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Effects of core motion on the nucleon electric form factors
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When the nucleon is described as the self-consistent nontopological soliton ground state of a
translation-invariant model Hamiltonian for a nonstatic baglike core interacting with a pion field,
the motion of the core is shown to have a significant effect on the proton and neutron electric form
factors, as compared to previous cloudy-bag-model (CBM) calculations that neglect the core motion
and treat the baglike core as a static source of pion field. In the translation-invariant model, the
charge density of the nucleon has contributions from the core and from the pion cloud, as in the
usual static CBM; in addition, and in contrast to the usual static CBM, there are effects due to the
spreading of the core charge density as a result of the self-consistent motion of the core within the
pion field that it generates. The spreading of the core density tends to weaken the core-pion interac-
tion for a fixed bag radius so that the binding of the core-pion system is less than in the static cloudy
bag. Hence, the motion of the core softens the electric form factors as compared to static CBM cal-
culations.

I. INTRODUCTION

For a decade or so models motivated by quantum chro-
modynamics have provided a useful framework for trying
to understand the structure of the nucleon. ' ' Two im-
portant physical features of these models are (a) quark
substructure at short distances and (b) meson-field struc-
ture at larger distances. Some models of this type require
the quarks to interact self-consistently with mean meson
fields, ' while others treat the QCD core as a unit whose
properties are calculated independently of the surrounding
meson field. The present work is in the context of this
second group of phenomenological models of nucleon
structure, which can appropriately be called "cloudy bag
models" (CBM's). In a CBM the core is taken to have a
sharp spherical boundary of radius R within which the
physics is assumed to be like the MIT bag model for ex-
ample, the charge distribution of the core is taken to be
that of the MIT bag with three massless quarks in the
lowest S state in the bag. The core has a Yukawa interac-
tion with the pion field that bears some relation to the
idea of chiral current conservation; in the present work,
the form of the Yukawa interaction is taken to be the in-
teraction that is derived in chiral bag models, namely,

f 3j, (kR)
i ~ger. k,

m
where R is the radius of the bag. The Yukawa interaction
of the core with the pion field generates a cloud of virtual
pions around the core. Both the quarks in the bag and the
virtual pions around the bag contribute to the total charge
of the nucleon as well as to other static properties such as
the nucleon charge radius and magnetic moment. Non-
static quantities such as the nucleon electric form factor
are also the sum of contributions from the intrinsic quark
charge density and the pion charge density.

In the past, the core in CBM's was treated in a static
approximation, in which the core remains fixed and acts
as a static source of pion field. Generally speaking, a
CBM Hamiltonian that is invariant under translations
must include core motion, that is, it must include a kinet-
ic energy term for the core and the Yukawa interaction of
the static core with the pion field must be generalized to
an interaction of the dynamic core with the pion field that
is invariant under translations. In a recent paper" it was
shown that when the static CBM Hamiltonian is modified
so as to include core motion in these ways, the ground
state of the nucleon can be a pionic nontopological soliton
state of the core with its cloud of virtual pions. Under the
assumption that meson fields other than the pion field
could be neglected, the pionic soliton state was used to
compute charge radii and magnetic moments of the nu-
cleon, with the result that the motion of the core was
shown to alter the values of these static properties signifi-
cantly for a range of values of the bag radius R. In addi-
tion to contributions from the core and pion field to nu-
cleon electromagnetic properties, there is now a third con-
tribution due to the self-consistent motion of the core in
the pion field it generates. If the core has an intrinsic size
or bag radius R and the core motion is of extent S, it is
clear that the apparent size of the core will be of order
(R +S )'~; that is, the intrinsic bag radius can be sub-
stantially less than the apparent size. In order to give a
quantitative aspect to this rather intuitive argument, Ref.
11 showed how it applies to the nucleon magnetic mo-
ments and charge radii.

In this paper, we calculate the effect of core motion on
the electric form factor of the nucleon for the particular
form of core motion that was used in the computations of
Ref. 11. The translation-invariant Hamiltonian used in
Ref. 11 to represent the system consisting of the core in-
teracting with a pion field is
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H = Tc+ Tn. +HYukawa+HYukawa

2

T, = f 4'(p) +(p)dp,

T =f co(k)ai (k)ai (k)dk,
ai(k)

vukawa = f 3 iy2 ~(p
[16m. co(k)]

X'0 (p)bio"J k, q'(q)dpdqdk,

where the summation convention is used for the pion iso-
spin index k. For the specific case of the cloudy bag, the
pion-nucleon current operator J is independent of its
second argument:

k 3J, (kR)
J(k, K)=if =i c(k), (2)

m kR m
where m is taken to be charged pion mass.

References 11 and 12 describe the methods used to find
an approximate ground state of the Hamiltonian of (1)
with the pion-nucleon current operator of (2). With the
renormalized m.NN coupling constant required to have the
value 0.08 and the mass M of the core taken to be the nu-
cleon mass (see Sec. IV below for further discussion), the
only free parameter is the bag radius R. An essential
feature of the approximation method described in Refs 11.
and 12 is that the core is assumed to occupy just the four
isospin-spin substates of a single S state; this is a single-
wave-function or "single-mode" approximation for the
core field operator. Similarly, the virtual pions are re-
stricted to a single mode, the P state v 3k/(k) (with nine
orthonormal isospin-spin substates). Thus, the effective
field operators %(r) for the core and ai (k) for the pion
field are

4
ql(r)=f (r) g a;B;,

(3)

ai(k)= g P(k)Ai;,
i=1

where B; annihilates the core in the isospin-spin substrate
a; of the S state with radial wave function f (r) and Ai;
annihilates a pion in the substrate Ai of the P state with i
momentum-space component (k,.v 3 jk}P(k). The mode
functions are normalized,

f ~
f(r) ~'dr= f ~P(k) )'dk=l, (4)

and +(r} is the Fourier transform of the field operator
ql(p) that appears in Eq. (1). The choice of the pion-field
mode function P that minimizes the energy is'

ik c (k)p(k)
[4877 co (k)]'

with c(k) defined by Eq. (2), p(k) the Fourier transform
of the probability density of the core S state,

p(k) =f e'"'
~ f(r)

~
dr, (6)

and 6 the normalization constant for P(k). The depen-
dence in Eq. (5) of the pion-field mode function P(k) on
the core probability density p(k) expresses the self-
consistent relationship between the motion of the core and
the pion field it generates.

When the single-mode approximations of Eq. (3) are
substituted into the Hamiltonian of Eq. (1) an effective
Hamiltonian results. References 11 and 12 describe the
variational method used to find approximate eigenvectors
and eigenvalues of this effective Hamiltonian. The varia-
tional state described in Ref. 11 and used here to compute
the nucleon electric form factor is a localized state that
breaks translation invariance because of the single-mode
approximations for the core- and pion-field operators
This state minimizes the expectation value of the Hamil-
tonian over the single-mode subspace and satisfies the
constraint that the expectation value of the total momen-
tum of the state be zero. Within the single-mode approxi-
mation, the variational states used are allowed to contain
large numbers of virtual pions by the use of coherent-state
techniques; this is important for bag radii less than about
1 fm, where the pion-nucleon coupling is no longer weak.
Finally, the variational states are constructed to be eigen-
states of the total isospin and total spin of the system;
projection methods are not used.

II. CHARGE DENSITY

In the Hamiltonian of (1) and in the approximate
ground-state vector described in Ref. 11, the core is treat-
ed as a point object moving in the pion field it generates.
Of course, the bag of quarks is not a point object, so that
the various core current operators, such as the core
charge-density operator, must include effects associated
with the bag's extended nature. In order to avoid con-
fusion, the fictitious phenomenological point core whose
field annihilation operator is ql(r) will be called the
"pcore" (for "point core"). As in Ref. 11, it is assumed
that the core charge-density operator is a convolution of
the (c-number) quark charge density within the bag
Eb,s(r) and the charge density of the pcore wave function:

p„„(r)=f ICb,s(r —r')p~„,(r')dr',
(7)1+z3

p~„,(r) =q' (r) q (r) .
2

The bag charge density is"
t'

Ng(R —r) . z cur . 2 mr
b I —

8 Jo + +J
(8)

N
3 22R (co —1)sin co

with co=2.04. For the case that the pcore isoscalar and
isovector probability densities are delta functions, this
form for the core charge density reduces to the standard
static-bag charge density Kb,s(r)(1+F3)/2. The use of a
convolution here is analogous to the way that the charge
density of a nucleon is used in computing the charge den-
sity of a nucleus that consists of phenomenological point
nucleons.

The combination g,"B;a;paJB~ that appears when

p~„, is expanded in terms of the S state of (3) is just the
operator p for the pcore in the S state with radial func-
tion f(r), where p is any of ~, o, or ~n It follows, as.
would be expected, that

1+F3
P o,.(r)= ~f(r) ~'
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From these forms it follows that

f X'(r)1t'(r)dr= 1 .

Now it is easy to see that

(15)

Pi =Ii, +3&ex„~(rrrj —,
'

5,J. )(Ap, A„J. —, „kA—„k5,~)—, ( 6)

where I~ is the pion-field total isospin operator:

Ig ———)eg~ Ap, A, . (17)

Since the last term in (16) has angular momentum 2 in the
pcore variable and the pcore is in a state with j = —,, only
the I~ term contributes to the pion charge density in the
nucleon state.

Thus, finally, the total charge-density operator in the
nucleon state is

when the pcore is restricted to be in the single S state with
radial wave function f(r).

The pion electric charge density operator should prob-
ably also be taken of the form

p~;,„(r)= f K„(r—r')p», ,„(r')dr',
(10)

p», ,„(r)=ee3p 4 p(r)4 (r),
where p (r) is the usual Noether electric charge-densityppion

15operator for the pion field. The distribution E (r) can
be used to take into account the charge distribution of the
quarks that make up the pion or to incorporate the hy-
pothesis of vector-meson dominance. In this latter case,
the form of IC (r) would be

m 2 ™vr
I( vMD( ) (11)

4m r
In the present work, however, the size of the pion has
been taken to be zero, that is, E (r) has been taken to be
5(r) and

P~;,„(r)=p~i, ;,„(r)=ee3„„@„(r)@„(r).

When this is evaluated in terms of the modes of (3), the
effective pion charge-density operator in the tI}-mode sub-

space is

dX(r) dp(r) P
(13)

Pg = —3l E'p,p+). r~ Apg 3~~

with the functions X(r) and f(r) given by

f 1-;g., c (k)p(k) dk
v 6Gm " co (k) (2~)f;j,, c (k)p(k} dk
v 6Gm ~(k) (2~)'
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FICz. 1. Proton (above) and neutron (below) electric form fac-
tors with and without taking core motion into account for a bag
radius of 0.55 fm.

where Xb,g(q) is the Fourier transform of Kb,g(r) of Eq.
(8};the isovector part is

F,";" '"(q)= —,(r )IC, (q)p(q)

+ (I3 )f e '~'X'(r}P'(r)dr, (20}

where the expectation values (r3) and (I3 ) are evaluated
in the nucleon-pionic soliton state.

III. COMPUTATIONS

Figure I shows the proton and neutron electric form
factors computed as described above for a bag radius of
0.55 fm, both with and without core motion. The effect
of the core motion is to increase the magnitude of the
slope of the proton form factor at Q =0, that is, to in-
crease the rms charge radius; the smaller values at large
Q are also consistent with a softer or more extended
core. The neutron form factor involves core and pion
contributions of opposite sign; Ref. 11 discusses how the
results for the mean-square charge radius of the neutron
show the effects of the more extended core. Figure 2
shows a plot of the proton electric form factor for various
values of the bag radius along with the usual dipole fit to
the data and shows that as the bag radius gets larger the
bag-pion system is more loosely bound and therefore the
electric form factor becomes softer.

For reference, Fig. 3 shows the sizes of the various con-
tributions to the proton electric form factor. It was
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The nucleon electric form factor is the Fourier transform
of the expectation value of this operator in the variational
state of Ref. 11; the isoscalar part is

F,"i ""(q)= —,Kb,g(q)p(q),

FIG. 2. Proton (above) and neutron (below) electric form fac-
tars with core motion taken into account for bag radii varying
from 0.35 to 0.65 fm. The dipole fit to the experimental proton
form factor is also shown, and the neutron form factor is shown
for a bag radius of 0.55 fm.
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FKJ. 3. A breakdown of the contributions to the proton elec-
tric form factor.

shown in Ref. 11 that the point-core wave function is very
nearly an exponential, and therefore the point-core contri-
bution p(q) to the electric form factor, which is charac-
teristic of the pionic-soliton description of the nucleon,
has a dipole form. At a bag radius of 0.55 fm the core
contribution is more than half of the form factor, so that
it may be possible to attribute the dipole form largely to
the self-consistent wave function of the core if the present
calculations at a bag radius of about 0.55 fm are close to
the physical nucleon. However, there are some physical
effects that have been omitted, and the approximations
used in treating the Hamiltonian are not completely satis-
factory, so that such a conclusion may well be premature.

IV. REMARKS

There are effects that have not yet been incorporated
into these cloudy-bag-model computations. The smearing
of the pion isovector part of the form factor that would
arise from a pion form factor of the type that appears in
Eq. (10) seems likely (cf. Fig. 3) to produce a minor altera-
tion of the form factors. Perhaps the most important
physics that needs to be studied is the influence of transla-
tion invariance on the form factors. An improved state,

compared to the one used here, would be an eigenstate of
linear momentum that minimizes the total energy of the
system. Such a state would also give a more reliable value
for the effective mass of the ground state and, hence, a
better value for the (bare) mass of the core; the core wave
function and, hence, the form factor will be affected by
this change in the core mass.

V. SUMMARY

In a model in which the nucleon consists of a nonstatic
baglike core and its pion field in a self-consistent nontopo-
logical soliton state, the motion of the core has been
shown to have a significant effect on the proton and neu-
tron electric form factors. The charge density of the nu-
cleon has contributions from the core and from the pion
cloud, as in the usual static cloudy bag model; in addition,
and in contrast to the usual CBM, there are effects due to
the spreading of the core charge density that is a conse-
quence of the self-consistent motion of the core within the
pion field that it generates. The trend of these effects in-
dicates that core motion tends to soften the electric form
factors as compared to static CBM calculations. At a
more speculative level, the calculations also indicate that
the physical basis of the dipole fit to the proton electric
form-factor data may, at least for small momentum
transfers, be just this charge distribution of the bag or
core as it moves in the pion field it generates. Within the
context of the Hamiltonian and the approximations used
in our nonstatic CBM calculations, the self-consistent
wave function of the bag or core is an exponential, which
translates into a dipole form factor that multiples the
more slowly varying intrinsic core charge form factor.
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