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Exact analytical solutions of Einstein s equations are found for a spherically symmetric inhomo-
geneous metric in the presence of a massless scalar field with a flat potential. The process of iso-
tropization and homogenization is studied in detail. It is found that the time dependence of the
metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogene-
ous scalar field, while the second deals with a spherically symmetric inhomogeneous scalar field. In
the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomo-
geneous.

INTRODUCTION

One of the best explanations so far as to why the ob-
servable Universe looks so remarkably flat, homogeneous,
and isotropic is provided by the inflationary models. ' In
these models the Universe undergoes a phase transition
characterized by the evolution of a Higgs field P, that is,
initially displaced from the minimum of its potential
V(P), towards the minimum. The Higgs field has initial-
ly a zero vacuum expectation value (VEV) and it evolves,
by moving inside the potential, to a state where it acquires
a nonzero VEV. Inflation will take place if the potential
V(P) has a "flat" region and the P field evolves slowly,
spending a considerable amount of time in this part of the
potential. At the same time the Universe is expanding in
an exponential way, driven by the vacuum field energy,
until the P field reaches a steep region where it starts
moving fast. Eventually, it gets to the bottom of the po-
tential and after a few oscillations it stops' (for a
comprehensible and up-to-date review on inflation see
Turner ). It is the presence of this flat region in the po-
tential that makes the Universe enter an inflationary
period. I shall not dwell any longer on the fine subtleties
of the inflationary models, as I should only need the ex-
istence of the flat region in the potential. In terms of
more physical ideas, I will only consider the first stage of
inflation where the Universe enters a phase of very rapid
expansion, and shall assume that the reheating process
follows in the standard fashion from there on. This as-
sumption may seem a bit too strong; however, I will argue
that once the Universe enters the exponential expansion
phase, rapidly becomes homogeneous and isotropic on
scales of the order the horizon size, and by the time the
scalar field reaches the end of the flat part of the potential
and starts to roll down, it is essentially isotropic. Of
course, there is the tacit assumption that there will be suf-
ficient inflation, i.e., the scalar field will take sufficient
time to cross the flat region of the potential to allow the
Universe to expand the necessary number of e-folds, oth-
erwise, inflation could not do the job. The flat part of the
potential is naturally associated with a vacuum energy
that dominates the dynamics for a period of time, so I
shall identify this vacuum energy with an effective cosmo-

logical constant A. It has been shown by Jensen and
Stein-Schabes that inhomogeneous cosmologies that have
a cosmological constant, an energy-momentum tensor
satisfying the strong and weak energy conditions and a
nonpositive three-curvature will become isotropic and
homogeneous for large times on the scale of the observ-
able Universe, essentially becoming the de Sitter model for
late times. This is a generalization of a similar result
proven within the context of homogeneous cosmologies by
Wald. Even though these results indicate that dynami-
cally the Universe goes from an inhomogeneous and an-
isotropic phase to one hich is isotropic and homogene-
ous on scales of the observable Universe, it gives no de-
tails on the evolution of the scalar field or any other con-
tent of the Universe. In order to learn more about the
evolutionary details of the isotropization process we have
to study specific examples. Most inflationary models
have been constructed assuming the background space-
tirne metric is homogeneous, either one of the Bianchi
models or a Kantowski-Sachs model. ' For these models
it has been shown that once inflation starts, the process of
isotropization is remarkably efficient. Furthermore, once
inflation has successfully ended, the Universe remains iso-
tropic for a very long time. Very little analytical work
has been done to solve the problem in the case of inhomo-
geneous space-times, but some numerical results have been
obtained for the case of an inhomogeneous scalar field;
however, the background metric is still homogeneous and
isotropic.

In this paper I will explicitly solve Einstein's equations
obtaining analytical expressions for both the metric com-
ponents and the scalar field in the case where the metric
describes an inhornogeneous spherically symmetric space-
time, the so-called Tolman-Bondi' metric in the presence
of a massless scalar field P with a potential V(P) that has
a flat region.

One of the most general exact solutions to Einstein's
equations with a cosmological constant and dust was
found by Barrow and Stein-Schabes. " This model de-
scribes a quasispherical space-time that does not have Kil-
ling vectors, the so-called Szekeres metrics. ' It has been
shown that asymptotically these solutions possess the
same event horizon structure as the de Sitter metric, in ac-
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cord with the no-hair theorem. ' However, in this case
there is no scalar field present. To include a completely
inhomogeneous scalar field and solve the field equation is
extremely difficult. However, there is a subclass of
metrics for which the problem can be solved completely.
These metrics represent spherically symmetric space-times
that are both inhomogeneous and anisotropic. A full
description of the model will be given in the next section,
where the field equations for the gravitational field cou-
pled to a real scalar field will be presented and solved. I
shall study the dynamical evolution towards the de Sitter
phase.
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II. THE MODEL

The Lagrangian will be that of gravity minimally cou-
pled to a scalar field P(r, t) with a potential V(P),

s= f v —g [R ,'g" a„—ya—p v(y)]d—x, (2.1)

Rpv pg& R =Trav (2.2)

with

where g =det(g&„) and R is the Ricci scalar. Units are
taken so that 16m.G =c = 1.

By varying the action with respect to the dynamical
fields the following equations are obtained:

where an overdot =0, and a prime =8, . As is usually
the case the system of partial differential equations is
overdetermined, so some of the equations wi11 be regarded
as dynamical while the rest as constraint equations. These
equations will be solved in two different cases. First, as-
suming that the scalar field is homogeneous, i.e., P=t()(t),
and second, taking it to be of the general form P=P(r, t).
We shall also assume that for the epoch that I am in-
terested in, the potential can be well approximated by a
constant value V(P)=2A. This can be justified by notic-
ing that in general the quantity multiplying the P term in
Eq. (2.10) acts as a friction term and it has been shown
elsewhere ' that this term is always larger than in the
homogeneous and isotropic model. What this means is
that the field will always move slower in an anisotropic
and inhomogeneous model, spending more time than usu-
al on the flat part of the potential.

III. THE HOMOCrENEOUS CASE: P=Q(t)

r„„=—,'a„day —[—,'(a.4)a 4)+ —,
' v(y)]g„, ,

1
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v' —g
" dP

(2.3)

(2.4)
X(r, t) =f(r) Y'(r, t), (3.1)

In this case it is easy to see that Eqs. (2.9) and (2.10)
immediately integrate to give, respectively,

The metric is given by the Tolman-Bondi line element,
1(r) l (r) 1

XY' f(r) Y2Y'
(3.2)

ds = dt +X (r, t)dr —+ Y (r, t)(d9 +sin Odg ) (2.5)

with r, 8, and p the normal spherical coordinates (in the
comoving frame). The field equations can be written as
(P will be rescaled to 2 P)

~ ~ ~ ~

X Y—+2—= —2(P) A .X Y
(3.3)

with l(r) and f(r) arbitrary integration functions. Equa-
tion (3.2) is a very interesting equation as it forces the spa-
tial dependence of Y(r, t) to be such that P is only a func-
tion of t. Taking now the following combination of Eq.
(2.6) —(2.7) —2 )& (2.8 ) we get
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Using Eqs. (3.1) and (3.3) we can decouple the equations
and get one for Y(r, t):

I 2=(P)'+, + —,
' V(P), (2.6)
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(3.4)
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Y(r, t) = Y„(r)Y, (t) (3.5)

To solve this partial differential equation we use separa-
tion of variables. We look for solutions of the form

I 2

= —(P)'—,+ —, V(P), (2.7)
which implies from (3.1) that X(r, t)=f(r)Y„'X, . This
decomposition allows a separation into two ordinary in-
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Y,

Y
=A,

stead of partial differential equations of the form

(3.6)

tions (2.7) and (2.8) accept a nonseparable type of solution
(this was done in Ref. 10 for the case of dust). If we use
(3.1) in (2.7) and (2.8) and we introduce a new variable
U(r, t) = Y[1 f —+ ( Y) ] these can be rewritten as

Y„'Y, = —2f (r)
m)l (r)

(3.7) U

Y Y
= —P '+ —, V(P), (3.11)

Clearly this demands that the separation constant m
&

&0.
Equation (3.6) has a general first integral of the form
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k
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(3.8) By equating these two equations we get one very simple

differential equation

with k an integration constant.
This is exactly the evolution equation obeyed by the

geometric mean scale factor with a cosmological constant,
a curvature, and anisotropy terms characterized by k and
m &, respectively. ' The general solution to this equation
is given in terms of some complicated elliptical functions.
Since this is a well-studied equation and its asymptotic
behavior well known we shall not say more about its gen-
eral solution. These have a stable asymptotic limit of the
form Y, = Yoe' ~ ' ' which is the same time evolution as
in the de Sitter model. Then by Eqs. (3.1) and (3.5) the
time evolution for X(r, t) is the same as that for Y„name-
ly,

X(r, t) =f (r) Y„'Y,~X„(r)e' (3.9)

where f (r) is an arbitrary integration function. By substi-
tuting Eq. (3.5) into (3.2) and using (3.1) we get, for P,

1/2—m& 1

3
(3.10)

which is perfectly consistent with the functional depen-
dence of P. For the spatial part of Y, Eq. (3.7) cannot be
integrated until we specify the form of the arbitrary func-
tion. The fact that the Universe is expanding exponential-
ly fast, becoming more and more like de Sitter, makes the
scalar field P go rapidly to a constant value $0.

The ansatz [Eq. (3.5)] used to find the solution for
X(r, t) and Y(r, t) together with the assumed homogeneity
of the scalar field determined the dynamics of the model
to be identical to the homogeneous and isotropic model
for any potential V(P). From Eqs. (3.1) and (3.5) we get
that X, = Y, and since the scalar field evolution is deter-
mined by (2.10) (without the spatial derivatives), it be-
comes the same equation as for the homogeneous scalar
field. Furthermore, if we run the constraint equations we
immediately find that f (r) = (1—k Y„) '. This is a
direct consequence of the separability of the metric com-
ponents into space and time parts, which immediately
forces the Universe to expand isotropically with an expan-
sion rate that approaches the de Sitter one. Even though
the integration method is general there is an inbuilt bias in
it that only picks up several solutions. This suggests that
there may be a nonseparable solution to the field equa-
tions (this is known to occur in nonlinear partial differen-
tial equations, a general solution may have several distinct
'branches), and this is indeed the case. The set of equa-

Y Y
=0 (3.13)

which after some manipulation becomes

2

Y A k(r) ci(r)
Y 3 Y' Y' (3.14)

where k(r)=1 —f this equation has the same form as
the Friedmann equation for a Robertson-Walker model in
the presence of a cosmological constant, and a fluid whose
density scales like the inverse of the volume. Of course
this is the scalar field energy density. The point to notice
is that this equation is still a partial differential equation
and no functional form has been set for the solution. This
equation has been solved in Ref. 11. In general the solu-
tion is not expressible in terms of elementary functions.
For the flat case k(r)=0 the solution has the following
form:

1/3
3c)(r)

Y(r, t)=
A

&( sinh
3A
4

[t —to(r)] (3.15)

with to(r) an arbitrary integration function. Only in the
large-time limit does the solution become separable into
its space and time parts. However, in order to have a con-
sistent solution for P(t) we are forced to take to(r) =0,
bringing the solution back to the separable form. The
homogeneity of the field is so restrictive that it determines
the functional dependence of the metric components. The
physical reason is that both the scalar field and the
cosmological constant produce "isotropic forces" so there
is nothing to keep the model from becoming isotropic as it
evolves and it would seem that any initial anisotropy and
inhomogeneity present in the model must be put in by
hand. It is then impossible to have an anisotropic and in-
homogeneous universe if the scalar field is to be homo-
geneous. The only way out is to allow the field to contain
some inhomogeneities. In that case we could envisage the
case just studied as an intermediate stage between com-
plete inhomogeneity and homogeneity. The extension to
the inhomogeneous case is done in the next section.

We can now write the full solution for the metric,
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ds2= —dt2+X 2X dr

+ Y, Y„(d8 +sin Odp ) (3.16)
~ ~ X, Y, . m2
0r+ X +2Y

t t
(4.6)

with the help of Eq. (3.1) and using the freedom to rede-
fine the coordinate system, we introduce a new radial
variable p= Y, then Eq. (3.16) becomes, in the large-time
limit,

ds dp +p (d9 +sin Odp )
1 —kp

(3.17)

which is exactly the de Sitter solution in its open, flat, or
closed version. What we can conclude in this case is that
the model was never inhomogeneous but rather looked
like one due to a bad choice of coordinates, so even if we
assumed that the metric was more general than the stan-
dard model, the equations only accepted the homogeneous
and isotropic solution. The flatness of the model is then
explained as in the standard Friedmann-Robertson-
Walker (FRW) model. By calculating the three-curvature
scalar ' 'R,

z(An)'"r f'p+f —f-R=e
f'p

=e —2(A/3) '/~r 2kp
1 —kp'

(3.18)

IV. THE INHOMOCxENEOUS CASE: P =P(r, t)

In this general case we look for solutions of the form

X(r, t) =X,(r)X,(t),
Y(r, t) = Y, (r) Y, (t) .

(4.1)

(4.2)

This decomposition of the scale factors forces the scalar
field to be of the following form [this can be immediately
seen from Eqs. (3.3), (4.1), and (4.2)]:

P(r, t)=P„(r)+P,(t) . (4.3)

Equation (2.9) is again immediately separable and in-

tegrable:

we can see that it becomes zero exponentially fast; howev-
er, the individual components of the three-Ricci tensor do
not vanish in the comoving frame (unless, of course,
k =0). However, when a measurement is done in the ob-
servers frame then all components of the curvature tensor
vanish asymptotically fast in the same way the curvature
scalar does. For a very interesting account of these
models when there is only dust, see Ref. 15.

X,' Y,
'

3 '+2 " y„'=m~X„'X„Y, (4.7)

with m2 the separation constant. We require one more
equation for the time-dependent part of the solution. We
can use Eq. (3.3) which has no spatial part, and for the
spatial part we use the r-dependent part of Eq. (2.8) (of
course the time-dependent part of this equation becomes
one more of the constraint equations):

~ ~ ~ ~

+2 = —2(P, ) +A,
X, Y,

(4.8)

Y„" X,' Y„'
+(p„') =m3X, (4.9)

Y, X, Y,

So, the problem has been reduced to solve two decoupled
systems of ordinary differential equations for the spatial
and time parts of the metric and field. The former is
given by the solution to Eqs. (4.5), (4.6), and (4.8), while
the latter is given by the solution to Eqs. (4.4), (4.7), and
(4.9).

We will first proceed to solve the space part. Introduc-
ing a new variable W—:(ln Y„)' and using Eq. (4.4) we can
rewrite the system formed by Eqs. (4.7) and (4.9) as

I

8"+28 +3 8'= —m2X„
X,

I

8 '+28 — 8 =m3X„
X„

(4.10)

(4. 1 1)

A single equation for X„can be obtained from these equa-
tions:

XII

r

X„
m32+
a

'2
I

X,
+2aX, =0 . (4.12a)

2 2
(X') = CiX„' + X,

m3
(4.13)

Both Y, and P, can be obtained from (4.4) and (4.12b)
once this equation has been solved:

Then 8' and subsequently Y, can be found from the
equation

X„'8'= —aX, (4.12b)

where a—:—,(mz+m3). Equation (4.12a) can be integrat-
ed once to give

Y„'

Y,
(4.4)

X,
Y, = Yoexp —a f dr

X,'
(4.14a)

Y,

Y,

X,
X,

(4.5)

To close the system of equations we use Eq. (2.10), which
again splits naturally into the following equations:

X,
P =$0+a f dr .

X,'
(4.14b)

In order to carry out the integration of Eq. (4.13) we have
to specify the values of the arbitrary constant. The gen-
eral solution can be obtained in terms of complicated
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Gauss hypergeometrical functions; however, to construct
the general solution would only obscure the features we
want to highlight. Instead, we shall explore the conse-
quences when special values are chosen for these con-
stants.

(i) a =0. In this case we can see from Eq. (4.12b) that
X„'=0, then Eqs. (4.10) and (4.11) become the same equa-
tion for W, when solved for Y„we get

Yocos' (+2m2r), m2 )0,

~ 0

X, X, m2P+2P — — P =
x, x,

2
~ ~

1 X, X,P+2P'+— x, P=A .
x,

(4.22)

(4.23)

With the help of this equation and introducing a new log-
arithmic variable P =B,(ln Y, ) we rewrite (4.6) and (4.8) as

Y, = . Yor', m2 ——0, (4.15)
From these two equations we can get one for X, :

Yosinh' (Q —2m2r), m2 &0,

with X,(ro ) = 1, this in turn gives, for P„

~ ~

X, 2 X,
Xr

2

m2= —A ——
3 X

(4.24)

Po ——,
' 1n[cos(+2m2r)], m2 )0,

(j}o—2 ln(r), m2 ——0, (4.16)

This equation can be integrated once to give

2

Po ——,
' ln[sinh(Q —2m2r)], m2 &0 .

x,
xr

2 m= —A—
X

(4.25)

There is a special solution that appears as a particular
subcase when both X„' and W' are zero. The solution is
then given for m2 & 0 by

X,=Xp,

This is identical to Friedmann's equation for a geometric
mean scale factor in the presence of a cosmological con-
stant and curvature m 2

—=k (which can be made
k =+1,0), and its solutions are well known:

[ —m 2/2] &0~
Yr Ype

' 1/2

4"=4o— Xpr .

(4.17)
1/2

Sm2
cosh

2A

' 1/2
2A
5

t, m2)0,

(ii) a =+2m3/n For t.his case the solution to (4.13) is
a finite series that depends on the value of n For sim. pli-
city let n =+2, then the solution is given by

1/2
5

sinh

' 1/2
2A

5
t, m2(0.

(4.26)

X, =
1—sec
b

Qc,
b

r, n= —2, b)0.

b
n =2, b)0,

1 —C]b r
(4.18)

With Eq (4.16).or (4.17) we can calculate Y„but since
all the solutions tend asymptotically toward the case
m2 ——0 we will only calculate Y, and p, in this limit:

The other solutions have been ignored as they are either
imaginary or not regular at the origin of coordinates.
These solutions give from Eqs. (4.14a) and (4.14b) for Y,
and P, the following:

Y = Y e' / ' 'sinh'pe
9A
10

1/2

4'i =4o+ 9A
40

t ——,ln sinh

(4.27)

1/2

(4.28)
10

—ax, dr
Y, =exp

(X +2+ b 2)1/2

X,dr
o ' J ~C, (X+2+b2)

(4.19)

(4.20)

Clearly for large times we get X,=Y,=e ' ' ' and
P, =go as expected. Now we can construct the full solu-
tion

Y
4'i =do+»

Xr
(4.21)

the term X„— corresponds to n =+2.
Now we will solve for the time-dependent part of the

functions, the system of equations for this case is given by
Eqs. (4.5), (4.6), and (4.8). From Eq. (4.5) we get P, as a
function of X, and Y, :

2 gt2+X 2X 2g 2

+ Y, Y„(d8 +sin Od p ) .

In the large-time limit we get

ds2 dr2+e2(2AI5) t[X 2dp. 2+ Y 2(dg2+sin2gd ~2)]

(4.29)
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In the case where a =0 we recover exactly the de Sitter
solution in its open or flat version. In all the other cases
we can choose the coordinates such that one of the func-
tions, say, Y, =p then (4.29) becomes

~ 2 dt 2+ 2(2A/5) t

X [Zz dp +p (dg +sin gdy )] (4.30)

with

z 2 0 [2~3 I
~) 2aZ 2

P 2 P +
m3

(4.31)

and xz is given by the solution to Eq. (4.13). The curva-
ture scalar is given by Eq. (3.18) by substituting f (p) for
Zp 0

In order to understand the results obtained we must
remember that the coordinates used are comoving coordi-
nates, so even though inhomogeneities are not disappear-
ing inside a comoving volume they certainly are for an ob-
server measuring physical volume. Inhomogeneities get
frozen out and then just pushed outside the observable
horizon. This effect had been pointed out earlier in Ref.
16.

V. CONCLUSIONS

By explicitly solving in an exact form Einstein s equa-
tions for an inhomogeneous spherically symmetric metric
of the Tolman-Bondi type coupled to a real scalar field
with a potential that has a flat region, we studied in de-
tailed the isotropization and homogenization of the
Universe on scales of the order of the horizon today, in
accord with the prediction of the "weak" no-hair
theorem. Two cases were studied: the first with a homo-
geneous scalar field, the second with a general one. In the
first case the homogeneity severely restricts the functional
dependence of the metric coefficients with time. In fact it
forces the model to expand isotropically for all time, the
rate at which it does it approach the de Sitter rate asymp-
totically. The second case is more interesting as truly in-
homogeneous solutions can be found. The separability of
the metric coefficients into space and time parts demand-
ed the scalar field to be of the form P(r, t)=P„(r)+P,(t).
The time evolution was very similar to the homogeneous
case, while the space evolution was calculated exactly.

Even though the equations were solved exactly by a
well-defined procedure, this failed to capture all the
features of the general solution. The solutions found have
one less arbitrary function than the general solution
should. For these to have been general we would have re-
quired six independent functions f;(r, to), which can be
identified with (X(r, to),X(r, to), Y(r, to), Y(r, to), P(r, to),
P(r, to)). The problem arises due to the fact that both X
and Y are separable functions and this, as was shown ear-
lier on, determines the form of P written in Eq. (4.3).
Then P(r, t)=P(t) on every hypersurface. Here is where
the generality is lost. (I am in debt to Michael Turner for

pointing out this to me. ) We could interpret this as an in-
dication that the general solution to these equations if far
more complex than that given in Eqs. (4.1)—(4.3). It
would nevertheless be extremely useful to know if these
solutions are stable against small perturbations that do not
decouple the functional dependence of the metric com-
ponents into their space and time parts [e.g. ,
Y(r, t) = Y„(r)+Y,(t)+ Y, (r, t), Y~(r, t) very small].

We have argued that the approximation of the potential
as a flat one, at least initially, is not too bad as it is possi-
ble to show that in general the damping term (friction) is
larger for these models than for the homogeneous and iso-
tropic model. The second stage of inflation, that of
reheating, is assumed to proceed as in the homogeneous
and isotropic model. It has been shown that in all cases
the universe tends to a state of isotropic expansion which
approaches the de Sitter rate for large times, so inflating
the Universe. In this sense the Universe is "isotropizing. "
However, the homogeneity and flatness are a bit more
subtle. It is always possible to choose the arbitrary func-
tions in the solution in a judicious way and then recover
the Robertson-Walker metric, in which case the models
indeed become homogeneous globally. We could as well
choose these functions to mimic, say, a Bianchi type V.
Nevertheless, in general these functions can only be deter-
mined through boundary conditions. The important point
to notice is that the time evolution decouples from the
spatial variation, the former becomes identical to the de
Sitter case. The inhomogeneities are frozen out and then
are pushed out of the observers' horizon by the rapid ex-
pansion of the Universe. So we could conclude that glo-
bally the models do not become homogeneous [they do in
the case P=P(t)]. However, inflation can still do the
trick. The three-space is not maximally symmetric as we
would expect if the no-hair theorem was absolutely
correct. Nevertheless, since the three space is only ex-
panding in a conformal way, than an observer living in
this three-space would see the Universe around it becom-
ing homogeneous and flat. For an "outside observer, " this
is not the case, the Universe is just growing in volume but
is not changing its curvature or is becoming more homo-
geneous. The exact analogy is that of an observer living
on the surface of an ellipsoid, if the ellipsoid expands very
fast, for this observer the surface of the ellipsoid will ap-
pear more an more like a flat region, but for an observer
much larger than the ellipsoid, it is always curved. This
effect is precisely what is observed to happen in these in-
homogeneous models as they evolve from an initial highly
anisotropic and inhomogeneous phase. This can be seen
by calculating the spatial curvature and showing that it
goes exponentially to zero during the inflationary period
in the frame of the observer.
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