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Torsion as a source of expansion in a Bianchi type-I universe
in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density
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We show that a generalized (or "power law") inflationary phase arises naturally and inevitably in

a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan grav-
itation theory with the improved stress-energy-momentum tensor with the spin density of Ray and
Smalley. This is made explicit by an analytical solution of the field equations of motion of the fluid
variables. The inflation is caused by the angular kinetic energy density due to spin. The model fur-
ther elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged
tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in

damping the inflation.

I. INTRODUCTION

The inflationary universe model, in which expansion is
~ ~

accelerated (R & 0), is expected to occur in the early
Universe containing matter in the form of bare quantum
fields, the expansion being exponential [R —exp(kt)] (Ref.
l). Power-law inflation, in which the expansion scale fac-
tor obeys a power-law relation with the time, is also a pos-
sible result of those physical processes in the early
Universe. It is important because it too will solve such
cosmological problems as horizons, homogeneity, and flat-
ness.

Inflation is important further because it is thought that
it can solve the problem of the apparent large-scale isotro-

py of the Universe. This is so because its presence mim-
ics the acceleration produced by the existence of a cosmo-
logical constant, which isotropizes the Universe. There
is, however, the model in the Einstein-Cartan gravitation-
al theory with the Ray-Smalley improved energy-
momentum tensor with spin. Gasperini has proven that
for the case of an rms spin density. We will, however,
show there that the inflationary epoch occurs because of
the density of spin angular kinetic energy, which is a local
quantity dependent on the spin, and so it is not necessary
to resort to an rms expectation value of the spin-density
operator to generate the spin terms necessary to induce in-
flation. Our model is a simple anisotropic (Bianchi type-
I) cosmological model with shear, but vanishing spatial
curvature (Euclidean model). Formal solutions of the
Einstein-Cartan equations and of the fluid equations of
motion are exhibited and shown to lead to conditions pro-
ducing an inflationary epoch in the very early Universe.
The inflation is due to the angular kinetic energy density

35

of the spin. The shear is not effective in preventing or
damping the inflation in the models. The model further
brings out the relationship between the fluid vorticity, the
angular velocity of observers' inertially dragged and
Fermi-transported reference tetrads, the precession of the
principal axes of the ellipsoid of the shear rate, and the
torsion. We will conclude with comments of further work
and suggestions for new investigations of these and related
models.

In Sec. II we give the basic equations of the model fol-
lowing the pattern of Bianchi type-I spacetime and show
its behavior in a Riemann-Cartan spacetime in Sec. III.
We present our conclusion in Sec. IV.

II. FORM OF THE MODEL

where we define the torsion to be

a a & aS]„——P)v ) —,C (3)

The torsion here is defined to be the true antisymmetric
portion of the affine connection (nonzero in a holonomic
frame), with the C s the antisymmetric portion (if any)
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In this paper, we choose the metric to have the follow-
ing form, as used by Misner:

ds = —dt +e e ~ -dx'dxj

where a is a scalar function of time and exp(P) a trace-
less, 3&3 matrix, also a function of time. Following the
method of differential forms, we write Cartan's first equa-
tion, connecting the basis forms with torsion S„as

dc&) +co v ~ co —
2 S» cc) R, cc)
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due to the choice of tetrads. Choosing a basis one-form
set which diagonalizes the above metric and puts its into
Minkowski form gives

overdot indicates partial differentiation with respect to
time, as in

co =dt, (4a)
(13a)

co'=e ep' dxj .J (4b)

EA pEB gAB

AE PEA v gPv

(6a)

(6b)

Following Ray and Smalley, we write an expression giv-
ing the orientation of the spin density s„, angular
momentum m& of the tetrads, and the improved stress-
energy-momentum tensor (SEMT):

s„=k(x)(E'„E„E'+„)—,
ulq ———,[D (E"p)Eq D(E" )E—qq],

T&,r s,ll, &
——p(l+e+P jp)u u +Pg

+ 2pD ( u „)u ' s ~I"+V"(pu ' s ~'")

(a p)V
PMv S

(7a)

(7b)

(7c)

In a Bianchi type-I cosmology, all the spatial structure
constants are zero. Thus,

C'Jk ——0 .

The tetrads have the following properties. We use capital
latin indices to refer to anholonomic coordinates, and
greek indices refer to holonomic coordinates. Thus

while the directional covariant derivative along the four-
velocity is indicated by

D(A;j. . . )=A;j. . . . .,u'.
The quantity

e p e-pj

(13b)

(14)

which occurs when doing the computations involved in
Cartan s first equation, is split into a symmetric and an-
tisymmetric part, the former related to the shear, the
latter related to the twist of the congruence of the normals
to the homogeneous hypersurfaces. These are written as

o.;k ——e (; ijIe k),

&k e ['ijie k]

(1Sa)

(1Sb)

The connection two-forms are summarized in Table I.
Using the connection two-forms summarized above, we

compute Cartan's second equation, which is

Op =drop +co A cop

2 R pp~~ R, co

The computations involved in Eq. (16) are somewhat
tedious, and we shall state the results only. The nonzero
comPonents of the Riemann tensor are (klj. =o lj + rlj )

Using tetrads consistent with the choice of a Bianchi
type-I (see Ref. 8, p. 110) structure in Eq. (7a), the
nonzero components of s& are

Opj R Oj0

=a5;j+cr;1 +(a+cr);j +(cr r);j, (17a)

spaz ——k(x)= —s2& . (8) R '000=R ok=R 000=0i 0 (17b)

a a
Spv =

2 Kpspvg (10)

where K=8~G, and G is the gravitational constant. For
the purposes of this paper, we choose to work in a comov-
ing frame ( u =50 ) with normalized four-velocity
(u u = —1). Thus, the nonzero components of trace-
free torsion are

0 0 0Si2 =
2 KpS &zQ ——S2

which gives a relationship between the torsion and proper
torsion:

Again, following Ray and Smalley, the trace-free (proper)
torsion S jl", which is defined as

SPv —SPv +, 51 S )P (9)

is related to the spin density s„by the relationship

0 0R pj= —R

=a5j+crj+ (a+(r)ij + ((r.r)j

+ 2 (Slj. +aS;j +kljS 7l;Sj' ), —

jkl (a5k+a k)(a5jl+ajl)
—(a5'l+cr 'l )(a5jk+o .k)

+ , [Sjl (a5'k+—'
|T) kS,k (a5'l+—(r'l)] .

(17c)

(17(l)

TABLE I. Connection two-forms.

Using the above Riemann tensor components, we next
calculate the Ricci tensor components Rz by contracting
on the first and third indices of the Riemann tensor. The
nonzero components of the Ricci tensor are

Sly ——Sl2 ——&Kpk(x)u = —S2&
0 0 0 0 (12)

These values of torsion will be used in the model under
consideration.

Proceeding with the calculation, we calculate the con-
nection two-forms using Cartan s first equation. In this
paper we use the following notation for derivatives. The

co Jk
—0

6jk+PJI + 2SJk )~

(d6J.k +0Jk )co

0
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TABLE II ~ The components of the Einstein tensor.

G„„(unprimed 6 's are standard results from GR)

0
0

0
l

0
1

Goo

0 (i = 1,2, 3)
0 (i = 1,2, 3)

G]z +
G]3 +

z {S]z +3ciS]z )

1— 0
z &z3S]z

Gz] + z (Sz] +3dSz] )

Gzz

G» +

G3z—

1— 0
z w]3Sz]
1 — O

z &z3S]z
I — O

z +13S21

Ro; ——R;o——0

R 0——3a+3(a) +Cr;2.O 'J,

R;2 =(a5; J +o; 2) +3a(a5; J +o.;2) +( cr. T); 2

+ —2'(S; 0+3aS;J. —ZTk(;S~l" ) .

(18a)

(18b)

general-relativistic (GR) theory is listed only symbolically
(see Misner for regular GR components).

To calculate the Ray-Smalley tensor components in our
model we will need the affine connections, which are con-
tained implicitly in Table I. Using the relationship that
co

&
——I ~&co]8 one determines

The curvature scalar R is

R =6'+ 12ci +o.gJo

The 16 components of the Einstein tensor, defined by
1

Gp~ =Rpv 2 gp&R

(19)

(20)

0 ~ — ] OI,J ——a5,J +o.,J
——zS,J

I Jo ——ci5'J +O'J

I Jk ——0

(21a)

(21b)

(21c)

(21d)
are summarized in Table II. For brevity's sake, we have
written explicitly only the additional terms due to torsion.
The Einstein tensor which one obtains in the regular r,',=r' =0

(21e)

(21f)

TABLE III. Field equations.

G 2' —V*(Q ~" Qz'& +Q&~~)=—KTg~

Field equations

0

0

0

0

3' —
z o;j(T:Kp( 1 +e)

0=0, i = 1,2, 3

0=0, i = 1,2, 3

—2a —3(a)' —zo;, cr "+cr11+[cT,—T]11=KP+KpT21$
'

cr12+3cr12a+ [o,T]12——,(S„+3aS» ) =0
a12+ o13 + [cr T]13 2 S12 T23 —

2 KpT23s

cr21+3cr21a+[cr, T]21—
z (S21 +3aS21 )=0

—2a —3(a) —
2 crjo ' +ozz+ [o T]22= KP +KpT1zS

o»+ 3o»a+ [o., T]»——,S„T»——,
' KpT„s"

cr31+3o31a+[o,T]31—
z S,z T23 2 KpT23S

'

cr32+ 3crzza+ [cr, T]32 2 S21 T13—
2 KpT13s

—2a' —3(a) —
z cr,zo 'J+ cr33+ [o 'T]33 —KP
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The coupling of the Einstein tensor in the Einstein-
Cartan theory with the Ray-Smalley improved SEMT in-
volves writing the field equations in the so-called self-
consistent form:

G ~ Vq(Q ~& Q~& +Q~ ~) KTg~y sm, 11ey (22)

where

(a=2,P=1): Cr+3O21a+[O, T]21

——, (S21 +3aS21 )=0.
Reversing the indices in Eq. (25b), we obtain an equa-

tion identical to Eq. (25a) except for the terms involving
torsion. (It can be shown that [cr,T];~ =[o.,T]~;. ) Doing
this operation, Eq. (25b) becomes

V'( )=V„( )+2S„( )

and Q 131' is the modified torsion, defined as

Q P=S 13"+2%Sm- .

(23a)

(23b)

(iz 2 p —1 ) ~ o 12+3o 12'12+ [o T]12

+ —,'(S,2 +3aS,2 )=0. (26)

Because we are considering the mass-conserving case, the
form of the torsion in our model becomes

Comparing Eq. (26) with (25a), we immediately see that
the term involving torsion (fourth term) must be zero.
Thus, the fourth term must satisfy the identity

Qap" =Sap" =Sap" (23c) (S12 +3aS12 )=0 (27}
and V„( )=V' ( ).

Summarizing the field equations generated in the
model, we summarize below versus the values of a and P
in Table III.

One note should be made on the appearance of the field
equations. The (a=O, P=O) equation, at first appearance,
seems to contain no spin energy terms. The energy term,
however, is there by virtue of the e term on the right-hand
side of the equation. Recalling the thermodynamic laws
of the fluid, as presented by Ray and Smalley, the dif-
ferential of energy de is given by

de= Tds Pd(1/p)+——,w ~ds ~ . (24)

Although the specific form of each of the thermodynamic
variables for the fluid is unknown in our model, one may
say that the integrated energy e represents a correction to
the standard energy term usually written in the standard
theory of 'perfect fluids. The usual term for the Too
energy-density component of the SEMT is simply ~p. In
this model, we assume that the correction term e is small
compared to the total energy due to fiuid density. Thus,
in the scaling laws developed in the next section, we let
p' =p(1+e) have the same scaling behavior as p.

which allows us to solve for the torsion as a function of
time:

since u =1. Thus, substituting Eq. (29) into the right-
hand side of the (a = 1,P =3) field equation and subtract-
ing from both sides, we can write

+13+3+13&+[& T]13 2 S12 T23 (30a)

while the (o.=3,@=1)equation, using the same identity,
can be written

~31+3~31++[~ T]31 2 S12 T23 (30b)

Since the shear and shear-vorticity commutator terms are
symmetric in their indices, one can transform Eq. (30b)
into the following, by switching indices:

&13+3%13%+[N~T]13—
2 S12 T23 =0 . (30c)

S12 =S12 (0)e

Examining the (a=i,13=3) field equation, we can
make an identity immediately by recalling that

(29)

III. BEHAVIOR OF THE MODEL WITH TORSION

From the field equations contained in Table III, we
may make the following observations. The (a=O, /3=0),
(a=O, P=i), and (a=i,P=O) components are identical to
their GR counterparts. Torsion appears in all the other
field equations. In order to determine the effect of torsion
on the solutions to the field equations, we must demand
self-consistency. To elucidate, let us consider the
(a = 1,P=2) and (n =2,P= 1) equations. These two are
related since the CxR terms involve shear terms which are
symmetric, the expansion which is a scalar, and the an-
tisymmetric product of shear and vorticity. Let us exam-
ine the (a=1,P=2) and (a=2,P=1) equations in more
detail. Writing them out, we have

—6a —9(a) ——, cr =3KP+2KpT, 2s (31}

Writing the (a=O, P=O) field equation

3(a ) —, cr;J.o'~ =Kp( 1+e), — (32)

where, recalling from previous argument
[p=p'=p(1+e)], we simply replace p(1+e) by p in the
following equations. Thus, one can solve for the time rate
of change of the expansion to be

To have consistency between Eqs. (30a) and (30c), we set
T23 —0. Similar reasoning using the (a =2,p= 3 ) and
(a=3,@=2) field equations yields T» ——0.

Adding the (a= 1,P=1), (a=2,P=2), and
(a=3,P=3) equations together, and using the fact that
Tr[cr]=0 and [cr,T];; =0. The resulting equation can be
written

——,(S12 +3a$12 )=0, (25a)

(CX) = 60' + 3Kp

Equation (33) can be substituted into Eq. (31) to yield

(33)
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a= —]co —,' ~(p+P)+(]r/3)r]qs' (34) ~0033=~33 ~ (41c)

The expansion term a can be written in terms of an ap-
parent rate of change of radius of the Universe (Hubble
expansion) as

cr]2 ——2X]2 cos])t+ (X]1—Xzz) sing,

where

(41d)

ci=R /R, (35a)
~0lJ'= 2OVe (41e)

a =R /R —(R /R ) (35b)

~ ~

R/R = ——,P~ —P/6 —P/2+ 3P712$' (36)

To arrive at the appropriate power laws for each of the
terms in Eq. (36), it is necessary to make use of several
identities. Using the contracted Bianchi identities, it is
possible to arrive at the first-order differential equation
relating density and pressure (letting P =py); then,

p= —3a(p+P) (37a)

Substituting the above plus writing the shear scalar as
p = —,

' o, Eq. (34) can be written as (let ]r = 1)

and

])I=2 f r]zdr . (41f)

2(]T]l +ozz +]r]2 +]T]%22)

Performing the indicated operations, we obtain

Pcr [(~]]) +(~22) +(~]2) +~]1~22

+&]2(&1] ~22)»n24]

(42)

(43)

The shear scalar can be represented as (sum of nonzero
terms)

-2 — 2 — 2 — 2 — 2
~11 +~22 +033 +2CT12

gives

= —3a(1+y)p, (37b) In Eq (43)., we replace all X,J by their corresponding o.
;~

terms:

~ —3(]+r) (39)

Because of the relationship between p and P, we can im-
mediately write a power law for pressure P as

e
—3aE 1+y)

p =p0e

From Eq. (35a), one can write exp(a)=R which we can
substitute in Eq. (38) to find

Pcr= t. (O 11) +(]T22) +(]r]2) +]2']]O'22

+0 ]2(a ]]—cr 22) sin2$]e (44)

Thus, the term p scales as R
To determine the scaling laws for the shear term ~12 in-

volved in Eq. (36), we use the result of Ref. 9 which shows
by dimensional analysis that the shear evolution is related
to the proper time T by the relationship

(40)
0 ~—1

7 I) —7g) f (45)

o» ——X]](1+cosp)+X&2(1—cosp)

+2K]2 sing, (41a)

]rzz =&zz( 1+cosf ) +X ] ]( 1 —cosp )

—2X,2 sing, (41b)

The scaling for the shear scalar term, p = —,
'
0;~0 'J, can be

determined by the following analysis. From the form of
the torsion chosen (spin vector aligned along the z axis),
we express the nonzero components of the coordinate
shear in terms of a "shear ellipsoid" with the tetrads
aligned such that

To get a scaling relationship between R and time T, we
proceed as follows. From the (a=O, P=O) field equation,
one can write

(R/R) = —,p R + DR (46)

For y =0 (dust), the last term goes as R . For y = —,

(radiation), the last term goes as R . For y= 1 (stiff
matter), the last term goes as R . Depending on the re-
gion of interest (R ) or (1) and the value of y, one or
the other term in Eq. (46) will dominate. As an example,
for dust (y =0) and R ) 1, the second term will dominate.
Thus, we approximate the differential equation in Eq. (46)
and write

TABLE IV. Scaling relationships.

Type matter

Dust: y =0

Radiation: y =
3

Stiff matter: @=1

Dominant term

3P~
OR —3

R3Po
0R —4

3 (P +Po )R

(pe+ po)R

R values

R(1
R &1
R(1
R &1
R(1
R &1

Scaling law

R-T'"
R-T'"
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(R/R) =poR

Solving for R, we obtain

R =
2 (pp)' (T —To),

which indicates that R scales with respect to time as

(47)

(48a)

0 0 —8+ —,pawns )pR

for radiation (y = —, )

(53a)

(48b)

Proceeding similarly for the other values of y both for
R ~ 1 and R & 1, we derive similar scaling relationships
between R and T which are summarized in Table IV. As
can be seen, for all matter types and R &1, R —T'
Thus, T goes as R and we write the scaling law for shear
as

~ —3
+12 %12~

To complete the scaling laws for all the terms involved
in Eq. (36), we need to postulate the scaling properties for
the spin density s' . In order to do this, we write the
first-order differential equation relating the time evolution
of spin density to tetrad rotation rate and as spin density:

0 0 —9+ p po&izs~zR

and for stiff matter (y = 1)

R = —, (po —p~)R— + —,p01 ~ps ~pR
0 —5 ~ 0 0

(53b)

(53c)

It can be seen from Eqs. (53a)—(53c), that for small values
of R (less than 1 in normalized coordinates), the spin den-
sity term will dominate as a large positive term, thus pro-
viding the source for increasing expansion; shear does not
effectively damp the expansion. According to our model,
a radiation-dominated, early epoch cosmology will have
its expansion strongly driven by the spin kinetic energy of
the fluid.

I l(sij } wlis j +wjl i (50)
III. CONCLUSIONS

which shows that the time derivative of spin density is
proportional to terms such as m;Is &. Thus, we may write
a differential equation relating the time rate of spin and
spin and tetrad rotation as

S =MS (51a)

which gives ( w = r=r /T)—
ds/s = —~ dT/T .

Solving for s gives

s&& —1/T-R —3

(51b)

(51c)

Combining the scaling laws for density, shear, and spin,
we obtain

(51d)

Combining Eqs. (39), (40), (44}, and (51d) in Eq. (36},
we arrive at

R/R = —(y/2+ —,
'

)poR "+r' —', p R-
+ t 0 0 R —3(3+y)

3 pO+12 12 (52)

The usual relationships between matter density and pres-
sure used in cosmological models are noninteracting dust
(@=0), radiation (y= —, ), and so-called "stiff" matter
(y=1). One immediately concludes that for dust, radia-
tion, and stiff matter, the term containing shear and spin
density scales as R, R ', and R ', respectively.
Putting in the respective values for y into Eq. (52},we ob-
tain, for dust (y=0),

We have shown by exact solution that expansion, in the
early, radiation-dominated phases of a Bianchi type-I
Einstein-Cartan cosmology, is driven positively by the
spin kinetic energy of a perfect fluid using the improved
energy-momentum tensor of Ray and Smalley. It is im-
mediately obvious that R =0 is not a solution to either
Eq. (53a), (53b), or (53c). A solution set to these equations
can be found, but their exact form depend on the boun-
dary conditions. We conclude that even in this simple
model, the spin-energy not only drives the expansion, but
prevents the occurrence of the singularity and causes the
apparent radius of the Universe to "bounce. "

Gasperini has demonstrated a spin-driven inflation us-
ing a time-averaging and scaling analysis of the Einstein-
Cartan equations. Kopczynski' and Trautman" have ob-
tained minimal radius solutions for torsion cosmological
models containing polarized dust.

It is apparent from this simple model that the proper-
ties of the standard Bianchi type-I cosmology are drasti-
cally changed when one goes to an Einstein-Cartan
cosmology with spin density using the Ray-Smalley im-
proved energy-momentum tensor of spinning fluids. One
could thus argue that astronomical observations which
lead one to classify behavior as a Bianchi type of higher
number in standard general-relativistic theory, could, in
reality, be torsion "masquerading" itself as some sort of
pseudocurvature in a universe which obeys the Einstein-
Cartan formalism. Much work remains to be done in this
area, including a systematic reexamination of cosmologi-
cal properties of all Bianchi-type structures within the
framework of the correct description of spinning fluids in
the torsion theory of gravitation.
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