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The wave function of the Universe defined by the Hartle-Hawking proposal is studied for two
minisuperspace models, the Friedmann-Robertson-Walker universe with a massive scalar field and
the anisotropic Kantowski-Sachs cosmology. Solutions of the Wheeler-DeWitt equation are evaluat-
ed numerically. We also examine the trajectories to which these correspond in the classical limit.
Attention is focused on the fact that most classical trajectories recollapse to a singularity. They will
add an oscillatory component to the wave function in the region of small three-volume where it is
predominantly exponential. They will thus modify the original boundary conditions. The
Kantowski-Sachs universes generically evolve from isotropy during expansion to increasing anisotro-
py during recollapse, ending as a black-hole interior. We comment, therefore, on the arrow of time
naturally induced by the Hartle-Hawking proposal.
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I. INTRODUCTION

Observations of the cosmic microwave background ra-
diation demonstrate that our Universe was initially re-
markably homogeneous and isotropic. This makes our
Universe very special in the class of all possible cosmolog-
ical models! (inflation alleviates, but does not solve, this
problem?). It has been suggested by Hawking,’ however,
that these very special initial conditions are a natural
consequence of the quantum state of the Universe being
described by a path integral over compact Euclidean
geometries.

Of course, the quantum state or wave function of the
Universe is exceedingly difficult to calculate. It is possi-
ble, however, to gain some insight into its behavior by
studying simplified models with a restricted number of
degrees of freedom, for example, the homogeneous and
isotropic minisuperspace model. Indeed, this latter model
has been studied extensively and perturbative treatments
about it* have shown that it provides a good approxima-
tion to the full wave function of the universe at small “in-
itial” volumes. It can sometimes prove difficult in such
models, however, to distinguish between properties which
are general, and those introduced by the imposition of a
given symmetry.

In this paper we review some of the implications of the
Hartle-Hawking proposal for the Friedmann-Robertson-
Walker (FRW) minisuperspace model with a massive sca-
lar field. By way of comparison, we also investigate a less
symmetric minisuperspace model with an added anisotro-
pic degree of freedom, the Kantowski-Sachs (KS)
universe. We concentrate on the fate of the universe in
this formulation, an emphasis which motivates the choice
of this second model. KS cosmologies provide a far more
realistic picture of a collapsing universe than is possible
with a FRW model.’ In the final stages of recollapse, the
KS metric corresponds to the analytically extended region
in the interior of a black hole.

In Sec. II we briefly introduce the necessary formalism
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in which to enunciate the Hartle-Hawking proposal. The
two models are then studied in Sec. III with their respec-
tive wave functions. They have been calculated numeri-
cally using boundary conditions in minisuperspace given
by the Hartle-Hawking proposal. In Sec. IV we examine
the classical universes corresponding to the respective
wave functions. In Secs. V—VII we study the implica-
tions of the Hartle-Hawking proposal for the occurrence
of singularities in quantum cosmology, the anisotropy of
the universe, and its arrow of time.

II. THE HARTLE-HAWKING PROPOSAL

Quantum cosmology is the study of the quantum evolu-
tion of a three-surface S representing the universe at a
given time. From the wave function ¥ one can obtain the
probability that S will have evolved from an initial sur-
face S;.

In analogy to the quantum-mechanical treatment of a
point particle, it is possible to define ¥ by a Feynman
path integral

V[S,S5)]= [ dlguldlgle F,

where C is a class of four-geometries and matter fields

which match the initial surface S; to the final S. I is

the Euclidean action for a given four-geometry and

d[gu.] and d[4] define the measure of the path integral.
The wave function obeys a differential equation

HY=0,

(2.1

(2.2)

where H is the Hamiltonian operator obtained from the
Lagrangian of the classical theory, with the conjugate mo-
menta replaced by the appropriate derivatives.

Describing a four-geometry by the metric
ds?= —(N?—N;N')dt>+2N;dx'dt + h;;dx'dx , (2.3)

where N and N; are, respectively, the lapse and shift func-
tions and h;; is the metric describing the three-surface S,
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we can split Eq. (2.1) into two separate parts

N,HW=0 (2.4)

and
NHY =0 . (2.5)

The first corresponds to the invariance of ¥ under dif-
feomorphisms in the three-surface S. The second part,
the Wheeler-DeWitt equation, is the evolution equation
for ¥ on the space of three-geometries. It is the gravita-
tional analog of the zero-energy Schrodinger equation.

This formulation is not complete, however, without the
imposition of boundary conditions to specify ¥ uniquely.
Hartle and Hawking® have made a proposal for these by
restricting the class C in (2.1) to compact four-geometries
with regular matter fields. This corresponds to the asser-
tion that “the universe does not have any boundaries in
space or time (at least in the Euclidean regime).”> For a
more detailed review of this proposal refer to Refs. 6 and
7.

III. TWO MINISUPERSPACE MODELS

The implications of this proposal are difficult to inves-
tigate because of the infinite dimensionality of superspace,
so we restrict our attention to only two or three degrees of
freedom. With few exceptions, previous work in quantum
cosmology has been based around simple FRW models
with homogeneous three-surfaces of topology S°. We
contrast this by considering a minisuperspace model based
on the Kantowski-Sachs (KS) cosmology, homogeneous
three-surfaces with topology S!xS2. This extra nonper-
turbative degree of freedom (anisotropy) holds out the
hope of a more realistic insight into the ultimate fate of
the universe in this framework.

We will describe the interaction of gravity with a
minimally coupled homogeneous massive scalar field by
the Lorentzian action:

4 1 3, p172
I= [, d*%x(Ly+Ly)+5 = [, d’xh'K, (3.1)

where K is the second fundamental form on the boundary
oM,

2
m
L,=—2(—g)/2%R 3.2
8 1617( g) (3.2)

is the Einstein-Hilbert Lagrangian, and we take the matter
Lagrangian
2

¢

270

)1/2 ) Q ot ? +m2

L, =
m B2mro  2mo

—3(—g

(3.3)

where o=1/m,.
(i) FRW model: The homogeneous and isotropic min-
isuperspace model based on the FRW metric

ds?=—N2t)dt>+a*(t)d Q) (3.4)

should by now be familiar. The study of this simple
model has been very significant in the development of

R. LAFLAMME AND E. P. S. SHELLARD 35

quantum cosmology and its many encouraging features
have been generalized, a process justified by linear pertur-
bative treatment about it.*

The Wheeler-DeWitt equation, HW =0, becomes

1

2

e 3 13
da?  ada  a?d¢?

—a’+a*m?? |W=0. (3.5)

Using the semiclassical approximation to the path integral
(2.1), we can evaluate the wave function for small three-
geometries’ and obtain

¥ ~C exp

1
——=[1-(1—-m%%*??]|, (3.6
I [ (. ]
where C is the prefactor and can be taken to be unity. At
zero volume, we then have the boundary condition ¥=1.
In the more convenient coordinates

x =a sinh¢, y=a cosh¢ (3.7)

the differential operator is diagonalized and Eq. (3.5) be-
comes amenable to straightforward numerical solution.
The boundary conditions are reduced to having ¥=1 on
the “light cone” (x =+y) of minisuperspace. The initial
data for W are given on two characteristics of the WD
equation and this is sufficient to specify the wave function
uniquely, that is, the normal derivative is not necessary.

Figure 1 illustrates the wave function for the FRW
model with m =5 integrated with a second-order leapfrog
algorithm (outlined in a somewhat different context in
Ref. 8). A small note of caution should be mentioned be-
cause the leapfrog algorithm will be a valid approxima-
tion only when we observe the condition V(x,y)<<1/8x 2,
where 6x is the grid step size. Numerical instabilities will
appear and grow exponentially otherwise. In the oscillato-
ry regions, leapfrog is also known to exhibit an aliasing
instability: high-frequency modes pile up with wave-
length equal to the grid size 8x (Ref. 9).

Figure 1 is in fact a careful repetition of Fig. 2 in Ref.
10 and several minor differences due to these considera-
tions are apparent.

(ii) KS model: The second minisuperspace model con-
sidered corresponds to a Kantowski-Sachs cosmology
with a massive scalar field. The three-surfaces are homo-
geneous and have topology S'XxS2. They are the boun-
dary of a four-manifold with metric

ds?= —NX1)dt*+aX1)dr+b(1)dQ,? (3.8)

where dQQ,)? is the metric on the two-sphere and r is
identified periodically. The Wheeler-DeWitt equation be-
comes

2 2 2
2:2?3(12 + a;gb - b;(?ab 2a1i?8¢2 v ¥=0
(3.9
with
Vzg-L’;z‘ﬁ :

The wave function for the KS model has also been
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FIG. 1. The wave function for the FRW model with a massive scalar field (the mass parameter m is taken to be 5). Only half of
the minisuperspace is shown (x =a sinh¢ >0, y =a cosh¢). The wave function is exponential for small values of a, near the “light
cone” of minisuperspace, but oscillates rapidly for large a.

evaluated numerically. The problem in three dimensions D’Alambertian  becomes diagonal. The resulting

is more formidable but with the coordinates Wheeler-DeWitt equation is again soluble using a
straightforward leapfrog algorithm of fixed grid step size.
a=exp(p), b=-exp(g—p), ¢=¢ (3.10) The wave function can be plotted for a, b, or ¢ con-

stant slices of minisuperspace. In the a or b constant
and a convenient choice of operator ordering, the slices, we observe that the wave function oscillates for
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FIG. 2. The wave function for the Kantowski-Sachs model with a massive scalar field in coordinates u =b,v=a?bh. The wave
function is exponential for small values of b but oscillates for large b.
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large values of the volume ab?. This confirms the analyt-
ic approximations made by Laflamme.!! These figures
are not presented here (see Shellard!?). It is more interest-
ing to analyze the wave function for slices of constant ¢.
The qualitative features of ¥ can be more easily seen if we
take the coordinates

u=>b, v=a’b . (3.11)

u and v are null coordinates in minisuperspace if the sca-
lar field is constant. This is true for large ¢ and small
volume because of the Hartle-Hawking proposal. It is
easy to devise an algorithm similar to the one used in the
FRW model using x =u —v and y =u +v where only the
potential of the Wheeler-DeWitt equation has to be modi-
fied. This model in fact reduces to the one studied in Ref.
11, a vacuum KS model with nonzero cosmological con-
stant.

The semiclassical approximation for the wave function
reduces to

172 l

(3.12)

V=Cexp

242
%(yz—xz)”z‘l——i’—m12 (x+y)?

for small three-geometries. This implies (taking C=1)
that the wave function is equal to unity on the boundary
of the minisuperspace (x = *y).

Figure 2 shows the numerical solutions of ¥ for this
case. The wave function is exponential for small values of
u=(x+y)/2 but oscillates for large values. In this re-
gion the wave function will represent Lorentzian
universes. They will belong to the Schwarzschild—de Sit-
ter family.

IV. THE CLASSICAL SOLUTIONS

Before discussing the classical solutions for these
models we must know in which regions of superspace a
classical description will be satisfactory. In the oscillatory

regions we can write ¥ with the WKB ansatz
Y= Re(Ce™) . 4.1)

In the case where the prefactor varies slowly in compar-
ison to the phase S, that is,

VC (vSY 4.2)
C
we obtain, from the Wheeler-DeWitt equation,
(VS)+V=0 4.3)
and
2VSVC+V3S=0. 4.4)

The first equation is the Hamilton-Jacobi equation for
general relativity. The phase S will correspond to a fami-
ly of solutions of the classical field equations. The gra-
dient of S, VS, will indicate the direction of the classical
trajectories in superspace. In the models under investiga-
tion the Hartle-Hawking proposal picks out one particular
Hamilton-Jacobi function Syy, the one which is the ana-
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lytic continuation of the Euclidean action. Because of the
regularity conditions imposed on the Euclidean equations
of motion it is not surprising that Syy has some very spe-
cial features.

The second equation is a first-order differential equa-
tion for C. Once we know the function S we can calcu-
late C along a particular WKB trajectory. Effectively, the
wave function is decomposed into a superposition of
WKB wave packets, ¥ = ReC, exp(iS, ), following Hawk-
ing and Page.!* The WKB approximation will be valid
along the wave-packet trajectory, provided (4.2) is satis-
fied.

The classical solutions for the closed FRW model with
a scalar field have been examined by Hawking’ and then
in considerably more detail by Page.!* There is a signifi-
cant class of solutions which are nonsingular, countably
many which are periodic, and perhaps a fractal set of per-
petually bouncing aperiodic solutions.

The Lorentzian equations of motion for a and ¢ are
(for N=1)

aa+d72+%+ 3“;"52 _ 3“2’;2¢2 -0, (4.52)

$+3%¢'+m2¢=0 : (4.5b)
with the constraint

dl=a%p>+map*—1. (4.5¢)

There is a degree of redundancy with the field equations
written in this form, but this is a positive feature for their
numerical solution. The constraint equation provides an
independent check on the accuracy of the numerical
analysis.

The Lorentzian paths selected by the Hartle-Hawking
proposal are those obtained by the analytic continuation
of the compact Euclidean paths. The Euclidean solutions
for large ¢ are approximately given by
172

a= sin[(m2¢?)1/%r] , (4.6)

m 2¢2
¢ ~¢ (constant) . 4.7)

The analytic continuation is obtained by rotating to imag-
inary time,

v

T= 2Am?2¢?)1 7 +it,
from which we obtain
1/2
a~ mT(ﬁz cosh[(m2¢2)1/2t] , (4.8)
d=do (4.9)

at small ¢, t=0. This gives the following initial condi-
tions for the Lorentzian field equations

1
m|¢|

The equations of motion have been solved numerically
using a fourth-order Runge-Kutta algorithm. Variable

, d~do, d=~0, =0 atz=0. (4.10)

a~
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step length was incorporated to compensate at small
volumes and the constraint (4.3) was observed to remain
within reasonable limits. Some of the more exceptional
classical solutions are illustrated in Fig. 3, plotted in the
coordinates defined in (3.6).

If we choose the initial ¢, such that when a reaches a
maximum radius (@ =0), we simultaneously have ¢ =0 or
¢ =0, then it is clear that the evolution must be time sym-
metric about this point. It will consequently bounce at its
minimum radius. Bounces 1 and 3 in Fig. 3 correspond to
the former, bounce 2 to the latter condition. Such period-
ic bouncing solutions (having a local minimum for g, i.e.,
a=0) are more the exception than the rule and require
very fine tuning of ¢, just to repeat the period twice
(about one part in 10'°). Indeed this system exhibits clas-
sical instability about periodic solutions. The evolution of
any wave packet which includes one of these periodic
solutions will be irreversible and indeterminate, reminis-
cent of chaotic behavior.

Typical behavior, however is more like that shown in
Fig. 4. After an inflationary epoch with ¢ remaining
comparatively small, ¢ will begin to oscillate, a will ex-
pand to a maximum radius and then begin to recollapse.
In general, the trajectories become singular
(a—0,6— ), ending up far from the starting point in
configuration space because of the initial inflation. Of all
the trajectories surveyed, none were observed to deflate ex-
cept those fined tuned to be very close to a periodic solu-
tion. (Inflation/deflation was checked numerically by ob-
serving the ratio of @ /a and ¢. It is also evident from the
shape of the trajectories.) This does not appear to be in

Y—»

X —

FIG. 3. Classical solutions of the FRW model with the
Hartle-Hawking initial conditions. They constitute a family
starting at zero potential of the Wheeler-DeWitt equation (the
dashed line) and parametrized by the value of ¢o. Three period-
ic bouncing solutions are shown. Bounces 1 and 3 correspond to
a solution having $=0 at the maximum value of a (@max) and
bounce 2 to ¢S=0 at an.x- Bouncing solutions are more the ex-
ception than the rule.
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Y —

X —

FIG. 4. Typical classical solution of the FRW model with the
Hartle-Hawking initial conditions. The universe starts with an
inflationary epoch (a), turns into a “dust-filled” model (b), and
recollapses to a singularity (c).

agreement with the conclusion of Ref. 15, that the set of
inflating solutions is a set of measure one (though strictly,
their analysis is only valid for k=0, —1 models and we
have only studied values of ¢y <2,m =1). If this were so
in the closed model one would expect nondeflating solu-
tions to be rare exceptions. This does not seem to be the
case.

In the KS model, the Lorentzian equations of motion
for a, b, and ¢ are

.. )2 272 2242

bbby L 6" bimid 4.11a)
2 "2 2 2

db +bd +adb +abd > —abm?$*=0, (4.11b)

é+ 3+2_b é+m2=0, (4.11¢)
a b

and the constraint is
A "2 272 22,2
bbi4+ 90~ a_abd” abm’$”_,  411q)

2 2 2 2

The initial conditions for the Lorentzian trajectories
which correspond to the analytic continuation of the Eu-
clidean paths are

V73

azO, b———

m|¢|’
b~0, ¢=~0.

=0, a=do>0,
(4.12)

The universe will begin in a de Sitter phase and will ex-
pand exponentially until the scalar field starts to oscillate.
When the oscillations become very rapid the matter acts
as dust (the effective pressure is zero). It will then behave
like a dust-filled KS universe, somewhat like a FRW solu-
tion, until it reaches a maximum three-volume and starts
to recollapse. As the three-volume decreases to zero size
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the universe behaves more and more like the three-
geometry of the interior of a black hole. The degree of in-
flation and the mass parameter of the black hole are a
function of the initial value of the scalar field ¢,. A typi-
cal trajectory is shown in Fig. 5. [Note: this is in u,v
coordinates (3.11).]

It is important to note that all classical solutions with
the initial conditions (4.12) will become singular. This is
more transparent if the equations of motion are written in
the following coordinates:

a=-exp(p), b=exp(—p+gq),
¢=¢, N=exp(—p+2q).

(4.13)

The equations of motion for p,q,¢é in Hamiltonian form
are

p'=T,, (4.14a)
q'=-7,, (4.14b)
¢'=—7y, (4.140)
7,=exp(—2p+4q), (4.144d)
7 5= exp(2q)—2m?¢*exp(—2p +4q) , (4.14¢)
Fy=—m2pexp(—2p+4q), (4.14

where prime denotes d /N dt. The analytic continuation
requires that p’'>0, so (4.14a) and (4.14d) imply that p
must be monotonically increasing, because its first and
second derivatives are initially positive. For large ¢, we
have 2p’~q’. When the volume of the universe is large
(—p +2q9 >0) and the ¢ field oscillates rapidly, ¢’ will lag
behind 2p’ because of the first term on the right-hand side
of (4.14e). This term reverses the sign of 7; and the
universe will recontract. Since p is monotonically increas-

A B C
t

FIG. 5. Generic solution of the classical solution for the
Kantowski-Sachs cosmology with the Hartle-Hawking initial
conditions. Trajectories of u =b, v=a?2b, and ¢ in function of
time ¢ (N =ab?) are shown. The universe starts with an infla-
tionary era (A), turns into an isotropic “dust-filled” model (B),
and then inexorably recollapses to a singularity (C).
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ing, the first term on the right-hand side of (4.14e) will
dominate and the universe will then inexorably go to the
“cigar” singularity at g = — o0,(b=0). An extensive nu-
merical search for solutions which bounce at small
volume confirmed this conclusion for the initial condi-
tions (4.12).

V. SINGULARITIES AND BOUNDARY CONDITIONS

There has been some confusion about the significance
of singular Lorentzian trajectories in the Hartle-Hawking
formulation. Their inevitability in the KS model con-
trasts with the FRW model and may help to clarify
several ambiguities.

In the first place, there was some doubt whether singu-

lar WKB trajectories would contribute to the wave func-
tion at all.” The set of perpetually bouncing trajectories in
the restricted FRW model provided some foundation for
this hope. Even in this case, however, Page!® has argued
that singular trajectories will provide the dominant contri-
bution to ¥ because the bouncing solutions are a set of
measure zero. In our KS model the veracity of this asser-
tion is not in doubt.
_ Second, these singular trajectories will traverse into re-
gions of minisuperspace where the wave function is
predominantly exponential. The WKB approximation,
however, remains valid for wave packets of these trajec-
tories even up to final collapse, so they will contribute to
an oscillatory part in the wave function at the boundary
and nearby. Previously these regions have been character-
ized as “Euclidean” or “forbidden.”

In order to understand why there can be both oscillato-
ry and exponential contributions to ¥ in certain regions of
configuration space, it is more appropriate to consider
phase space (the space of positions and momenta). It is
only in phase space that certain regions will be strictly
classically forbidden. This distinction is easy to demon-
strate with the simple quantum mechanical potential
shown in Fig. 6. Regions of configuration space forbid-
den for low-energy particles will be accessible for those
which are sufficiently energetic. The same argument ap-
plies here, wave packets which recollapse can have suffi-
cient “kinetic” energy from the scalar field to be above
the potential barrier.

Regions where the main contribution to the wave func-
tion comes from real extrema of the Euclidean action can-
not therefore be interpreted as being classically forbidden.
Recollapsing universes approaching the final singularity
will traverse through them. These regions therefore corre-
spond to a superposition of exponential and rapidly oscil-
lating components.

Third, it should be pointed out that the boundary con-
dition ¥=1 at zero volume for our two minisuperspace
models only accounts for contributions from regular Eu-
clidean paths and not the singular Lorentzian trajectories.
For this reason, the solutions for W in Sec. III can only be
regarded as a first approximation.

Currently we are attempting to estimate these extra
contributions close to the boundary by numerically in-
tegrating along such singular trajectories. The initial flux
of the probability current for a WKB wave packet in the
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V)

FIG. 6. Simple quantum mechanical potential for a one-
dimensional system. Regions of configuration space forbidden
for low-energy particles will be accessible for those which are
sufficiently energetic.

FRW model,’* 8F=38¢, will be conserved along its
path. Using the WKB approximation, we obtain the rela-
tion

as

1 as
32 8¢+

a? 3¢

in the classical region. The WKB approximation remains
valid as the trajectory approaches the boundary. This
knowledge about the magnitude of C at small volume,
combined with the phase S, will provide a better approxi-
mation to V.

Preliminary indications are that this additional contri-
bution is small, the flux is spread out because of the infla-
tionary epoch. However, the program has encountered
some difficulties because of the generic occurrence of
caustics (trajectory crossing points) on the boundary in the
vicinity of thebouncing solutions. In principle, this prob-
lem is surmountable with the introduction of a higher or-
der WKB approximation. Alternatively, another minisu-
perspace model without such caustics may be easier to
deal with. The KS model is under investigation.

Finally, we should end this section with a caveat about
the existence of singularities in the HH formulation.
Perhaps one of the chief motivations for this proposal was
to avoid the problem of specifying boundary conditions at
the Big Bang singularity. This was achieved in the Eu-
clidean path integral (2.1) by a sum over a class of regular
compact geometries. Contributions to the wave function
in any part of (mini)superspace come from nonsingular
geometries.

The reader may wonder, however, to what extent the
semiclassical approximation to (2.1) is valid. It is
achieved in an apparently self-consistent manner because
the semiclassical approximation is valid in the regime of
cosmogenesis. One only requires that ¢>3m, with

8F=—C% 8a (5.1

m le‘Smp for a satisfactory inflationary phase. This
corresponds to an initial energy density safely below the
Planck scale (m@)*<<m,*. This will not remain true
however for the energy densities associated with the final
recollapse of the universe, or in the interior of a black
hole. In these situations our confidence in the Einstein
action (3.1) cannot be trusted because of higher-order
corrections. The Hartle-Hawking formulation will not be
complete until it is applied to a quantum gravity theory
valid on the smallest scales (see Moss,'” Hawking!®).

It it also possible to justify the minisuperspace ap-
proach. It will be valid if the transition probabilities be-
tween “frozen” modes are small.!”” This is justified in the
Hartle-Hawking proposal by the fact that inhomogeneous
modes start in their ground states.* This approximation
will be valid until the inhomogeneous modes reenter the
horizon after the de Sitter era.

For these reasons, it might be more appropriate to
rename the program quantum cosmogony, at the present
stage of development.

V1. THE ANISOTROPY OF THE UNIVERSE

We can characterize the degree of anisotropy in the KS
model by rewriting the constraint equation (4.11d) as
2/3
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where v=ab? is the volume, s =a /b is a measure of the
anisotropy, and
i_b

a b

s __1L
V3 |s| V3
is the magnitude of the shear.?’ The left-hand term in
(6.1) corresponds to the expansion energy density, the first
two on the right to the matter energy density p,, = T%,
and the latter two to the anisotropy energy density pap;s.

At the end of the de Sitter phase, during which
d/a=b/b and a and b become very large, it is clear that
the shear and the anisotropy energy will be very small.
Current  observations  which  place the limit
Panis/Pm < 10711 (Ref. 21) require that the inflation be
driven by an initial ¢o>3. A result which is consistent
with the requirement that ¢o,>7 if p,, is to be of its
present magnitude. These estimates are in good agree-
ment with those of previous perturbative treatments of an-
isotropy.*?!

The significance of this analysis is most evident howev-
er when we consider the recollapse of the universe. After
the point of maximum expansion, b will be negative and
the two terms in the shear (6.2) will no longer cancel. The’
anisotropy energy will inexorably begin to grow and even-
tually become infinite in the final “cigar” singularity
(a— o ,b—0). From an early stage onward in the recol-
lapse, the energy density will be dominated by the aniso-
tropy energy Panis > Pm -

The hope that the anisotropy of the universe would
necessarily decrease at small volumes in the Hartle-
Hawking formulation appears to be unfounded. In gen-

o= (6.2)
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eral, the reverse will be true for a collapsing universe.
Similarly, anisotropy will inevitably grow without limit in
the interior of a black hole.

VII. THE ARROW OF TIME

A physical correlate for our subjective experience of
directed temporality can be found in the second law of
thermodynamics, the observed increase of entropy. Since
this correlate apparently cannot be derived from known
physical laws, because they are time reversal invariant,
some have sought to explain its origin in a low entropy in-
itial state of the universe.?? In this manner, the second
law becomes a selection principle for the boundary condi-
tions of the universe.

Perhaps the most cogent expression of this in the con-
text of classical general relativity has been that of Pen-
rose® in his Weyl curvature hypothesis. He proposes that
there should be a complete lack of chaos in the initial
geometry of the universe: that the Weyl curvature should
vanish at any initial singularity and that matter should be
in thermal equilibrium. Subsequently, however, during
the expansion of the universe, gravitational collapse will
take place, black holes will form, and the increased gravi-
tational entropy will manifest itself in a nonzero Weyl
tensor.

Taking the term “initial geometry” in a loose sense, it is
readily apparent that the KS minisuperspace model dis-
cussed here is an explicit example of such behavior. At
the earliest stage for which we can define a classical no-
tion of time, the universe is a de Sitter-type, exiting to an
FRW-like phase with a vanishing Weyl curvature. After
maximum expansion, however, the amplitude of the Weyl
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curvature grows and eventually diverges as b 3. This is
not the case, of course, for the more restricted and unreal-
istic FRW model because the Weyl tensor is constrained
to be zero throughout the evolution.

In the full superspace, the perturbative treatment of
Halliwell and Hawking* demonstrates that the universe
will begin in a de Sitter-type phase with the matter fields
as ordered and homogeneous as the Uncertainty Principle
will allow. Subsequently, however, matter will clump,
black holes will form (as we have seen, irreversibly), and
in general upon recollapse the universe will reach a final
state of immense complexity with a divergent Weyl ten-
sor. In the Hartle-Hawking formulation, there appear to
be no grounds for the assertion that the thermodynamic
arrow of time will reverse at the point of maximum ex-
pansion,?? an idea originally due to Gold.**

We contend, therefore, that the Hartle-Hawking propo-
sal defines a global and irreversible arrow of time. It
naturally incorporates Penrose’s Weyl curvature hy-
pothesis, as Vilenkin?® has already claimed for his own
boundary conditions. Once again we see a demonstration
of the comprehensive economy latent in a proposal for the
boundary conditions of the universe, such as that of Har-
tle and Hawking.
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