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In a model in which the gluon condensate is simulated by a stochastic background field we can
evaluate the shift of the energy levels of heavy quarkonia due to the gluon condensate as a function
of the correlation time of the background field. By introducing a correlation time for the quark sys-
tem it is possible to decide whether the description by Shifman-Vainshtein-Zakharov sum rules or
potential models is more appropriate.

I. INTRODUCTION

Both Shifman-Vainshtein-Zakharov (SVZ) sum rules'
as well as potential models (see, e.g. , Ref. 2) make most
clear-cut statements and have had their greatest successes
in heavy-quarkonium spectroscopy. There are however
serious theoretical contradictions between the two ap-
proaches. Voloshin and Leutwyler have shown that the
presence of a gluon condensate excludes the existence of
local potentials even in the limit of an infinite quark mass.
Eichten and Feinberg, on the other hand, give, starting
from the Wilson loop, expressions for a local potential,
which are supposed to be exact in the limit of infinite
quark mass. Bell and Bertlmann have derived, from SVZ
sum rules, "equivalent" potentials which are strongly fla-
vor dependent and thus in striking contrast to the
phenomenological potentials. In the following we give a
model, motivated from QCD, which allows the investiga-
tion of the above contradictions and leads at least to a
partial clarification. In Sec. II we will briefly discuss the
model, in Sec. III give a motivation for it from QCD, and
in Sec. IV evaluate it. In Sec. V we summarize our results
and discuss the contradictions raised above.

II. DISCUSSION OF THE MODEL

As a model we consider a pair of nonrelativistic quarks,
bound together by a Coulomb potential in an external sto-
chastic color-electric field in Euclidean space-time. The
latter represents the nonperturbative QCD vacuum. It is
essential to consider a model in Euclidean rather than
Minkowski space-time: If we had a color-electric field
fluctuating in real time, the time variation of it would
lead to an energy uncertainty even of the ground state.
Since the typical fluctuation times are supposed to be of
the order of the hadronic scale, the energy smearing
would thus be of similar magnitude.

For simplicity we confine ourselves to the dipole in-

teraction of the quarks with the external field, since this is
the leading interaction in the large-quark-mass limit. The
model Lagrangian thus has the following form:

2

L(x, 8')= x +(k„„)—Aq —A, )

+i (Aq —A,')x 8"(t) . (2.1)

Here p is the reduced mass of the quark pair, x their rela-
tive distance, g, the strong coupling constant renormal-
ized at some suitable point, 8" the external color-electric
field with color index a, and Xq, A.

' are the Gell-Mann
q

matrices, acting on the color spinor of the quark and anti-
quark, respectively.

We now consider the Schwinger function (i.e., Green's
function continued to Euclidean time):

G(xI,x;;t)= f [dx]exp —f L(x, S')dr p(8')[d8'] .

(2.2)

Ei ———lim —lnG(0, 0;t) .
1

t~a) t
(2.3)

III. MOTIVATION OF THE MODEL

The field-theoretical analog of the Schwinger function
(2.2) in QCD is the four-point function

The quantum-mechanical path integration [dx] is over all
paths with x(0)=x;, x(t) =xI. The integration over the
external fields with the measure p(8')[d 8'] is due to the
stochastic nature of the color-electric field. The
Schwinger function (2.2) is the average (over 8') of
Schwinger functions for a Schrodinger equation in an
external field 8'. The ground-state energy is obtained by
the Feynman-Kac formula:

G (x,0) = (g(x) @1b(x)p(0)Wf(0) )

= f [dg][drab][dA ]P(x)WQ(x)g(0)WQ(0)exp —f LO (P, A)d x (3.1)
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Xexp —fL (A)d x [dent ] (3.2)

with a nonrelativistic Lagrange function L '"(x,A ) of a
heavy quark in an external color potential A and the pure
gauge Lagrangian density L (A ).

We now split the gluon fields into two
parts: ' A =9k U3P', a rapidly varying part A~ with a
Gaussian distribution and a slowly varying part 3P'. The
integration over the rapidly varying part can be performed
and leads in our approximation to a Coulomb potential
between the quarks. We furthermore neglect the interac-
tion of the rapidly varying with the slowly varying gluon
field and thus arrive at the following expression for
G (x,O):

G (x,O)= f [dx]exp —f L~( x) d~ +fL(x, 3P')d x

xp(%')[dA'] . (3.3)

With
2

L~(x) = x +(A,„„i—A,q
—)(,—), (3.4)

L (x,A') gives the interaction between the quarks and the
slowly varying gluon fields, )u, (A') is the distribution of

where x is the four-vector (x, t) and 1t (x) is the quark
field. (We have omitted all color, Dirac, and Lorentz in-
dices. ) The measure [d 3P ] indicates the integration over
the color potentials in a fixed gauge.

In order to handle this expression, we make the follow-
ing approximations: We neglect internal fermion loops
(quenched approximation); then the Grassmann integrals
over the fermion fields reduce to sums over the quark
paths (see, e.g. , Ref. 7). Furthermore we restrict ourselves
to nonrelativistic kinematics. These approximations are
justified in the large-quark-mass limit. We thus arrive at
the following expression for G (x,O):

G (x,O) = f [dx] exp —f L q"""(x,A )d r

the slowly varying gluon fields after the integration of the
rapidly varying ones. For the slowly varying fields we
choose the gauge proposed by Balitzky:

x A'(x}=0, 3P;(O, t)=0, Vt .

In that gauge we obtain

A 0(x, t) =x S"(0, t) +. . .

(3.5)

(3.6)

In our model we retain only this lowest term leading to
the dipole interaction and thus to our Lagrange function
(2.1).

It should be noted that some of the approximations
made here are crucial, some are technical. The most cru-
cial assumption is the splitting of the gluon fields in a
rapidly varying one, which can be treated perturbatively
and a slowly varying "background field. " This assump-
tion is crucial in the philosophy of SVZ (Ref. 11) sum
rules in order to justify their approach to QCD sum rules.
The restriction imposed by the use of nonrelativistic
kinematics can at least partially be loosened by a 1!rnq
expansion.

IV. THE EVALUATION OF THE MODEL

and

( 0 ) g = f Op, ( S')[d S'] (4.1)

( 0 )„=f 0 exp —fL ~( x )d ~ [dx] . (4.2)

The evaluation of the expectation value is most con-
veniently done in the cluster approximation

The Schwinger function 2.2) is the expectation value of
the exponential exp[ig, P x(r).S"(~)dw] with respect to
the paths x with the measure exp[ —fL~(x)dr][dx]
and the field S' with the measure p(S')[dS'] where we
have used the abbreviation P= —,(A,~

—A, '- }. We introduce
the notation

G(00(l=(exp ig, t ,f, x(e) (p'(e)de

( g)Ill'= exp g f . . f ((x(ri) S'(~, ). x(r~).$'(r~)) )„adlai . . dr
m=1

(4.3}
e

where the cumulants (( ) ) are the connected parts of the expectation values. Since we confine ourselves to the dipole
approximation, there is no use of going beyond a cumulant with more than two entries:

t
G(0,0,t)= exp ig, f ((x(~).S'(r)) )„ttd~(

gs f f «x(~, ) S'(~, )x(~2) S'(~&)) )„gdri«2+0(g, ') (4.4)

The integrations over [dx] and [d S'] are independent of each other; furthermore it follows from the properties of the
measure (invariance of the QCD vacuum),

(xj )„=0, ( S'~ ) tr=O, (O'J(ri)S't(r2)) g = ,', 5' 5jtR(~i —ri) . —
We consider only Schwinger functions leading from color-singlet to color-singlet states and obtain, using

( singlet
~ Pg ~

singlet ) = —,5'

gS t2

G(0,0, t) = exp — ' f f &x(1 &)'x(72))„R(ri 72)dridT2+0(g )—
36 o o

(4.5)

(4.6)

(4.7)
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This result is exact, if 8' has a Gaussian distribution. In order to have a stochastic process which guarantees for the
Schwinger function the wanted Markov property, R(ri —rz) must be of the form'

R (ri —rz) = ( 8' &e (4.8)

T being the correlation time of the background field. ' In the evaluation of the path integral there occurs another time
scale, namely, that of the quark correlation (x(r~ ).x(rz) &„, which we shall call T~. Two cases can easily be discussed.

T~»T

In this case we neglect the time dependence of ( 8'J'(ri) 8'i(rz) & and obtain

2

G(0,0, t)= exp — ' (8' & f f (x(1i)'x(Tz)&„dr~drz

2

[dx]exp — x +(A,„„i—A&
—k )p 2 2 2 2 gs dc exp

2 '"' ' 32~~x(
g

2

36
(8' & f f x(ri) x(zz)dridrz

0 Q

(4.9)

We see directly that this expression is not compatible with an instantaneous potential. ' Under certain circumstances
the ground-state energy can be evaluated in that case by SVZ techniques. The short-time expansion of G(0,0, t) corre-
sponds to the asymptotic expansion of the Borel-improved operator-product expansion of the field-theoretical Schwinger
function. If the quark correlation time is sufficiently short then the first few terms of the short-time expansion of
G(0,0, t) are sufficient in order to extract the ground-state energy from the Feynman-Kac formula (2.3) (Ref. 10). Nor
mally the minimum of the right-hand side of Eq. (2.3) is then identified with the ground-state energy. The "equivalent"
potential of Bell and Bertlmann is constructed in order to reproduce the short-time behavior of the Schwinger function
G(0,0, t).

T&»T~

Here we can treat the fluctuation of 8' like a white noise, i.e., we approximate'

R(ri —72)=2T (8' &5(7 i
—72)

and hence obtain

(4.10)

G(0,0, t)= f [dx]exp —f x +(A,„„&—A~ —A, )
' + ' T (8' &x (r) dr

2 "" ~ ~ 32ir~x~ 18

Thus a rapidly varying background field leads to an additional local potential

V(x)=,', T (& &x

(4.1 1)

(4.12)

proportional to the product of the field correlation time T and the expectation value of the external field (8' &. The
quadratic space dependence is a consequence of the dipole approximation.

In order to get an expression for the quark correlation time T~, we must specify which angular and radial excitation
of the quark system we consider. For that purpose we form the matrix element (nl

~

G
~

nl & of the Schwinger function
and make use of the Feynman-Kac formula in order to get the energy shift due to the gluon condensate. For the level
with principal quantum number n and angular momentum I we obtain the shift

life(( T ) = Iim
' f f (nl

(
Pxj. (ri)g' xi('rz)

I
nl & & &;(ri)&i«z) &«i«z (4.13)

t

g,
' &,

& + ~

&nl"&
~

x
~

m"'&
~

2

j pyg ) E(8) E(0)
m

— ni +
(4.14)

With the ansatz (4.5) and (4.8) for the gluon correlation
function one obtains, after performing the time integra-
tions,

I

over into the formula derived by Leutwyler:

( )
gs (@2& ~ (

(nl' '~x(m"'& )2
18 ~ &(8) &(o)

jm) m nl

g 2(gz& 3

=n e„I
8

(4.15)

Note that the summation involves states from the octet
sector only, because the color matrix P just links singlet
states to octet states, denoted by superscripts (0) and (8),
respectively. In the limit T ~m this expression goes

with

2

ao —— , P= —,a„a,=mP' ' " '
4zr

'
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and the reduced level shift e„t

e„t= — [(I + 1)[F(n,l) F(——n, l)]+1[F (n, —I —1) F—( n—, —l —1)]I,9 n (21+1)

(n l—)(n +1+3) 4(2n —1)F(n, I)=2n[n —(I+1) ]+(n +I+2)(n +1 +I) +
(4.16)

On the other hand, let us assume that the quark system in
Euclidean space-time can—at least approximately —be
described by a stationary Markov process with a correla-
tion time T$ depending on the angular and radial excita-
tion n, I of the quark system:

—(
I r~ r2 I

)—~Tg
~ nl

I
xj(ri}xt(r2}

I
nl & =

3 Sjl ~x & Ie

(4.17)

Unl
c„t(T )=

U„l a0
+-,T'nl

where we have set

(4.22)

Now it is also possible to calculate the shift of the
Schrodinger level

I
nl & due to the gluon condensate as a

function of the vacuum correlation time Tg

Inserting this ansatz into (4.13) yields

M„)(T }=n e„l(T )

gs
@2& (nl

I
x

I
nl &

18 1 1

T(1 T~

2

M., ( )= ' (~'&(x'&.,Tg.
18

(4.18)

(4.19)

nl 27 6 2n a0
(4.23)

We have also calculated M„~(T ) numerically, ' treating
Eq. (4.14) by the method of Delgarno and Lewis. '4 In
Figs. 2—4 we compare the numerical results with the
values of Eq. (4.22). The good agreement shows that our
ansatz describing quantum-mechanical systems in Eu-
clidean space-time by a stationary Markov process is well
justified.

The same calculations can be done in the case of static
quarks. We have to omit the kinetic energy of the quarks
in Eq. (4.14):

3
p7 6 a0 ~nlT$= —„n z(x &„)

(4.20)

Thus we obtain the following expression for the quark
correlation time:

Thus we obtain the correlation time
(4.24)

gs XM"""(T )= (8'
& I , .r) .

3a, /2
I
x

I
+ 1/T

with

2

( x &„I= [Sn + 1 —31(I + 1)]ao
2

(4.21) with
(x'&„,

(4.25)

In Fig. 1 the n dependence of Tg for s states is shown for
cc, bb, and t t in units of T =I/A&cD- I/(150 MeV).

(
I
x

I &„t= , n ao [Sn +—n 31(l + I )n —]
——,', n ao [(2l + 1) —9][3n —1 (1 + 1)] .

(4.26)
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FIO. 1. The quark correlation time TPp [see (4.17)] of the ce
system (X ) (m, =1.5 GeV, a, =0.25), bb system ( ) (mq
=4.S CxeV, a, =0.20), t t system ((&) m, =45 CxeV, a, =0.14),
as a function of the principal quantum number n with I =O.
Note that the dashed lines are just displayed in order to guide
the eye.
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FICJ. 2. Reduced level shifts [see Eq. (4.18)] e,o(T~) (solid
line), P&0"'(T ) (dashed line) as calculated according to Eqs.
(4.22) and (4.28), respectively, in comparison to the numerical
results ego(T ) ( &() and e'I'0"'(T ) (C3). The horizontal lines
denote elo( ao ) and ego"'( ao ), respectively.
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FIG. 3. As Fig. 1, but for the Schrodinger level n =2,1=0. FICz. 5. E'„p (~) and e'„'p"' ( ) as function of the principal
quantum number n. The horizontal line denotes their common
limit.

The reduced level shift for T ~ ao is

static static 32 & I
x

I &nl
~nl =~al

81 n ~o
(4.27)

and the reduced level shift for static quarks as function of
T is

Unrstatic
( Ts

)
ao

static +
&nt S

(4.28)

lim e„l( oo ) = lim e '„'l'"' ( oo ) = „ (4.29)

The n dependence of the reduced level shifts is shown in
Fig. 5.

V. DISCUSSION

We have presented a realistic model for a system of two
heavy quarks in QCD: they interact via Coulomb forces

C3o—

1 ~ 5—

1 ~ 0—

0. 5—

0. 0—

10 20 25
1

TC
0!s &0

FIG. 4. As Fig. 1, but for the Schrodinger level n =3,1=0.

with the same U„i as in Eq. (4.23). Again Eq. (4.24) can
be integrated numerically and those numerical results as
well as the results of Eq. (4.28) are also shown in Figs.
2—4. Now it is easy to prove that for large n the reduced
level shifts for dynamic quarks and static quarks will be
the same since though both e„l(T ) and e'„'~""(T ) de-
pend On One different parameter e„l(oo) and e'„'l'"'(oo ),
they become equal in the limit n~ oo, l fixed. This is a
simple consequence of the relations

and the effects of a gluon condensate are described by an
external stochastic color-electric field. In this model the
treatment by SVZ sum rules or by potentials is appropri-
ate in two limiting cases.

If the Euclidean correlation time of the quark system is
short as compared to the one of the external field, poten-
tial models are inadequate (4.9), but under certain cir-
cumstances SVZ sum rules are appropriate in order to ob-
tain the ground-state energy. If however the correlation
time of the external field is short as compared to that of
the quark system, the effects of the stochastic field can be
well approxiinated by a flavor-independent local potential
[(4.12), (4.24)]. We have given a good analytical approxi-
mation for the correlation time of the quark system (4.20).
It is displayed in Fig. 1 for different quark masses as a
function of the principal quantum number of the two-
quark system. We see that for highly excited states the
correlation time increases, so that the potential picture
will be appropriate. On the other hand, the static approx-
imation of Ref. 4 is not justified, if m stays fixed and n

increases. ' The obvious discrepancy between the results
of Voloshin and Eichten and Feinberg is thus solved: If
we stay at fixed distances (as we do in evaluating the Wil-
son loop) and let the quark mass increase, we go to highly
excited states and hence the vacuum structure can be ap-
proximately described by flavor-independent local poten-
tials. If we however confine ourselves to the lowest-lying
states and very high quark masses, the external field
varies slowly in comparison to the quark system and can-
not be approximated by a flavor-independent local poten-
tial. In that case an equivalent potential, which repro-
duces the Green's function in perturbation theory for
short times has no connection to the phenomenological
potentials of the potential models. This situation is a
consequence of the Coulomb potential; the Bohr radius of
the ground state decreases as m~ increases, and therefore
the correlation time of the quark system decreases with
increasing m~. If we assume the inverse of the correlation
time of the vacuum fluctuations to be of the order of the
hadronic scale ( —150 MeV), we see that for the ground
state of charmonium both correlation times are approxi-
mately equal, whereas for the higher excited states the po-
tential approximation works well. For the lower-lying
states of the heavier quarkonia, the sum-rule approach is
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definitely more appropriate. However, by the same
reason, by which the correlation time is short (namely, the
shrinking radius) also the interaction of the quarks with
the gluon condensate is reduced.

Note added. After the submission of our paper we
learned of the work of Campostrini, Di Giacomo, and
Olejnik' which also includes nonrelativistic corrections
and as do Refs. 8 and 13 stresses the importance of the
correlation length of the gluon condensate. They advocate
very short correlation times, corresponding to
(T ) ((,a, ln)G„'„G„'„)((1. On the other hand, for
small values of x the expression

expansion:

where D is the covariant derivative. Standard estimates
of the six-dimensional condensate' rather suggest a corre-
lation time satisfying

@, 4 a,(T')' *
G„'„G„'„)=).
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