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Previously it was shown that a bag would form automatically when the Skyrme model was
minimally modified to satisfy the scale anomaly equation of QCD. Here, we first calculate the nu-

cleons static properties for the two characteristic fits corresponding to deep- and shallow-bag types.
Second we further embellish the model in order for the required scalar sector to contain particles in

a realistic mass range with physically narrow widths. This requirement favors the shallow-bag type
of solution.

I. INTRODUCTION AND SUMMARY

At present there are two different general approaches to
models of the nucleons' properties at low energies. On
one hand, there is the approach in which three quarks are
confined by fiat to a bag. ' This bag is generally pictured
at a more fundamental level as corresponding to a bubble
of higher energy density in a nonperturbative sea of con-
densed gluons. In the other approach the nucleon is treat-
ed as a soliton in an effective chiral Lagrangian of
mesons. A theoretical justification for this procedure in
terms of QCD has been given on the basis of the "I/N, "
expansion, but the model itself was proposed a long time
ago by Skyrrne. '

It seems fair to say that both approaches contain a cer-
tain amount of truth, and furthermore both require modi-
fication from their original forms to achieve an accurate
description of the nucleon. Hence it is interesting to try
to combine the two in some way. There is actually a very
large amount of work in which the bag model is modified
to obtain chiral symmetry by adding a pionic tail. This
tail has the identical structure as the "Skyrmion" which
thus may perhaps be considered as an approximation to
this more complicated type of model.

It also seems interesting to see how the combining of
the two approaches can be accomplished from the other
direction —by starting from a chiral-invariant theory of
mesons and obtaining the nucleon as a soliton which is lo-
cated within a region from which gluon condensation has
been suppressed. In an earlier paper it was shown that
this could be accomplished by introducing an order pa-
rameter field H proportional to the square of the gluon
field strength tensor and minimally modifying the Skyrme
model so that it obeys the scale anomaly equation of
QCD. This type of model may be conveniently used to
ascertain how large an effect the bubble confinement
mechanism has on the soliton. Of course, for a very accu-
rate description of the nucleon, vector and other mesons
should be included s'ince they are important in low-
energy meson phenomenology. The more complete low-
energy effective Lagrangian thus obtained is fairly com-
plicated. Hence it appears reasonable to first study in de-
tai1 a Lagrangian in which only the confining fields are
present in addition to the pions. The minimal "bag for-

mation" chiral Lagrangian of this type was seen to ac-
commodate two distinct fits. The first is of the "deep
bag" type and has the phenornenological advantage that it
permits one to use the experimental value of the pion de-
cay constant F . The second is of the shallow-bag type
and gives a numerical fit similar to the original Skyrme
model which features a value of I' substantially less than
the experimental value.

In this paper we first (in Sec. II) briefly review the
minimal chiral model which satisfies the trace anomaly
and calculate moments of the vector and axial-vector
currents for comparison with experiment. The effect of
nonzero pion mass (introduced in accordance with the
trace-anomaly equation) is considered and found to be rel-
atively small, though not negligible.

Since our model permits the formation of both deep
and shallow bags, it is interesting to compare the physics
of the two situations. As far as the comparison of F and
nucleon moments with experiment is concerned, the work
in Sec. II shows the deep-bag fit to be slightly favored.
However, there are several factors which suggest that the
shallow bag may provide a more accurate description of
nature. For one thing, it was noted that the model satis-
fies the 1/N, counting rules and that as N, ~ oo the deep
bag will disappear (although for "physical" values of the
parameters this does not necessarily hold). Another diffi-
culty from a phenomenological point of view is that if one
does not make the scalar glueball state so massive that it
is "frozen out" as an auxiliary field, the model (with both
the shallow- and deep-bag fits) predicts its width to be
very large (of the order of several GeV). To overcome this
difficulty we investigate (in Sec. III) a similar model
which possesses a more realistic scalar sector, consisting
of both a quarkonium as well as a gluonium scalar. As
discussed in Sec. IV, a small modification of this model
(which does not significantly change the solution proper-
ties) can give physically reasonable decay widths to both
scalar particles. In the two-scalar-field model of Sec. III
it is found that both the deep- and shallow-bag fits persist
but that the very deep bag is inevitably associated with an
unphysically low-mass scalar particle, which is rather un-
likely. This feature is due to an upper bound on the light-
est scalar particle in the model —m„,i„(8(H)/F
which had been observed earlier. The point is that the
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very-deep-bag fit can only be obtained for a relatively
small value of the gluon condensate (H). A plausible
case for (H) = (0.34 GeV) has been made by study of
the QCD sum rules. This value is in good agreement
with that predicted by a consideration of the U(1) anom-
aly: (H) = 6F mz

Thus at the present stage the shallow bag is somewhat
favored. ' Strictly speaking, the bag is shallow for the
gluon condensate field but somewhat more enhanced for
the quarkonium condensate field. One is left with a fit
similar to the usual Skyrme model, which does not give
good predictions for F and the axial-vector renormaliza-
tion constant g~. The introduction of vector mesons
and/or explicit quarks" seeins to help but more work is
clearly needed. It will be interesting to investigate the role
of the bag in these more sophisticated models. Perhaps
the deep-bag fit will then get resuscitated.

Tr(a„Ua„U )
8

Tr([a„UUt, a UUt]i),
328S

(2.1)

where b is a dimensionless constant, ' es is the dimen-
sionless Skyrme constant, F is the pion decay constant
which is experimentally 132 MeV, and (1()=A/e' is a
measure of the gluon condensate in QCD. The first two
terms represent additions to the usual Skyrme model. The
scalar field g is taken to be an order-parameter field relat-
ed to the fundamental QCD field strength as

g =H = [P(g)/g]Tr(F„F„).—The first term is a
minimal kinetic term for this field and the second term
reproduces the trace anomaly. An additional change is
that the third term contains a factor of P to ensure that it
is scale invariant and hence does not spoil the trace anorn-
aly. The last term in (2.1) is the original Skyrme term
which does not require any modification.

II. MINIMAL CHIRAL MODEL
WITH BAG FORMATION

We previously showed that a minimal modification of
the Skyrme chiral Lagrangian to achieve the correct QCD
scale anomaly automatically resulted in the formation of a
bag in the presence of a chiral soliton. This seems in-
teresting for several reasons. First, it provides an explicit
"QCD ingredient" in the Skyrme model which as it stands
is based on spontaneously broken chiral symmetry rather
than QCD directly. Thus it may provide a useful clue for
a "first principles" derivation of low-energy phenomena.
Second, it provides a mechanism for irnplernenting a
smooth transition from the bag to the nonbag region. Fi-
nally and more pragmatically it provides one with another
handle to try to improve the predicted properties of the
nucleon. Of course, there are many other effects (such as
the presence of vector mesons, etc.) which may also play a
role in the nucleons' appearance at low energies.

The effective Lagrangian for this model is

4
w= ——,'b (ape) —

4 g ln

pp(r) = —,
' [A(r)/A, +B(r)],

p„(r)= —,
'

[ A(r)/A, +B(r)], — (2.2}

Equation (2.1) has static solitonic solutions for the
chiral field U, which are very similar to those in the
Skyrme model. At large distances the second term's con-
tribution to the energy is minimized when g becomes
equal to A/e' . This makes the potential energy at large
distances more negative than what one would have for the
/=0 or "perturbative" vacuum situation. On the other
hand, at small distances the third term provides an effec-
tive potential energy for P which is minimized for /=0.
Depending on the numerical values of the parameters the
latter term thereby generates a more or less pronounced
suppression of 1t, i.e., a bag. A more quantitative discus-
sion of this feature is contained in Ref. 6.

Although W depends on four constants we do have at
least a rough idea of the value of each. First the value of
the gluon condensate has been roughly estimated by the
QCD sum-rule approach giving (g) =0.34 GeV. Since
the mass associated with the scalar field excitation
(presuinably the low-lying scalar glueball) is given by
2(g) /b, we might expect b =0.5 corresponding to a mass
choice of about 1.4 CieV. The Skyrrne constant es has
been roughly estimated by assuming that the Skyrme term
arises by "integrating out" the effects of a p(770) meson;
this yields' es-mz/F =5.83. Finally the pion decay
constant F has been very accurately measured to be 132
MeV. In a modern discussion of the nucleons' properties
in the Skyrme model Adkins, Nappi, and Witten (ANW}
found it necessary to choose (with our normalization)
F„=91MeV rather than 132 MeV. An obvious question
of interest is to what extent this may be improved in the
present model with the retention of reasonable choices for
the other less-well-determined parameters.

In Ref. 6 it was found that a fit to the nucleon and b,
masses could be obtained with the true F if (g) was tak-
en to be less than about 0.19 GeV rather than about 0.34
GeV. This could be achieved for a large range of glueball
masses. A typical solution of this type is shown in Fig. 1.
It features a deep bag and a chiral function F(r), defined
from the Skyrme ansatz U =exp[ix rF(r)], which is
slightly enhanced within the bag. On the other hand, if
we take (g) around 0.34 GeV, a fit requires F closer to
the original value of about 91 MeV. This again holds for
a large range of glueball masses and is also illustrated in
Fig. 1. The possibility of fitting F to its experimental
value requires a nontrivial behavior of the function f(r)
If (g) is larger than about 0.19 GeV we cannot achieve
this and will obtain a rather shallow bag. As pointed out
in Ref. 6 the shallow bag is not inconsistent with the
difference of inside and outside vacuum energy densities
obtained in the MIT bag model. '

To further understand this model we would like to
compare its predictions for some of the basic static prop-
erties of the nucleon with those of the original Skyrme
model. The formulas for these quantities are very
straightforward modifications of those given by ANW.
Specifically, the proton and neutron charge densities are
still given by



2232 P. JAIN, R. JOHNSON, AND J. SCHECHTER 35

where B(r)= —(2/n. )F'sin F is a "topological" isoscalar
density, F':d—F/Br, and the isovector density A.(r) is now

2 2

A, (r)= sin F 8K F' +
3

""
2 p 2

(2.3)

where —K is the coefficient of Tr(t)„Ut)„U ) in (2.1).
Note that the moment of inertia A, is given by k(r)dr

0
We then have the isoscalar and isovector mean-square
charge densities

&r &r p
——f drr B(r),

(2.4)
&r &r &

——f dr r A(r)/A. .

The isoscalar and isovector mean-square magnetic radii
are given by

&r &Mr p ——f drr B(r)/&r &r p,

&" &Mr=i=&r &r=i
(2.5)

We shall not discuss separately the I =0 and I=1 nu-
cleon g factors since they are not independent of other
quantities in the model; ANW show that gp

——(pz
+p„)/2= —,N(& —N)&r &r=p and g~ ——(pz —p„)/2
=2NI(b, N) wh—ere N and 5 stand for the nucleon and
6 masses:

N =M +3/(8A, ), b, =M + 15/(8A, ) . (2.6)

In this formula M is the soliton mass given in Eq. (7) of
Ref. 6. Finally the axial-vector renormalization con-
stant' in neutron decay gz is

T

3

gA= '1 'X —4m, sin2F 2
8K F'+

es

sin2F, 2 2sin F, sin F sin2FF' +, F'+
7 7 7

(2.7)

where the factor of —,
' is used in the case when the pion

mass is zero and the factor 1 is used in the case when the
pion mass is nonzero.

It is interesting to consider the effects of a nonzero pion
mass term in the model. We would like to include it in

(a)

such a way' that it has the right chiral transformation
properties and also mocks up the trace-anomaly equation
for massive quarks:

8„„= [P(g )Ig]—Tr(F„F„)
3—[1+y(g)] g m;q;q; . (2.8)

Here we have included for generality the three light
quarks; the quantity y(g) is the anomalous dimension of
the qq operator. The operator in the last term of (2.8)
transforms with scale dimension (3 —y) so a suitable mass
term in a chiral SU(3) X SU(3) effective Lagrangian would
be

,

3—r
Tr[A ( U+ Ut)], (2.9)

r (fm) 0.6

(b)

1.2 1.8

where the diagonal matrix A has elements
=F m /4 and A3 ——(F /2)(mk —m /2). [For the
SU(2) case of present interest one should set A3 to zero. ]
Equation (2.9) should be added to (2.1); note that we shall
measure the static energy M of the soliton solution by
subtracting from the Hamiltonian the vacuum value of
the effective potential at r = ao. For the two-flavor case
with y =0 the asymptotic value of tj'r needed to obtain this
subtraction constant is obtained as the solution of

F m
&P& =(A/e' )exp (2.10)

r (fm) 0.6 1.2 1.8

FICr. 1. (a) The soliton shape function F(r) and (b) the bag
shape function P(r) for the massless pion models of Sec. II. The
solid and dashed curves refer to the deep- and shallow-bag fits,
respectively.

Now we shall briefly discuss the results of our compu-
tation of the nucleons' static properties. In Fig. 2, the
charge densities of the proton and neutron [computed
from (2.2)] are displayed for both the shallow-bag and
deep-bag cases illustrated in Fig. 1. These pictures corre-
spond to the zero-pion-mass case; the effect of the mass
term (2.9) on them turns out to be unimportant. It is ob-
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0.6
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(b)

1.2

1.8

to zero; we found that the results were not very sensitive
to reasonable variations of this parameter. Our Lagrang-
ian contains four independent parameters but it is prob-
ably best to think of the four input parameters as the
mass of the nucleon, the mass of the 6, the glueball mass,
and the vacuum condensate value (P&. The predictions
are then F, the Skyrme constant ez, the three charge ra-
dii &r'&I=o, (r'&M, I=O (r &I=1 (r &M, I=1, and the p
decay constant gz. We should first remark that the pre-
dictions in the shallow-bag case are essentially the same as
those of ANW (for the massless case) and Adkins and
Nappi' for the massive case. In the massless case, first,
we see that the deep bag gives better predictions for F„,
( r & I —Q and ( r & M I 0 than does the shallow bag. It is
somewhat worse for gz but for this quantity the model of
ANW is so far off that one suspects that a new mecha-
nism is needed. One possibility, "which has been exten-
sively discussed in the literature, is that the Skyrme model
represents in some way the very substantial "tail" of the
nucleon. If quarks were present in the "core" they would
also contribute to gz. In such an eventuality it might be
desirable to have a smaller gz as in the deep bag. Anoth-
er possible solution to this problem involves the inclusion
of vector and other mesons. Finally the effect of the mass
term does not change the predictions much for the deep-
bag case but improves some and worsens others for the
shallow bag. In all our fits we kept the glueball mass in
the 1.5-GeV region.

FIG. 2. (a) The proton and (b) the neutron charge densities
[from Eq. (2.2)] for the massless pion models of Sec. II. The
solid and dashed curves refer to the deep- and shallow-bag fits,
respectively.

vious from Fig. 2 that the effect of the deep bag is to sig-
nificantly decrease the size of the tail. In Table I we list
the numerical values of characteristic static properties for
the two massless cases illustrated in Fig. I as well as for
shallow- and deep-bag fits with nonzero pion masses. In
the latter cases the anomalous dimension y in (2.9) was set

III. MODEL WITH QUARKONIUM SCALAR

The model of the previous section introduces a new de-
gree of freedom which, assuming' that b&0, corresponds
to a rather wide I =0 scalar particle of typical hadronic
mass. It would be nice to try to compare its properties
with experiment. Unfortunately, both the experimental
and theoretical situations in the I =0 scalar channel are
far from certain. A summary from the present point of
view is given in Ref. 8. Most physicists expect not only a
glueball scalar somewhere very roughly around 1.5 GeV
but also a quarkonium scalar very roughly around 1 GeV
to exist. These may well mix with each other. Hence it
seems desirable to give a modification of our model in

TABLE I. Inputs and predictions for various fits in the model of Sec. II. F, (tP), and eq were
chosen to fit the N and 5 masses and to give a glueball mass around 1.5 GeV.

Model

Quantity

F. (GeV)
(q) (aeV)
es
Glueball mass
(GeV)
l((0) I (l()
(r )I ' (fm)
(r)M, I=o'" (fm)
(r ) '' (fm)
(r )MI )' (fm)

gw

Shallow bag

0.092
0.34
5.40
1.70

0.91
0.59
0.88

0.60

Shallow bag,
m„&0

0.078
0.34
4.84
1.70

0.94
0.68
0.95
0.99
0.99
0.68

Deep bag

0.132
0.156
4.53
1.42

0
0.67
0.80

0.45

Deep bag,
m„&0

0.132
0.14
4.44
1.75

0
0.65
0.78
0.78
0.78
0.33

Expt.

0.132

0.72
0.81
0.88
0.80
1.23
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which a quarkonium scalar is also present.
Let us for generality first consider the three-flavor La-

grangian with quarkonium scalars as well as quarkonium
pseudoscalars. This is a linear cr model with a 3&3 ma-
trix field M which behaves as M~UL MUit under chiral
transformations. If the chiral symmetry is spontaneously
broken to Uv(3) it is convenient to decompose

M =sU, s'=s, U'= U-', (s) =
2

We note the identity for a kinetic term

, Tr—(r}„MB&M) = —, Tr(B„—sr}„S)

——,Tr(a„Ua„U'S') .

(3 1)

(3.2)

where c and R are new dimensionless positive parameters
(chosen in this particular way to agree with the notation
of Ref. 8). Now let us specialize to the usual SU(2) o.

model by setting S =(o/W2)1. Our modified model then
consists of (3.2) plus the simplest' (which seem sufficient
for our present purposes) potential term (3.3) as well as
the pure g terms and Skyrme term:

4

W = ——,
'

b (B„g) ——,
'

g ln —,' (B„o)—.

The second term in (3.2) is similar in structure to the third
term of (2.1) except that the standard nonlinear o model is
multiplied by quarkonium fields rather than by a gluoni-
um field. Actually the quarkonium and gluonium fields
will mix because of the need to construct a scale-invariant
potential term which results in a nonzero vacuum value
for S. The simplest term of this type is

—c[2Tr(MM ) Rb g —] = —c[2Tr(S ) Rb @—]

(3.3)

o and h:b—g/i is

M =4cF„, 4cF i 4(y)~
2(g)b'

(3.6)

Diagonalization of (3.6) yields the physical fields oz and
hp.

o cosO

h —sinO

r

sinO op
cosO h~

(3.7)

where the mixing angle is given by

tan2O= 2A
M —K —A /M

and the squared masses are

(3.8)

2

R=
2b'(g)' ' (3.10)

must always be positive. For (3.6), (3.8), and (3.9) we
learn that, as e~ao,

m (o~,h~)= —,'(M+K+A /M+2%/sin28) . (3.9)

Since it is well known that the usual nonlinear o model
can be obtained as a certain limit of the linear one, it is
interesting to explicitly see how the model of the previous
section emerges as a limiting case of the present one. For
this purpose we should take c in (3.4) to infinity. Then o.
and 1t will no longer be independent since the equations of
motion will require o =Rb tP to hold. It is important to
note that

—c(oRb f ).— (3.4)

Tr(B„UB„U )+ Tr([BpUU, B„UU ] )
32es'

m (o~)~00,

mz(hp)~ 4(q)'
b (1+R)

tanO

(3.1 1)

In this case it might be reasonable to modify the mass
term in (2.9) to

2—r
Tr[A(M+M )]

If the scale-anomaly term were absent we would have
(1t ) =0 and h~ would be a "dilaton. " In the c~ oo limit
the field oz is frozen out and we should replace ~z by its
vacuum value (o~ ) which is easily seen to be zero using
(3.7) and (3.10) with tanO=R'~ . The Lagrangian (3.4)
takes the form

m F2

4v2

2 —r
Tr(U+ U ), (3.5)

——,
'

(B„h ) ——,'(B„o ) ——,'g ln
A

since it is plausible that M +M is related to the qq
term in the fundamental QCD Lagrangian. We notice
that W in (3.4) will lead to bag formation in a similar
way as (2.1). The key feature was the suppression of P at
small distances due to its coupling to Tr(B~UB„Ut). Now
this coupling is indirect; the last term in (3.4) links g to o.

which in turn is coupled to Tr(B„Uc)„U ).
Before discussing the soliton excitations of (3.4) let us

investigate the two scalar mesons. Actually we may just
carry over some previous work ' ' here. The 2)&2 squared
mass matrix in the space of the properly normalized fields

b' =b (1+R) . (3.12)

Eliminating b between (3.10) and (3.12) gives

We delete the crz kinetic term and substitute
h~ =bVl+R g and o =bR'~ P into the above expression
to achieve exactly (2.1) wherein b has been replaced by b'
satisfying
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2(q)2b~ 2 —1F 2 (3.13)

Since R must be positive we have a restriction on the pa-
rameter b' which must hold if the model of Sec. II is con-
sidered as a limit of the Lagrangian in (3.4) [of course,
one might accept (2.1) on its own without deriving it from
(3.4); then there is no restriction]:

2

2(g)' (3.14}

Since the scalar-meson mass in the model (2.1) is given by
m2=4(f) /b' [this agrees with (3.11) and (3.12)] Eq.
(3.14) amounts to an upper bound

2 (3.15)

This agrees with the upper bound derived in Ref. 8 for the
lightest particle in the scalar channel assuming a Lagrang-
ian of the type (3.4) but with the most general potential
compatible with the scale-anomaly equation. Note that
(3.15) holds for two rather than three quark flavors.

It is also interesting to observe that with typical values
F =0.132 GeV, (P) =0.34 GeV, m =1.5 GeV, R'~~
from (3.13) will be about —,'. This corresponds to a fairly
substantial gluonium-quarkonium mixing angle. Thus for
the model of (2.1), one may consider the field g to contain
a sizable quarkonium fraction. This would affect the cal-
culations of electromagnetic properties such as two-
photon decay. '

Now let us discuss the general features of the physical
situation described by the two-scalar field Lagrangian
(3.4). For simplicity we shall not include the pion mass
term (3.5) since we have seen that its effect was small for
our previous model in Sec. II. Compared to the old
model, the new one of (3.4) contains only one new
parameter —the dimensionless quantity c. [Note that R
which appears in (3.4) is related to the other quantities by
(3.10).] Equation (3.6} shows that 2F„c'~ may be inter-
preted as a "bare" quarkonium scalar mass. It is sent to
infinity in the ordinary nonlinear cr model but realistically
may be expected to be around 1.2 GeV (corresponding to
c =20). Even though the present model contains an extra
parameter it actually is a more restrictive one. This extra
restriction is due to the mass bound in (3.15) which forces
one of the scalar masses to be rather light when a fit with
physical F is attempted. The origin of the bound may be
traced to the fact that the potential must be such that the
theory chooses to break chiral symmetry spontaneously
(i.e., R &0). In contrast, the model of (2.1) is, by con-
struction, already in the spontaneously broken phase. In
the present model the quarkonium field o. is also
suppressed for small values of coordinate r. Actually
since cr is the coefficient of the meson kinetic term in
(3.4) this suppression may be considered as the more
direct one and turns out, for typical fits, to be fairly pro-
nounced even when one has a more shallow suppression in

this case effectively reduces to the previous one in which
two different characteristic fits can be made for
F„=0.132 GeV and F„=0.091 GeV. The new feature is
that the F =0.132 GeV fit now requires the scalar mass
to be rather low. In the model of Sec.' II, the scalar mass
could be raised more or less at will simply by lowering b.
Now however the analog of b [see (3.14)] must be greater
than F /( 2(g)) which is approximately 0.8 when one
puts (P) =0.12 (in order to fit the nucleon and b, masses).
This should be contrasted with the value of b =0.22 for
the deep-bag fit in Table I. In this model an F =0.132
GeV fit requires [see (3.15)] the scalar mass to be less than
310 MeV which seems rather unphysical. It is interesting
to remark that the value ( g) =0.34 GeV obtained by the
"sum rule" approach gives a physically reasonable bound
of about 2.5 GeV in (3.15). The fit for F =0.091 GeV,
which gives a reasonable mass for the lightest scalar, leads
to a shallow depression in both P and o. When we lower
c to a more physical value a shallow bag in g always is ac-
companied by a more substantial suppression in o. since
the linkage between the two [last term of (3.4)] is weak-
ened.

We do not encounter any surprises when the physical
choice c =20 is made. Solutions with F =0.132 GeV re-
quire a low-mass scalar meson. A typical fit of the
shallow-bag type with F =0.097 GeV can be achieved
with es ——4.93, b =0.49, and (g) =0.34 GeV. Note that
we are able to make a fit with a slightly better value of F
than the earlier shallow-bag model and the original
Skyrme model. The low-energy properties of the nucleon
are very similar to the shallow-bag solution in Table I;
specifically (r )I p =0.61f (r )M I p' ——0.86f, and
gz ——0.60. The scalar masses [see (3.7)—(3.9)] are
o& ——0.83 GeV and hz

——1.47 GeV with a mixing angle
6= —0.22 rad. Figure 3 shows tr, g, and F as functions
of radius. Although the fit obtained here is similar to the
shallow-bag fit in the minimal model of Sec. II, the
present model seems to give a more reasonable description
of the scalar-meson sector. The scalar widths are still ex-
tremely large (order of several GeV) but can, as we will
show in the next section, be reduced by a simple modifica-
tion of the kinetic term, without changing other results.

It is interesting to observe that the difference of the in-
side energy density (approximated by its value at the ori-

4

r (fm) 0.6 1.2 1.8 2. Q

For orientation, first consider the limit when c becomes
very large, say c = 1000. As discussed above, the model in

FIG. 3. F(r), ~(r)/(o ), and f(r)l(o ) for the shallow-bag
fit of Sec. III.
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gin) and the outside energy density is in agreement with
that of the MIT bag model' for the above fit. Explicitly
e;„„d,—e,„ts;d, —V(0) —V( ao ) = ( 141 MeV), where the po-
tential V =P in(g/A)+c(o —(o ) P /(P) ) .

IV. SCALAR-MESON WIDTHS

A traditional feature of the old linear o model and its
descendents is an extremely large decay width for the
I =0 scalar to go into two pions. One possibility is that
this is in fact a true description of nature and that the rel-
atively narrow states listed in the tables of the Particle
Data Group are exotic objects such as "KK molecules. "
A more orthodox interpretation of the scalars, on the oth-
er hand, would require us to find a way of suppressing

their widths. This does not seem possible for the minimal
model of Sec. II, whose form is tightly constrained by re-
quiring it to be chiral symmetric and to obey the trace
anomaly (see footnote 15 of Ref. 6 for a discussion of the
scalar width in this model). As we pointed out in Ref. 8
the widths for both scalars can be reduced to the order of
several hundred MeV rather than several GeV in the two-
scalar model of Sec. III, when the meson kinetic term is
slightly modified. Here we would like to give a more
transparent explanation of this effect as well as to point
out that improving the scalar-meson widths does not sig-
nificantly change the properties of the nucleon.

Let us adopt the following simple modification of the
pseudoscalar kinetic term in (3.4):

—F 2

P PTr(B„UB„U )~
8

'2 2

(1 r)+r— Tr(B„UB„U ), (4.1)

(4.2)

we find, from (4.1) and (3.7),

W2(1+t)cos9 t sin9

where t is a new dimensionless parameter. Equation (4.1)
is both chiral and scale invariant, though not unique. It is
clear that the possibility of adding the additional parame-
ter t is due to the fact that we have two scalar fields rath-
er than one present. With the coupling constants for
o.

p
~mm. and hp ~arm. defined by

0'p 0p 0'p—1 2m
hp 3277 p p

teristic widths will be smaller by a factor of about
(F /~2(P) ) =—„compared to a usual linear o model.
For this mechanism it is important that (g) be at least as
large as the value obtained from the sum-rule approach.

As an illustration consider the case when t = —0.7 and
the other parameters are similar to those of the shallow-
bag fit of the previous section: c =20, b =0.59,
es ——4.94, (g) =0.34 GeV. This yields F =0.092 GeV
and similar parameters for the nucleon. The scalars of
mass 0.79 and 1.2 GeV have the relatively narrow widths
0.42 and 0.23 GeV, respectively. These can, without
changing other predictions, be modified by varying t and
can be reduced further by increasing (P).

g(h~)=m (h~)
—W2(1+ t)sin8 t cosO

(4.3)
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