Effects of heavy subdominantly coupled neutrino mixing on l^+ polarization in $K_L^0 \rightarrow \pi^- l^+ \nu_l$ decays

Sardar Singh and N. K. Sharma Department of Physics, University of Rajasthan, Jaipur-302 004, India (Received 26 June 1986)

The effects of heavy subdominantly coupled (HSC) neutrino mixing, without and with the inclusion of right-handed currents (RHC's), on l^+ polarization in K_{l3}^0 decays are investigated. The changes in average polarization components due to the HSC neutrino mass (≤ 125 MeV) and the RHC factor (≤ 0.2) are less than one percent for μ^+ and about 0.01% for e^+ . A large uncertainty in the experimental value of ξ renders it difficult to discern HSC neutrino mixing effects or RHC contributions in μ^+ polarization measurements. Electron polarization, if measured, could be decisive in ascertaining the RHC admixture even if a few percent of HSC neutrino mixing is present.

In the past few years there has been a good deal of activity investigating the effects of neutrino masses and mixing in the decays of leptons¹ and mesons,^{2,3} among several other processes.⁴ In this paper we investigate the effects of heavy subdominantly coupled⁵ (HSC) neutrino mixing on the l^+ ($l = \mu, e$) polarization in $K_L^0 \rightarrow \pi^- l^+ v_l$ decays⁶ with a view to ascertain whether these effects could be discernible in present-day experiments.⁷ In particular, we obtain the expression for the CabibboMaksymowicz polarization vector⁸ with the inclusion of neutrino mass mixing¹⁻³ and right-handed currents^{3,9} (RHC's), and estimate the effects of HSC neutrino mixing on longitudinal, perpendicular, and normal components of the l^+ polarization without and with the admixture of RHC's.

The matrix element for the decay with the inclusion of neutrino mixing and RHC is given by^3

$$\mathcal{M} = (G/2^{1/2}) V_{us}^{L} \sum_{i} U_{li}^{L^{\dagger}} [(p_{K} + p_{\pi})^{\lambda} f_{+}(q^{2}) + (p_{K} - p_{\pi})^{\lambda} f_{-}(q^{2})] [\bar{v}_{i} \gamma_{\lambda} (1 - \gamma_{5}) l + C_{R} \bar{v}_{i} \gamma_{\lambda} (1 + \gamma_{5}) l], \qquad (1)$$

where

$$G = 2^{1/2} g_L^2 / 8M_L^2 ,$$

$$C_R = g_R^2 M_L^2 V_{us}^R U_{li}^{R^\dagger} / g_L^2 M_R^2 V_{us}^L U_{li}^{L^\dagger} ,$$

 g_L and g_R denote, respectively, the field strengths for left-handed (LH) and right-handed (RH) gauge fields in the non-left-right-symmetric $SU(2)_L \times SU(2)_R \times U(1)$ model; M_L and M_R are the masses of W_L and W_R gauge bosons; V_{us}^L and V_{us}^R are the Kobayashi-Maskawa mixings for LH and RH quarks;¹⁰ U_{li}^L and U_{li}^R are the LH and RH neutrino mixing elements and C_R denotes the RHCcontribution parameter.¹¹

The expression for the Cabibbo-Maksymowicz polarization vector $\mathbf{P} = \mathbf{A} / |\mathbf{A}|$, with the inclusion of neutrino mixing and RHC's, is derived by using the matrix element (1). The vector \mathbf{A} , in the rest frame of the kaon, is given by

$$\mathbf{A} = \sum_{i} |U_{li}^{L}|^{2} \left[(1 - C_{R}^{2}) \left\{ \left[a_{1}(\xi) + \frac{m_{i}^{2}m_{K}\operatorname{Reb}(q^{2})}{m_{l}} \right] \mathbf{p}_{l} - [a_{2}(\xi) - m_{i}^{2} |b(q^{2})|^{2}] \left[\mathbf{p}_{l} \left[\frac{m_{K} - E_{\pi}}{m_{l}} + \frac{(\mathbf{p}_{\pi} \cdot \mathbf{p}_{l})(E_{l} - m_{l})}{m_{l} |\mathbf{p}_{l}|^{2}} \right] + \mathbf{p}_{\pi} \right] \right\} + m_{K}\operatorname{Im}\xi(q^{2})\mathbf{p}_{\pi} \times \mathbf{p}_{l} \left[1 + C_{R}^{2} - 2C_{R}\frac{m_{i}}{m_{l}} \right] \right],$$

where

$$a_{1}(\xi) = 2m_{K}^{2} [E_{\nu_{l}} + \operatorname{Reb}(q^{2})(W_{0} - E_{\pi})]/m_{l} ,$$

$$a_{2}(\xi) = m_{K}^{2} + 2\operatorname{Reb}(q^{2})m_{K}E_{l} + |b(q^{2})|^{2}m_{l}^{2} ,$$

$$b(q^{2}) = \frac{1}{2} [\xi(q^{2}) - 1], \quad W_{0} = (m_{K}^{2} + m_{\pi}^{2} - m_{l}^{2})/2m_{K} ,$$

<u>35</u> 227

(2)

$$\xi(q^2) = f_{-}(q^2)/f_{+}(q^2), \ m_i = m(v_i)$$

The form factors $f_{\pm}(q^2)$ specify the behavior of the hadronic current. Time-reversal invariance requires f_{\pm} and f_{\pm} to be relatively real, i.e., $Im\xi=0$. Consequently the last term in Eq. (2) representing the l^+ polarization component normal to the decay plane vanishes. In general, to allow for the possibility of breakdown of time-reversal invariance, f_+ and $f_$ are taken to be complex (see, e.g., Ref. 12, pp. 474-476). At present, measurements of the normal component of muon polarization give an average value Im $\xi = -0.020 \pm 0.022$ (see Ref. 13). On retaining the term containing Im ξ , Eq. (2) reduces to the usual expression of Cabibbo and Maksymowicz⁸ for the case of zero neutrino masses, no mixing and zero RHC admixture.

The longitudinal, perpendicular, and normal components of the l^+ polarization are defined parallel to $\hat{\mathbf{p}}_l$, perpendicular to $\hat{\mathbf{p}}_l$ [in the decay plane along the direction $\hat{\mathbf{p}}_l \times (\hat{\mathbf{p}}_{\pi} \times \hat{\mathbf{p}}_l)$] and normal to the decay plane along the direction $\hat{\mathbf{p}}_{\pi} \times \hat{\mathbf{p}}_l$, respectively.¹⁴ The expression for the longitudinal polarization (P_L^l) is given by¹⁵

$$P_L^l(E_l, m_v, C_R) = \frac{1 - C_R^2}{1 + C_R^2} F_L^l(E_l, m_v, C_R) P_L^l(E_l, 0, 0) , \qquad (3)$$

where

228

$$P_L^l(E_l,0,0) \equiv P_L^l(E_l,m_v=0,C_R=0)$$
,

is the longitudinal polarization¹² for the case of vanishing neutrino masses and zero C_R , and

$$F_{L}^{l}(E_{l}, m_{\nu}, C_{R}) = \frac{\sum_{i} |U_{li}|^{2} f_{L}^{i}(E_{l}, m_{i})}{\sum_{i} |U_{li}|^{2} \{h_{1}^{l}(E_{l}, m_{i}) - [C_{R}/(1 + C_{R}^{2})]h_{2}^{l}(E_{l}, m_{i})\}}$$
(4)

The complete expressions of the functions $f_L^l(E_l, m_i)$ and $h_{1,2}^l(E_l, m_i)$ are lengthy and are given in the Appendix.

It may be emphasized that the neutrino-mixing contributions are congregated in the function F_L^I which attains a constant value one for massless neutrinos. As such, in order to have an idea of neutrino mass contributions to this function, we display the behavior of its constituents f_L^l $(l = \mu, e)$ and h_2^l in Figs. 1 and 2, respectively. The nature (not shown here) of the function h_1^l is almost identical to that of f_L^l except for a slight difference in numerical values. The expressions for perpendicular (P_P^l) and normal (P_N^l) components of the l^+ polarization, with the inclusion of neutrino mixing and RHC's, are given by¹⁵

$$P_P^l(E_l, m_\nu, C_R) = [(1 - C_R^2)/(1 + C_R^2)]F_P^l(E_l, m_\nu, C_R)P_P^l(E_l, 0, 0)$$
(5a)

and

$$P_N^l(E_l, m_v, C_R) = F_N^l(E_l, m_v, C_R) P_N^l(E_l, 0, 0) , \qquad (5b)$$

where

$$F_{P,N}^{l}(E_{l},m_{v},C_{R}) = \frac{\sum_{i} |U_{li}|^{2} f_{P,N}^{i}(E_{l},m_{i})}{\sum_{i} |U_{li}|^{2} \{h_{1}^{l}(E_{l},m_{i}) - [C_{R}/(1+C_{R}^{2})]h_{2}^{l}(E_{l},m_{i})\}} .$$

The functions $f_{P,N}^{l}(E_{l},m_{i})$ are given in the Appendix. The dependence of f_{P}^{μ} , f_{N}^{μ} , f_{P}^{e} , and f_{N}^{e} on lepton energy and neutrino mass is almost identical to that of f_L^{μ} and f_L^{e} shown in Fig. 1.

In the present three-generation neutrino world (i = 1, 2, 3), the current experimental limits on neutrino masses are $20 < m_1 \le 45$ eV (Ref. 16), $m_2 \le 250$ keV (Ref. 17), and $m_3 \le 125$ MeV (Ref. 18). This holds if one assumes¹⁹ that v_e is principally v_1 , v_μ is mainly v_2 , and v_τ is v_3 . In order to have an order-of-magnitude estimate of the effects of neutrino mass mixing, we note that the relative contribution of neutrino mass m_i depends on the ratio $\delta_i = m_i/m_K$. The present mass limits give $\delta_1 \le 10^{-7}$, $\delta_2 \le 10^{-4}$, and $\delta_3 \le 0.25$. As such, we may take $\delta_1 = \delta_2 = 0$ for estimating the effects of HSC neutrino v_3 mixing. With the use of the unitarity condition $|U_{l1}|^2 + |U_{l2}|^2 = 1 - |U_{l3}|^2$, expression (3) becomes

$$P_L^l(E_l, m_3, C_R) = \left[(1 - C_R^2) / (1 + C_R^2) \right] F_L^l(E_l, m_3, C_R) P_L^l(E_l, 0, 0) , \qquad (6)$$

where

$$F_L^l(E_l,m_3,C_R) = \frac{1 - |U_{l3}|^2 [1 - f_L^l(E_l,m_3)]}{1 - |U_{l3}|^2 \{1 - h_1^l(E_l,m_3) + [C_R/(1 + C_R^2)]h_2^l(E_l,m_3)\}}$$

We plot in Fig. 3 the function $F_L^{\mu}(E_{\mu}, m_3, C_R)$ for $m_3 = 75$ and 125 MeV, $C_R = 0$ and 0.2, for two different values of neutrino mixing element.²⁰ We note that the HSC neutrino mixing contributions to this function are small and change slightly for finite²¹ $C_R(=0.2)$. At the kinematic cutoff of E_{μ} , F_L^{μ} approaches unity. The nature (not shown here) of the other two functions F_P^{μ} and F_N^{μ} that would occur in the corresponding expressions of P_{μ}^{μ} and

FIG. 1. The variation of $f_L^l(T_l, m_i)$ with lepton kinetic energy T_l $(l = \mu^+, e^+)$. The solid curves are for $f_L^\mu(T_\mu, m_i)$ and the dashed curves are for $f_L^e(T_e, m_i)$. The single circle, double circle, triple circle, single cross, and double cross on the curves represent $m_i = 25$, 50, 75, 100, and 125 MeV, respectively.

 P_N^{μ} in the v_3 dominance limit is similar to that of F_L^{μ} . We give below the estimates of HSC neutrino mixing effects to the three components of μ^+ polarization for the case of $m_3 \leq 125$ MeV, $|U_{\mu3}|^2 \leq 0.059$ (Ref. 22), without and with the inclusion of finite C_R .

We define

$$\Delta P^{l}_{\beta}(E_{l},m_{3},0) \equiv |P^{l}_{\beta}(E_{l},m_{3},0) - P^{l}_{\beta}(E_{l},0,0)| ,$$

where $\beta = L$, P, or N. Then, we find that (i) for $C_R = 0$,

FIG. 2. The nature of the function $h_2^{\mu}(E_{\mu},m_i)$. The description of the curves is identical to that of the solid curves shown in Fig. 1. The function $h_2^e(E_e,m_i)$ (not shown here) is approximately 2 orders of magnitude (m_e/m_{μ}) smaller than h_2^{μ} and has an identical behavior.

FIG. 3. The variation of $F_L^{\mu}(E_{\mu}, m_3)$ with E_{μ} . The solid and dashed curves are for $m_3 = 75$ and 125 MeV, respectively. The single and double arrow on the curves are for $C_R = 0$ and 0.2, and the single and double cross on the curves are for $|U_{\mu3}|^2 = 0.01$ and 0.059, respectively.

$$\frac{\Delta P_L^{\mu}(E_{\mu}, m_3, 0)}{P_L^{\mu}(E_{\mu}, 0, 0)} < 0.12\% ,$$

$$\frac{\Delta P_{P,N}^{\mu}(E_{\mu}, m_3, 0)}{P_{P,N}^{\mu}(E_{\mu}, 0, 0)} < 1.2\% ,$$
for $C_2 = 0.2$ (B ef. 21)

(ii) for
$$C_R = 0.2$$
 (Ref. 21),

$$\frac{\Delta P_{L,P}^{\mu}(E_{\mu},m_{3},0.2)}{P_{L,P}^{\mu}(E,0,0.2)} < 1.6\% ,$$

$$\frac{\Delta P_{N}^{\mu}(E_{\mu},m_{3},0.2)}{P_{N}^{\mu}(E,0,0.2)} < 0.4\% ,$$
(8)

where

$$P_{L,P}^{\mu}(E_{\mu},0,C_{R}) = [(1-C_{R}^{2})/(1+C_{R}^{2})]P_{L,P}^{\mu}(E_{\mu},0,0) ,$$

and

$$P_N^{\mu}(E_{\mu},0,C_R) = P_N^{\mu}(E_{\mu},0,0)$$

The corresponding contributions to e^+ polarization, for $m_3 \le 125$ MeV, $|U_{e3}|^2 \le 0.044$ (Ref. 23), and $C_R \le 0.2$, are²⁴

$$\frac{\Delta P_L^e(E_e, m_3, 0)}{P_L^e(E_e, 0, 0)} < 0.002\% ,$$

$$\frac{\Delta P_L^e(E_e, m_3, 0.2)}{P_L^e(E_e, 0, 0.2)} < 0.1\% .$$
(9)

The experiments on lepton polarization measurements²⁵ report average values of polarization components. The relevant estimates for average values of $P_{L,P,N}^{I}$ with the

inclusion of HSC neutrino v_3 mixing and finite C_R are obtained by averaging Eqs. (3) and (5) over the entire Dalitz plot. We express average polarization components as

$$\langle P_{L,P}^{l}(m_{3},C_{R})\rangle = [(1-C_{R}^{2})/(1+C_{R}^{2})]$$

 $\times G_{L,P}^{l}(m_{3},C_{R})\langle P_{L,P}^{l}(0,0)\rangle$ (10)

and

$$\langle P_N^l(m_3, C_R) \rangle = G_N^l(m_3, C_R) \langle P_N^l(0, 0) \rangle , \qquad (11)$$

where the variation of the functions $G_{L,P}^{\mu}(m_3, C_R)$ with m_3 , for $K_{\mu3}^0$, is shown in Fig. 4. For $m_3 \le 125$ MeV, $|U_{\mu3}|^2 \le 0.059$ (Ref. 22), and $C_R \le 0.2$, we obtain

$$\Delta \langle P_{L,P}^{\mu}(m_{3}, C_{R}) \rangle / \langle P_{L,P}^{\mu}(0, C_{R}) \rangle < 0.5\%$$
(12)

and

$$\Delta \langle P_N^{\mu}(m_3, C_R) \rangle / \langle P_N^{\mu}(0, C_R) \rangle < 1.0\%$$
 (13)

In the case of K_{e3}^0 decay the nature of the function $G_L^e(m_3, C_R)$ is similar to that of $G_L^\mu(m_3, C_R)$ shown in Fig. 4. It is found that²⁴ for $m_3 \leq 125$ MeV, $C_R \leq 0.2$, and $|U_{e3}|^2 \leq 0.044$ (Ref. 23), $G_L^e(m_3, C_R) = 1$ within 0.01%. Therefore, for K_{e3}^0 decay, Eq. (10) becomes

$$\langle P_L^e(m_3, C_R) \rangle \simeq [(1 - C_R^2)/(1 + C_R^2)] \langle P_L^e(0, 0) \rangle$$
 .(14)

This shows that any significant decrease in $\langle P_L^e \rangle$ may be attributed to RHC contributions even though large HSC neutrino mixing ($U_{e3}=0.21$) may be present.

It is well known that the value of μ^+ polarization depends significantly on the value of ξ . The uncertainty in the presently known best-fit value¹³ $\xi(0) = -0.11\pm0.09$ gives

$$\frac{\langle P_L(\xi = -0.2) \rangle - \langle P_L(\xi = -0.02) \rangle}{\langle P_L(\xi = -0.11) \rangle} = 4.5\% ,$$

 $\Delta \langle P_P(\xi) \rangle / \langle P_P(\xi) \rangle = 4.6\%$ and $\Delta \langle P_N(\xi) \rangle / \langle P_N(\xi) \rangle$ = 3.2%. As such, the uncertainty in ξ makes it almost impossible to discern the effects of HSC neutrino mixing or the RHC admixture from the present μ^+ polarization measurements.²⁵ The situation could improve if ξ is known with a much better precession.

The numerical results given here refer to $K_L^0 \rightarrow \pi^{-} l^+ \nu$ decays but the conclusions apply equally well to $K^+ \rightarrow \pi^0 l^+ \nu$. In Ref. 3, for K^+ decays, the longitudinal component $P_L^I(E_l, m_3, C_R)$ of charged-lepton polarization has been calculated. It is shown that, in principle, (i) a

FIG. 4. The variation of $G_{L,P}^{\mu}(m_3, C_R)$ with the HSC neutrino mass m_3 (for $|U_{\mu3}|^2 = 0.059$). The solid curves are for G_L^{μ} and the dashed curves are for G_P^{μ} . The single and double arrow on the curves represent $C_R = 0$ and 0.2, respectively. The nature of the function $G_N^{\mu}(m_3, C_R)$ (not shown here) is similar to that of the G_P^{μ} except for difference in numerical values.

study of the variation of muon polarization P_L^{μ} with E_{μ} could be a useful place to ascertain the RHC contributions and v_3 mixing effects, (ii) the existence of electron polarization $P_L^e < 1$ would be indicative of the RHC admixture, and (iii) any variation of P_L^e with electron energy E_e would be indicative of contributions of finite m_3 . Here, we find that the presently known uncertainty in ξ $[\xi(0) = -0.35 \pm 0.15$ for $K_{\mu3}^+$ decay¹³] would render it almost impossible to discern the effects of HSC neutrino mixing or the RHC admixture in $K_{\mu3}^+$ decay also. Further, due to v_3 mixing, the change expected in P_L^e , for any value of kinematically allowed E_e , is less than about 0.1%for $C_R \le 0.2$, $m_3 \le 125$ MeV and as such difficult to detect. However, the average longitudinal polarization of e^+ is not sensitive to the value of ξ and the HSC neutrino mixing contributions to $\langle P_L^e \rangle$ are also insignificant (less than 0.01%). Therefore, this measurement, if carried out,²⁶ and giving $\langle P_L^e \rangle$ value different from unity²⁷ could be a positive signature of the RHC admixture even if a few percent of HSC neutrino mixing exists.²⁸

APPENDIX

For brevity we use the notation $f_{L,P,N}^{l}$ to represent one of the three functions f_{L}^{l} , f_{P}^{l} , or f_{N}^{l} . All relations are expressed in the kaon rest frame:

$$\begin{split} f_{L,P,N}^{l}(E_{l},m_{i}) &= \int_{a_{i}}^{\beta_{i}} X_{L,P,N}(E_{l},E_{\pi},m_{i}) dE_{\pi} / \int_{a}^{b} X_{L,P,N}(E_{l},E_{\pi},m_{i}=0) dE_{\pi} ,\\ h_{1,2}^{l}(E_{l},m_{i}) &= \int_{a_{i}}^{\beta_{i}} Y_{1,2}(E_{l},E_{\pi},m_{i}) dE_{\pi} / \int_{a}^{b} Y_{1}(E_{l},E_{\pi},m_{i}=0) dE_{\pi} ,\\ P_{L,P,N}^{l}(E_{l},0) &= \int_{a}^{b} X_{L,P,N}(E_{l},E_{\pi},m_{i}=0) dE_{\pi} / \int_{a}^{b} Y_{1}(E_{l},E_{\pi},m_{i}=0) dE_{\pi} , \end{split}$$

where

$$\begin{aligned} X_{L}(E_{l}, E_{\pi}, m_{i}) &= m_{l} \overline{\lambda} \{ [a_{1}(\xi) + \operatorname{Reb}(q^{2})m_{i}^{2}m_{K}/m_{l}] \mid \mathbf{p}_{l} \mid \\ &- [a_{2}(\xi) - |b(q^{2})|^{2}m_{i}^{2}] [\mid \mathbf{p}_{l} \mid (m_{K} - E_{\pi}) + |\mathbf{p}_{\pi}| E_{l} \cos\theta_{\pi l}]/m_{l} \} \\ X_{P}(E_{l}, E_{\pi}, m_{i}) &= -m_{l} \overline{\lambda} [a_{2}(\xi) - |b(q^{2})|^{2}m_{i}^{2}] \mid \mathbf{p}_{\pi} \mid \sin\theta_{\pi l} , \end{aligned}$$

EFFECTS OF HEAVY SUBDOMINANTLY COUPLED NEUTRINO ...

$$\begin{split} X_{N}(E_{l},E_{\pi},m_{i}) &= -m_{l}m_{K}\lambda[1-2C_{R}m_{i}/(1+C_{R}^{-2})m_{l}] \mid \mathbf{p}_{l} \mid \mathrm{Im}\xi(q^{2}) \mid \mathbf{p}_{\pi} \mid \sin\theta_{\pi l} ,\\ Y_{1}(E_{l},E_{\pi},m_{i}) &= m_{K}\overline{\lambda}[A+B\operatorname{Re}\xi(q^{2})+C \mid \xi(q^{2}) \mid^{2} + m_{i}^{2}D - \mid b(q^{2}) \mid^{2}m_{i}^{4}/2m_{K}] ,\\ Y_{2}(E_{l},E_{\pi},m_{i}) &= \frac{1}{2}m_{i}m_{l}\overline{\lambda}\{m_{K}^{-2} \mid 1+\xi(q^{2}) \mid^{2} + m_{\pi}^{-2} \mid 1-\xi(q^{2}) \mid^{2} + 2m_{K}E_{\pi}[1-\mid \xi(q^{2}) \mid^{2}]\} ,\\ A &= m_{K}[2E_{l}E_{\nu_{i}} - m_{K}(W_{0}-E_{\pi})] + m_{l}^{2}(W_{0}-E_{\pi})/4 - m_{l}^{2}E_{\nu_{i}} ,\\ B &= m_{l}^{2}[E_{\nu_{i}} - (W_{0}-E_{\pi})/2], \quad C &= m_{l}^{2}(W_{0}-E_{\pi})/4 ,\\ D &= m_{K}/2 + 2E_{l}\operatorname{Reb}(q^{2}) + (W_{0}-E_{\pi}+3m_{l}^{2}/2m_{K}) \mid b(q^{2}) \mid^{2} ,\\ \overline{\lambda} &= (1+\lambda_{+}q^{2}/m_{\pi}^{-2}) . \end{split}$$

The integration limits $\alpha_i = E_{\pi,\min}^i$ and $\beta_i = E_{\pi,\max}^i$ are obtained from the following kinematic limits on E_{π} :

$$E_{\pi,\max(\min)}^{i} = \{ [(m_{K} - E_{l})^{2} - |\mathbf{p}_{l}|^{2} + m_{\pi}^{2} - m_{i}^{2}](m_{K} - E_{l})(\pm) |\mathbf{p}_{l}| [(m_{K} - E_{l})^{2} - |\mathbf{p}_{l}|^{2} - (m_{\pi} - m_{i})^{2}]^{1/2}$$

$$\times [(m_{K} - E_{l})^{2} - |\mathbf{p}_{l}|^{2} - (m_{\pi} + m_{i})^{2}]^{1/2} \} \{ 2[(m_{K} - E_{l})^{2} - |\mathbf{p}_{l}|^{2}] \}^{-1}.$$
(A1)

The limits $a = E_{\pi,\min}^0$ and $b = E_{\pi,\max}^0$ are obtained by substituting $m_i = 0$ in Eq. (A1).

- ¹R. E. Shrock, Phys. Rev. D 24, 1275 (1981); P. Kalyniak and J. N. Ng, *ibid.* 24, 1874 (1981); 25, 1305 (1982); M. S. Dixit, P. Kalyniak, and J. N. Ng, *ibid.* 27, 2216 (1983); R. R. L. Sharma and N. K. Sharma, *ibid.* 29, 1533 (1984); 30, 2418 (1984); Pramana 21, 329 (1983); M. Doi *et al.*, Prog. Theor. Phys. 67, 281 (1982).
- ²R. E. Shrock, Phys. Rev. D 24, 1232 (1981); R. R. L. Sharma and N. K. Sharma, *ibid.* 31, 2251 (1985); J. N. Ng, Phys. Lett. 99B, 53 (1981).
- ³R. R. L. Sharma and N. K. Sharma, Phys. Rev. D 33, 110 (1986).
- ⁴B. Kayser and R. E. Shrock, Phys. Lett. 112B, 1371 (1982); A. Halprin *et al.*, Phys. Rev. D 13, 2567 (1976); A. De Rújula, Nucl. Phys. B188, 414 (1981).
- ⁵See R. E. Shrock, Phys. Rev. D 24, 1232 (1981), for a definition of heavy subdominantly coupled neutrino and similar terms. For a HSC neutrino $m_i \gg m_e$ and $|U_{li}|^2$ much less than unity. For the three-generation neutrino world, the v_1 is dominantly coupled to v_e while v_2 and v_3 are subdominantly coupled to v_e .
- ⁶The l⁺ polarization in K_{l3} decays, without involving neutrino masses and mixing, has been discussed earlier by several authors. See, S. W. MacDowell, Nuovo Cimento 9, 258 (1958); J. Nilsson, Nucl. Phys. 14, 639 (1960); N. Berne, L. Egart, and B. Quist, *ibid.* 22, 553 (1961); and Ref. 8.
- ⁷At present the K beam is copiously available at the CERN $p\bar{p}$ collider; see R. Decker, P. Pavlopoulos, and G. Zoupanos, CERN Report No. TH 3917 (unpublished).
- ⁸N. Cabibbo and A. Maksymowicz, Phys. Lett. 9, 352 (1964); 11, 213(E) (1964); 14, 72(E) (1965).
- ⁹The right-handed currents are included by the phenomenological extension of $SU(2)_L \times U(1)$ to $SU(2)_L \times SU(2)_R \times U(1)$. The W_L - W_R mixing is neglected owing to the recent stringent limit $\xi \le 0.002$ on the mixing angle ξ by E. Masso, Phys. Rev. Lett. 52, 1956 (1984).
- ¹⁰M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- ¹¹If one makes the assumption that $U_{li}^{L} = U_{li}^{R}$, then the parameter C_R is the same as $b\lambda = g_R^2 M_L^2 V_{us}^R / g_L^2 M_R^2 V_{us}^L$ defined by T. Oka [Phys. Rev. Lett. 50, 1423 (1983)] and measured by R. S. Hayano *et al.* [*ibid.* 52, 329 (1984)]. In the quark sector the assumption of identical mixing elements in RH and LH sectors has been widely used; see, for example, T. Oka, *ibid.*

50, 1423 (1983), and references therein.

- ¹²See, R. E. Marshak, Riazuddin, and C. P. Ryan, *Theory of Weak Interactions in Particle Physics* (Wiley-Interscience, New York, 1969), pp. 450 and 451 and Figs. 5.20 and 5.21.
- ¹³Particle Data Group, Phys. Lett. 170B, 1 (1986).
- ¹⁴R. J. Abrams et al., Phys. Rev. 176, 1603 (1968).
- ¹⁵Here, we use for brevity m_v to represent $\{m_1, m_2, m_3, \ldots\}$ and U_{li} for U_{li}^{ll} .
- ¹⁶S. Boris et al., Phys. Lett. 159B, 217 (1985).
- ¹⁷Results from SIN reported by K. E. Bergkvist, in *Proceedings* of the 1985 International Symposium on Lepton and Photon Interactions at High Energies, Kyoto, Japan, edited by M. Konuma and K. Takahashi (Research Institute for Fundamental Physics, Kyoto University, Kyoto, 1986); Phys. Lett. 159B, 408 (1985).
- ¹⁸P. R. Burchat *et al.*, Phys. Rev. Lett. **54**, 1489 (1985). A new improved limit $m(v_{\tau}) \leq 70$ MeV has been reported by H. Albrecht *et al.*, Phys. Lett. **163B**, 401 (1985).
- ¹⁹R. E. Shrock, Phys. Rev. D 24, 1232 (1981).
- ²⁰The choice is somewhat optional. The $|U_{\mu3}|^2 = 0.059$ occurs in hierarchical mixing (see Ref. 22). For more stringent bounds on U_{li} , the percentage estimates reported in Eqs. (7)-(9), (12), and (13) decreases further and, therefore, do not change our conclusions.
- ²¹The measurement by R. S. Hayano *et al.*, Phys. Rev. Lett. **52**, 329 (1984) on $K_{\mu 2}^+$ decay, gives $b\lambda \le 0.29$ (see Ref. 11 also).
- ²²P. Kalyniak and J. N. Ng, Phys. Rev. D 24, 1874 (1981).
- ²³D. Silverman and A. Soni, Phys. Rev. D 27, 58 (1983).
- ²⁴We do not discuss perpendicular and normal components of e^+ polarization as $\langle P_P^e \rangle \approx \langle P_N^e \rangle \approx 0$.
- ²⁵R. J. Abrams *et al.*, Phys. Rev. **176**, 1603 (1968); M. J. Longo *et al.*, *ibid.* **181**, 1808 (1969); A. R. Clark *et al.*, Phys. Rev. D **15**, 553 (1977); W. M. Morse *et al.*, *ibid.* **21**, 1750 (1980); S. R. Blatt *et al.*, *ibid.* **27**, 1056 (1983).
- ²⁶We are not aware of any measurement of e^+ polarization in $K_L^0 \rightarrow \pi^- e^+ v_e$ decay.
- ²⁷For no admixture of RHC and zero neutrino masses $\langle P_L^e(0,0) \rangle = 1$.
- ²⁸This conclusion is not applicable to $K_{e^2}^+$ decay where the value of e^+ polarization depends significantly on the HSC neutrino mass and the nature of neutrino mixing; see, S. Singh, R. R. L. Sharma, and N. K. Sharma, Phys. Rev. D 33, 2713 (1986).