be roughly half the p-meson mass, down by a
factor of about 2 on the value in EP. Identifying the neu-
tral particle as a neutral pion, the cutoff p,„ for this
solution should be about 97% of that for the electrically
charged solution. This is possible if the electromagnetic
and strong field coupling constants are closely equal, rath-
er than differing by a factor of 137 as was assumed in EP.

II. NEUTRAL PIONLIKE PARTICLE

The equations to be solved are, from EP(4.31) to
EP(4.36), with the prime denoting d/dy,

figi Ji
(2.1)

'V

fi B), (2.2)

K) ———

fi~i 1 fi 3 &i

y 2gi 16y2

fiQi 1 fi 3 &i
1

3' 2 gi 16 y
1 2 1

(2.3)

(2.4)

fi(1 —fi ) f, J, fi & 3~i Ki jgifi= +, +
2y 2y g &

16 32y y

gi(1 —fi') g if i'Ji'
2y 2y

(2.5)

fi y 3Ai+
g) 16 32y"

KiBi
2

fi'&iQi

4y 2
(2.6)

where the torsion and spinor intensity functions A
&

and
Bi are, by EP(4.37),

Ai ——8i Pi +Qi——2

and by EP(4.49), the constant y is given by

1

8&m.a '

where
2

9'(
& )

4m'

(2.7)

(2.8)

(2.9)

is the coupling constant for the "strong" charge qiii. We
do not assume, as was done in EP, that a is unity.

For large y the system (2.1)—(2.6) has the solution

(2.10)

2—a 2 p 231+— + +, (2.11)
32@ y 3 8~y 48 8~y

J, = 1+V+ P
2 I 23

16yy 8' 24 8' + ~ ~ ~ (2.12)

P) —— a 3 p1+— + ~ ~ ~

192y2y 2 2 8~y
(2.13)

Q, =—1+— +a 1 p 5

y 2 Sly 16 8~y

2

+ ~ ~ ~ (2.14)

lim Ji ——Ji(0)= —1

y~p 327TQ
(2.15)

where a is a constant. On the other hand, as y~0, we
have, as in EP, that
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We can obtain a semianalytic global solution provided
that the constants a and a y

' are small enough to ensure
that the "exterior" solution (2.10)—(2.14) holds good until
we approach close to the Schwarzschild radius at y =g,
where

1z» z
to '9

Under these circumstances Eq. (2.5) becomes

(2.27)

p
g 0

8~
(2.16) fi=

2y
1— 1

(2.28)

To investigate the solution as y ~g we set

y —g=e&0
so that, for small e, Eq. (2.10) requires

' 1/2

gi=fi

(2.17)

(2.18)

Equations (2.13) and (2.14) show that Q~ &&P~ for large
y. Evidently this same inequality holds good as y ap-
proaches q provided

while (2.6) becomes, neglecting the P~ Q, term,

11+
to gi

The previous two equations give

df i f i to'gi' —1

dg& gr to g~ +1
which has a solution

(2.29)

(2.30)

a (192y g) ' « 1 . (2.19)

With this condition, combining (2.3) and (2.4), the exact
equation

tp
2

g& to+1
(2.31)

Returning now to the g~ Eq. (2.29), we obtain, with
(2.31),

(2.20)

B&—boexp[ ——,(rig)' ],
so that, for small e,

PiPi+QiQ'i = — (Qi' —Pi')

becomes, because of (2.7) and (2.18), ,
' B', =—B—,(qc)

Therefore

gitp 2

2~ (to'g i'+1)
which has a solution

to g, —1+in(g& to )=to 1n(ylg)=to-
rl

Equation (2.33) shows that, for small e,

(2.32)

(2.33)

B)—bp .

As an indication of the value of bo, Eq. (2.14) gives

bo-3(a lq)

(2.21)
1

g
tp

and hence, from (2.31),

(2.34)

For the behavior of J, as @~0, Eqs. (2.2), (2.18), and
(2.21) give J'~ —rjbo(16ye) ', so that J, varies as inc.
Substitution of this J~ behavior in (2.1) shows that K'~

also varies as in@. Consequently, for small e,

K)-kp, (2.23)

where as an estimate for this negative constant kp, Eqs.
(2.8) and (2.11) give

tpfi=
2

(2.35)

Most importantly, Eq. (2.35) fixes the maximum value of
f, since, according to (2.28), f'~ is zero. Moreover, as this
maximum value must exceed unity, Eq. (2.35) establishes
an inequality which is also most important in the sequel.
This inequality is

ko- —4~a (zg2 —2 (2.24) tp&2. (2.36)

1

tp
2

with

Focusing attention now on Eq. (2.5) for the metric
function f, , this equation can be integrated when the tor-
sion (A~ ) term dominates over the J, and K~B& terms.
For this purpose we set

3bp
(2.25)

256'
1

tp (2.37)

Proceeding now inside the Schwarzschild radius with
y (g, g& drops down quite sharply, with g'&/g& exceeding
y

' according to (2.32). Neglecting g~ to in comparison
with unity, Eq. (2.31) then gives

and

tp

kpbp

8
(2.26) as a reasonable approximation at y (g. To find the func-

tional form for f& in this vicinity we use (2.5) with
f, g, =f, to according to (2.37). Evaluating the tor-
sion term by (2.25), Eq. (2.5) then becomes
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fl 1, to'
+ (fi' —1)=

fi 2y 2y
(2.38)

which can be solved by partial fractions to give, for y & g,
t ~+1(tp'+ l)y ' '

to +1 '0 +
y

' +(3+4tp )rI'
(2.39)

where the constant of integration in this solution has been
chosen so that Eq. (2.35) holds at y =g.

Considering now the deeper and central regions y~O,
Eq. (2.39) indicates

( ]O2+ 1)/2

(2.40)
7l

where F is a positive constant. Thus, from (2.36), f,
tends to zero faster than y . To determine the behavior
of g„Eqs. (2.5) and (2.6) combine to give

=fight
J 2 fiPiQi

4y
(2.41)

Equation (2.41) allows the solution, as y~O,

ygi =const=
tp

(2.42)

X(0)=-
tp

(2.43)

and hence @&A, in Eq. (1.7).
Looking now at the spinor field equations (2.3) and

(2.4) for P, and Q&, the only significant term on the
right-hand side of these equations is the torsion (B,=A, )

term, with B& itself being a constant as y~O by (2.20)
and (2.40). Taking B&-bp and noting (2.42), the solution
1s

P, =bo'"cos(apl ny+yo),

Qi =bo'"sin(ooiny+yo)

3bptp

32~
'

(2.44)

(2.45)

(2.46)

with Pp being a constant. The remaining field equations
(2.2) and (2.1) for J& and K~ are now solved by

—1J1~
32&r

0 bpy1—
'77

(2.47)

t ~ —1

K) —kp+O(y ' ), (2.48)

where the constant term in (2.47) is chosen to meet the re-
quirement (2.15) for J, (0).

The solution (2.40)—(2.48) has the same form as the nu-
merical solution for y~O given in EP. However, here the

since in this circumstance g1 tends to zero faster than

y
~ and, as we will shortly see, the J& and P&Q& terms

on the right-hand side of (2.41) are negligible. The value
of the constant in (2.42) is chosen so that (2.37) holds at
y (g. It follows now from (2.42) and (1.6) that the func-
tion X(y) tends to the nonzero limit

constants which appear in the solution are subject to new
and physically very significant constraints which originate
in the now know behavior of the fields in the vicinity of
the Schwarzschild radius at y =g. To see this we next in-
vestigate the normalization condition (1.2). Neglecting
the small contribution made to the normalizing integral in
the exterior region y & g, we have, from (1.2),

-fi ~to 2

2m f Body=2m J bpy dy=l (2.49)

by use of (2.42) and (2.21). By application of (2.25), Eq.
(2.49) requires

16m
g tp —1.

V3
(2.50)

Recalling now the fundamental inequality to & 2 of (2.36),
Eq. (2.50) gives g & 0. 13. Hence, by (2.16)

p (3.3 (2.51)

The inequality (2.51) does not imply that the maximum
mass consistent with the normalization condition is in-
dependent of the value of the "strong" field coupling con-
stant a of (2.9). This is because our solution is not valid
unless both of the conditions (2.26) and (2.27) are satisfied
for y )g. Now the condition (2.27) is already satisfied by
virtue of the normalization requirement (2.50) together
with (2.47) and (2.34). However the condition (2.26) im-

poses a further new restriction on p and a. To obtain
this, notice that from (2.22) and (2.24)

—kpbp

8 6
b (2.52)

Hence, from (2.25), the inequality (2.26) becomes
256m.ag « 18, so that with use of (2.16) we have

Qp (( 15 (2.53)

The numbers on the right-hand side of the inequalities
(2.51) and (2.53) are of course only approximations, since
the interior and exterior fields have not been exactly
matched in the region y=q. However the existence of
such inequalities does show that, for given a, there is a
maximum mass p Mp for which the solution is normal-
izable. Such an extremal solution has the property that
for the given charge, the charge to mass ratio is minimal.
In classical terms, the self-repulsion inherent in the charge
is opposed by the gravitational and torsional effects of the
largest mass consistent with that charge. We adopt the
hypothesis that the particles of rnatter are represented by
such extremal solutions.

The particle considered so far has been called "neutral
pionlike" on the grounds that it possesses zero angular
momentum, it is electrically neutral, and it exhibits a
short-ranged "strong" field whose strength was estimated
in EP. Of course the particle does not exhibit the tem-
poral instability which is characteristic of the empirical

Any possibility of this has been precluded by impos-
ing an absence of fields due to external sources. Neverthe-
less we shall assume that the extremal solution given here
does represent an isolated ~ whose mass depends on the
value of the strong coupling constant e. As a guide to an
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appropriate choice for a, we next consider an electrically
charged pion, for which the electromagnetic coupling con-
stant is very well known.

16m

16m.o;1+ 1—
p

at y =g —b„where
1/2

(3.5)

III. ELECTRICALLY CHARGED PIONLIKE PARTICLE

In EP we used a nomenclature where q~&~ and q~2~ re-
ferred to the strong and electric charges, respectively. In
the present application it is convenient to make an obvi-
ous change in that mere nomenclature and now regard
q~i~ as the electric charge. The equations to be solved are
thus again (2.1) to (2.6), where now Ji refers to the elec-
tric field of a charge +qiii. Equations (2.7)—(2.9) also
hold good, except that a, now the electromagnetic cou-
pling constant, should have the value f37 .

We want J~ to give rise to the Coulomb electric field
E =+qiii(4irr )

' at large distances r from the particle.
Following the same line of argument as in EP Sec. IV, we
easily find that such is the case when

lim Ji (y) =Ji ( oo ) = + 1 (3.1)
y~ ao 32~r

Also with the normalization condition (1.2), the field
equation (2.2) will reduce to the usual Maxwell-Gauss
equation fV.EdV=+qiii in weak fields if we impose
the boundary condition

lim Ji(y) =Ji (0)=0 .
y~O

(3.2)

At large y, where the spinor field functions Pi and Q i

must be negligible, the metric field equations (2.5) and
(2.6) give, using (3.1) and (2.8),

gi =fi =1— +2 —2 P CX

16' (3.3)

p & (16m.a)'~ =0.606 . (3.4)

The two roots are a larger one, at y =g', and a smaller one,

Equation (3.3) has the same form as the Reissner-
Nordstrom solution in that it has the same functional
dependence on the radial coordinate. Nevertheless it is
not the Reissner-Nordstrom solution. When converted to
Heaviside-Lorentz units, the coefficient of the radial r
term in (3.3) differs dramatically from the corresponding
term of the Reissner-Nordstrom solution. This difference
results from the scaling used here, which is that given by
Eqs. EP(4.25)—EP(4.28). For our present purpose this
disparity in the coefficients need cause no great concern
since, to the author's knowledge, the value of the pertinent
coefficient in the Reissner-Nordstrom solution has no ex-
perimental support. However it is essential that the scal-
ing used here should allow the Lorentz equation of
motion for the electric charge immersed in an external
electromagnetic field. It seems that this is the case. '

The usual Reissner-Nordstrom solution does not allow
the possibility that a charge "elementary" particle should
admit a Schwarzschild-type singular sphere in its exterior
region. Such is not the case with the exterior solution
(3.3). According to this latter solution, the equation
gi ——0 will have two real roots provided that (with use of

1a= „,)

p 16m.a
8~ 2

1/2

(3.6)

Using (3.1) and (3.3), the field equations (2.1) to (2.4)
can now be solved at large y to give

&I ——2ay '+key '~+k2y '~ '+k3y '~+'+-

(3.7)

Ji = .(«—~—)'"+Aiy '~+'+J~ '~

+)3y '~+'+

~ =ay ~+I y ~ '+J~ 'P+'+

Qi ———(1+13)a 'ay ~+q, y

+q2y ~ + '''
where

P=(l —a )'~ =1,

(3.8)

(3.9)

(3.10)

(3.11)

and a is a constant. The coefficients ki,j„.. . are quite
complicated combinations of a, a, p, and P which are not
critically relevant here.

As in Sec. II earlier, we can obtain a semianalytic global
solution provided that (3.4) is satisfied and that the con-
stant a in (3.9) and (3.10) is small enough to ensure that
the metric field (3.3) holds good until we approach close
to the Schwarzschild-type radius at the larger root y =g
of (3.5). The singular sphere is averted by the full field
equations, so that the solution obtained is very similar to
the neutral solution. Setting

y —g=e&0
we have, by (3.3), for small e,

gi=fi

(3.12)

(3.13)

p 1+ 1—16'
p

(6.6 . (3.14)

Similarly, noting (3.2), the solution (2.47) for Ji now
becomes

1 to boy

32y
(3.15)

in the interior region. Setting y =g in (3.15) and using the

so that the metric field has the same functional depen-
dence on e as was the case earlier in (2.18). Also, from
(3.9) and (3.10), Qi »Pi since (1+P) a =75000.
Hence Bi—Qi so that (2.21) also holds good. If, as be-
fore, the torsion term dominates on the right-hand side of
(2.5) and (2.6), then both the inequality to & 2 of (2.36) and
the normalization condition (2.50) will remain true, ex-
cept, of course, that we must replace g of (2.16) by g of
(3.5). Hence g'&0. 13, so that, with use of (3.5), the in-
equality (2.51) is replaced by

1/2
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4n.g »a . (3.16)

IV. NUMERICAL RESULTS AND CONCLUSIONS

Actual values of p,„ for extremal solutions have been
numerically estimated using a fifth-order Runge-Kutta
method. For the electrically charge particle, with a =,37,
the result found was

p,„=2.18 (4.1)

with an expected accuracy of no worse than +0.05. Us-
ing (4.1) and (3.5) we obtain /=0. 0850, so that the ine-
qualities (3.4) and (3.14) are satisfied. Also, since
4mg' a '=12.4, the condition (3.16) is acceptably met.
The value of the constant a in (3.9) and (3.10) was found
to be a =8.52 &( 10 . If this solution represents a
charged pion with mass 2. 18Mo, then Mo-125m„where
m, is the electron's rest mass. Hence, by EP(3.16), the
constant T of the theory is very large as expected, with
T=7 @10".

As p is decreased below the extremal value 2.18, the
normalized solutions have progressively increasing values

g form of (2.25) and (2.50), we obtain Ji-—,' (—a/n )' as
is required by (3.8).

As previously, the inequality (3.14) cannot hold true for
arbitrary a, since inequalities corresponding to (2.26) and
(2.27) must also be satisfied. From (2.27) and (2.34) we
need, at y &g, the inequality ( »Ji . Using (3.8) this
last inequality gives 16ng». a. The inequality corre-
sponding to (2.26) is a little more restrictive. Here we
need 3A i /32/ »KiBi, which gives, by (2.25) and (3.7),
to '»4a/3' . On the one hand, using to&2, this gives
the interesting requirement 3' 8 '»a, which is true for
cx

$ 37 Alternatively, using the normalization condition
(2.50), we get

of to, together with increasing values for the maximum
attained by the metric function f, . At @=2.18 the max-
imum value of f, is about 2, as against a maximum value
of about 550 at @=0.61. On the other hand, the torsion
term to of (2.25) decreases dramatically as p decreases.
For p & 2. 18, the derivative of Ji in (2.2) is unable to at-
tain a value which is sufficient to pull J~ to zero at the
center as is necessary for a normalized solution.

Looking now at the electrically neutral solution, if this
is to represent a neutral pion then we need to find a value
for a which will lead to p,„=2.11, i.e., about 97 jo of
value in (4.1). Two values for a have been considered,
namely, a=1 and a=10 . For a=1 we find

p,„=2.50, so that the inequality (2.53) is only very mar-
ginally met, with p a=6. On the other hand, for
a=10 the result found is p,„=2.17. Now both (2.51)
and (2.53) hold, with p a=0.05 && 15 as is required. The
value of the constant a in (2.11) to (2.14) was found to be
a=i. 84&(10 . Also, using the argument of Sec. V in
EP, the ratio of the strengths of the strong and gravita-
tional forces near the "surface" of the particle, at y & g, is

S =TJi(2IJyy gI g', ) '=10

as previously.
The above results suggest that the known neutral to

charged-pion mass ratio will result if the electromagnetic
and strong coupling constants are closely equal. Further,
the charged and neutral pions have almost the same "ra-
dius" in the sense the rj=g from (2.16) and (3.5). This ra-
dius is extremely small. In ordinary units of length it is
gAT ', where A is the Compton length for the mass Mo
as in EP(3.11).

Finally, although the significance of the mass factor A,

remains obscure, Eqs. (1.7), (2.43), (2.16), and (2.36) lead
to the constraint p ~A, &1.25p. The numerical results
satisfied this condition.

'Present address: IPB-Australia Project, P.O. Box 28, Bogor
Timur, 16144B, Indonesia.

~J. T. Lynch, Phys. Rev. D 31, 1287 (1985).
2J. T. Lynch, Class. Quantum Gravit. 3, 103 (1986).
R. Adler, M. Bazin, and M. Schiffer, Introduction to General

Relatiuity (McGraw-Hill, New York, 1965).
4If r is the radial coordinate in cm, then the electric field E(r)

in Heaviside-Lorentz units is E(r) =AcgJ&(r)(2q(&)yr )

Here g= +1 refers to the signature g of the spinor-tetrad
ideals l('"'" in the ansatz EP(4.3). The r and y coordinates are
related by r =AT 'y, with A and T being given by EP(3.11)
and EP(3.16), respectively.

5In Heaviside-Lorentz units, the coefficient of the r term in
the Reissner-Nordstrorn solution for an electric charge q(~) is
(() =G„qI~I (4m.c ) ', where G„ is Newton's gravitational con-
stant and c is the speed of light. In the solution (3.3) the cor-
responding coefficient has the very much smaller value PT
On the other hand, the coefficients of the r ' term in the
respective solutions coincide

We can obtain the Reissner-Nordstrom solutions as the "exteri-
or solution" using the procedure which was mentioned in
passing in Sec. III of EP. This is to normalize the spinor field
and choose the constant b as

i det(g p) A d'x =1, b =(64m')

However, no well-behaved "interior solution" has been found
in this case. The normalization used in this present work is
that used in Sec. IV of EP. Effectively both the above
Reissner-Nordstrom normalization and choice of b pick up a
factor of T ' on the right-hand side to become

i det(g p) I d x =T ', b =(64maT)

7We do not obtain the Lorentz equations of motion following
the method suggested by Chase (Ref. 8). In that method the
electromagnetic field is taken as a free field and the source
terms in the energy-momentum tensor E p, say, are disre-
garded. Following Chase's method then gives an unwanted
factor of T ' in the equations of motion due to our present
choice of b. However a much more natural approach (Ref. 3)
is to retain the source terms in E p and seek the equations of
motion in the standard way from the condition

i det(g p)E"".„d x =0.
In principle, no obstacle is anticipated with this approach.

8D. M. Chase, Phys. Rev. 95, 243 (1954).


