
PHYSICAL REVIEW D VOLUME 35, NUMBER 7 1 APRIL 1987
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We consider low-energy supersymmetric models which come from E6-based grand unified or
superstring-inspired theories whose scalar fields come from 27's, 27's, or 1's of E6. Two classes of
models emerge. In one, an upper bound of 108 GeV to the mass of the lightest Higgs scalar is

found, independent of the precise gauge group, soft-supersymmetry-breaking parameters, or super-
potential parameters. In the other, the requirement of perturbative unification is sufficient to arrive
at a similar bound. Other Higgs-boson mass relations are also discussed. Failure to find a Higgs
boson with a mass near or below 108 GeV would therefore rule out nearly all such E6-based models.

I. INTRODUCTION

One of the most dramatic predictions of supersym-
metric theories is the doubling of the particle spectrum.
This is also one of the most frustrating predictions since
very little theoretical guidance as to the masses of these
new particles exists. Short of actually discovering these
particles, experimentalists can only push up the lower
bounds on their masses. Theoretically, one of the main
motivations for supersymmetry is to understand the
hierarchy of scales from the Planck scale to the elec-
troweak scale. ' If supersymmetry is connected with the
origin of electroweak symmetry breaking, then supersym-
metric particle masses must not be larger than —1 TeV.
However, this bound is not precise and, in the absence of
firm theoretical upper bounds to these masses, it appears
to be impossible to experimentally rule out most super-
symmetric theories in the near future. However, an addi-
tional feature of all such supersymmetric theories is the
highly restrictive nature of the Higgs potential. This, as
we will see, does lead to firm (and accessible) upper
bounds to the mass of at least one Higgs particle.

For example, consider the minimal supersym metric
model with an SU(3), &CSU(2)L XU(l)r gauge group and
two Higgs doublets H

&
and H2 with hypercharges —1

and + l, respectively. Since there can be no gauge-
invariant cubic terms in the superpotential, the quartic

terms in the potential are generated entirely through
gauge interactions and are thus completely determined.
The most general potential is then (allowing arbitrary
soft-supersymmetry-breaking terms)

V=mi HiHi+m2 H2H2 —m3 (HiH~+H. c. )
2 2 2

2

+ —,g
'

(
H iH i H2H2 )— (la)

(lb)

Minimizing this potential will give four physical Higgs-
boson masses: a charged scalar H —+, a neutral pseudosca-
lar H3, and two neutral scalars H& and H2. Since there0 0 0

are only three arbitrary parameters in V, there are mass
relations. It is straightforward to show that the neutral-
scalar mass matrix is

where the r; are the SU(2)L generators and g and g' are
the SU(2)L and U(1)r coupling constants. This equation
can be rewritten as

V =m& H &Hi+m2 HqH2 —m3 (HtH2+H. c. )
2 2 2

+ —, (g +g' )(H|Hi H2H2) + —,g iH—iHp
~

mz cos p+m 0 sin p
3

—(mz +m 0 )sinpcosp
H3

—(mz +m, )sinpcosp
H3

mz sin p+m, cos p
3

(2)

where

tanp=u~/u, ,

mz ——
z (g +g' )(ui +us ),

m 0 =2m3 /sin2P,
H3

and u& and u2 are the (real) vacuum expectation values of
the neutral parts of H& and H2, respectively. Since

det
~

M mz I
i
= —mz m 0 si—n2P

H3

which is clearly negative, one eigenvalue of this matrix is
less than mz, and thus there must be a Higgs scalar
lighter than the Z. One can also show that the smallest
eigenvalue increases as m&0 increases, and in the limit of

3

m~, ~ oo, its value is mz cos 2p, which is explicitly less
3

than mz2.
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One can easily show that this bound is independent of
the number of Higgs doublets by defining H, and Hi to
be the linear combinations (one for each hyperchange) of
doublets which point along the ray from the origin to the
minimum of the potential. The part of the matrix which
involves Hi and Hi will then be identical to Eq. (2) and
one can diagonalize this part of the matrix. There will
then be a number less than mz on the diagonal, and since
the smallest eigenvalue of a Hermitian matrix is smaller
than any diagonal element, there will still be a Higgs bo-
son lighter than the Z.

One can also derive two other mass relations from the
potential of Eq. (1):

2 2= 2 2m p +m~p =mz +m~p
1 2 3

(3)
m~p +m gr =m~+2 2= 2

3

implying that the charged scalar must be heavier than the
W.

The recent flurry of excitement over superstring theory
has awakened interest in supersymmetric models with ex-
tended gauge groups. When six dimensions of the ten-
dirnensional E8 &(E8 heterotic superstring theory are com-
pactified on a Ricci-flat manifold of SU(3) holonomy,
the resulting four-dimensional gauge symmetry must be a
rank-five or -six subgroup of E6, with matter fields corn-
ing from 27's and/or 27's of E6. This motivates the
study of low-energy supersymmetric models based on
gauge groups (which are subgroups of E6) which have a
larger gauge symmetry than SU(3), X SU(2)L, XU(1)r.

In this paper we consider the upper bound to the mass
of the lightest neutral Higgs scalar in these models. All
phenomenologically acceptable subgroups of E6 will be
considered, and it will be assumed that Higgs scalars
come from 27, 27, or 1 representations of E6. It will be

l

shown that in spite of the addition of many extra parame-
ters, an upper bound of approximately 110 GeV can be
placed on the mass of the lightest Higgs scalar in any of
these models.

II. A BOUND FOR THE LIGHTEST HIGGS BOSON
IN E6-BASED MODELS

To fix our notation, the structure of the 27 of E6 under
the decomposition into SU(3), X SU(3)r X SU(3)ii
given as

[27]= [3,3, 1]+[3,1,3]+[1,3,3]

(Hq)+ (Hq) e +

=(udg)+ d + (Hi) (Hi) Nq

The neutral Higgs fields are (Hi ), (Hz), Ni, and Ni, It
may be possible that the left-handed scalar neutrino v
could get a vacuum expectation value, but this will only
be relevant in one of the models which we will consider.

A. Rank-5 models

The simplest rank-5 subgroup of E6 is SU(3),
XSU(2)L XU(1)i XU(1)r. For definiteness, we choose
the U(l)r which can come directly from the compactifi-
cation (other possible choices will be discussed later). The
quantum numbers of Hi, H2, N&, and N2 under this
group are 3 3 3 and ——,', respectively. We first
consider the minimal case in which there is only one set of
Hi, H2, and N&. The most general gauge-invariant su-
perpotential is then W=XHIH2N& and thus the most
general potential is

V=mi HiHi+mq HiHq+miv, N, Ni —AA(HiHqNi+H. c. )

+A, (HiHiHpHi+HiHiNiNi+HiHpNiNi)+ —,(g +g' )(HiHi HiHi)—
++hagi (HiHi+4H&H2 ~N1Ni)'+( ig

B2vi V2 —AAn i
vi

where gi is the U(1) i coupling constant. From this potential, one finds the neutral-scalar mass matrix is

2 XAV2n]
Biui + B3V&n &

—AAV2

2 XAV]n
&M = B2viv2 —XAni B4u2 + Bqv2n &

—A.AV& (6a)

B3V&n &

—A, AV2 B5v2n i
—AAvi

25 2 2 1 2
]$81 n1 +

n&

where

&i= z(g'+g')+ isgi'

8, =2k.'+ —,
' gi' ——,

' (g'+g'),
B3——2A, ——„gi
&4 =

z (g'+g')+ 9 g i'

B5 —2k 9 g]2 &o 2

(6b)

and n, is the vacuum expectation value of N i. (Note that
by phase rotations of the Higgs fields, we can assume,
without loss of generality, that k, A, and the vacuum ex-
pectation values are real. ) It is of interest to examine the
scalar mass matrix M in the limit of large n &. This limit
is physically interesting since it corresponds to the limit
where the Z'-boson mass [corresponding to the U(1)z
gauge group] is large. In this limit the mixing of the Z'
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with the ordinary Z is negligible and we may use the for-
mula

2 (g2+gf2)( v 2+v 2)

Also, in this limit the pseudoscalar mass is large. To see
this, one must compute the neutral-pseudoscalar Higgs-
boson mass matrix. After removing the Goldstone bo-
sons, only one physical pseudoscalar survives, with a mass

given by

XA(v] n] +uq n] +u] vq )
mps =

U] U2n]

Thus we see that mps gets large in the limit of large n &.

In this limit we find the value of the smallest eigenvalue
of the matrix is given by

ms m——z cos 2P+A. (v] +vz ) sin 2P+ —, (cos P+4sin P)—2 2 2 2 2 2 . 2 4 2 2

25 g

where tanp:—uq/u] as before. To see how the value of ms varies with n], we have diagonalized the scalar mass matrix
numerically. The maximum value of its lightest eigenvalue was found to be within 2 GeV of the value obtained in the
large-n& limit over a large range of parameter space. Thus to obtain a good approximation to the desired bound, we
may use the expression for ms given by Eq. (8). This mass does depend on an arbitrary parameter A, , but clearly it has a
maximum value at

25
[sin 2P+ —', (cos P+4sin P)],144

which corresponds to

25
(ms )~,„=mz cos 2P+ (v] +uq )[sin 2P+ —,(cos P+4sin P)]288

This in turn has its maximum value at p=7r/2, in which
case we conclude that

ms &mz+ (u, +uz).2 2 g] 2 2

9
(10)

We will take the coupling constant of the extra U(1) to
be approximately the same as the coupling of the U(1)r
group. In realistic models, they can differ by at most a
few percent. By setting g] ——g' in Eq. (10), we obtain
mz(108 GeV. It must be emphasized that for most of
the allowed region of parameter space, mz will be much
smaller.

One can also add fields from the 27 . If an N] is used,
the sign of the

~
N,

~

part of the D term in the potential
is changed —this does not affect the bound. If both N]
and N& are used, then the H],H2, N] submatrix is un-
changed and the bound still exists. If H& or H2 fields are
added, then one can have H&H] or H2H2 terms added to
the potential, and our previous bound no longer applies
precisely. We have found using numerical techniques that
the maximum value of the smallest eigenvalue of the 5&5
mass matrix formed by H], H2, H], H2, and N], allow-
ing completely arbitrary H]H] and H2H2 terms is 73
GeV.

The above calculation has been carried out assuming

the existence of one set of Higgs fields H], H2, and N&.
Our bound is unaffected by adding N2 since the superpo-
tential term H&H2N2 is forbidden by the E6 invariance.
However, realistic models require more than one genera-
tion of 27's, which implies that additional Higgs fields
should be considered. First, suppose that we include addi-
tional Higgs-doublet fields. Using an argument analogous
to the one we previously used for the minimal model in
Sec. I, we conclude that the bound on the Higgs-boson
mass obtained above cannot be weakened. Second, sup-
pose we include additional Higgs-singlet fields with quan-
tum numbers identical to N&. There are then two possi-
bilities. Suppose that the superpotential is 8'
=AH&H2N&+A, 'H']HEN&, where the primes refer to a
second generation. In this case, the symmetries of the
model have been chosen to avoid terms which mix genera-
tions. Then, the argument referred to above can be ex-
tended and our bound is unchanged. On the other hand,
if we do not forbid generation-mixing terms, a new
feature arises, and our bound requires modification. To
see what happens, consider the simplest example of a
minimal rank-5 model with a field N] added. The super-
potential is taken to be W'=H]Hz(AN]+k'N] ). The po-
tential (including soft-supersymmetry-breaking terms)
previously given by Eq. (5) acquires new terms:

5 V=m& N] N] —m3 (N]N'] +H. c. ) —A, 'A'(H]HgN] +H. c. )
1

(H]H]H/H/+H]H]N] N]+HpHpÃpN] —
~
H]Hp

~
)+u. (H]H]+HpHp)(N]N]+H c )

5 2
g 1 pf 5

36
N, N](H]H]+4HgH~ —5N]N] — N] N]) . —

2

Let us denote (N'] ) =n ]. The scalar mass matrix in this case is 4 X 4. Let us evaluate its smallest eigenvalue in the limit
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of large n 1 and n'1. The easist way to do this is to define

A,n &+A, 'n &
k'n

&

—A.n'&

)
( 2+ ~ 2)1/2 '

( 2+ ~ 2)1/2 (12a)

In addition, we define rotated fields N, and Nb such that the superpotential is W =H1H2(A, 1N, +A,2', ). In this case
(N, ) =(ni +n'1 )'/ and (Ni, ) =0. It is sufficient to examine the 3 X 3 submatrix (corresponding to Hi, H2, N, ) Th. e
calculation is nearly the same as before with one exception. In the limit of large (N, ), the value of the smallest eigen-
value is

72K, 1

ms ——mz cos 2p+Ai (Ui +U2 ) sin 2p+ —,(cos p+4sin p) — +A2 (U, +U2 )sin 2p.
25g)

(12b)

Equation (12b) is similar in form to Eq. (8) with one im-
portant difference. Since )1,2 is a free parameter, we can-
not derive a model-independent bound for mz without
employing renormalization-group arguments to place an
upper bound on A,z. In fact A.q cannot be too large or its
value will become inconsistent with perturbative unifica-
tion. This gives A,q(0.72 which implies that the lightest
eigenvalue must be less than 125 GeV. Actually, in realis-
tic models one expects this bound to be much smaller.
Since Hq couples to the top quark, one will always have
mz &m&, which gives Uz & U& and

5 2

XAn i+A, 'A'n
1 & (n 1 +ni )

~

tan2P
~24

All models have upper bounds to 3 and A' which arise
from requiring that the vacuum not break electric charge
or color (and from requiring that the potential not possess
other undesired minima); this translates into an upper
bound on sin 2p. The end result is that the bound on ms
obtained from Eq. (12b) is lowered by at least 10%, which
brings the bound near our previously obtained value of
108 GeV. This bound is unchanged in models with addi-
tional N~ fields. As above, we simply rotate the vacuum
expectation values into one of the fields (say, N, ). Then,
Eq. (12b) remains valid if we replace A.2 by A,2 +)1,3
+ . , where the latter A, ; correspond to the couplings of
the remaining Ni fields to H1H2 in the superpotential.
The arguments above bounding A,q can be used to obtain
an identical bound for (A.2 +A, &

+. . . )'
Finally, let us consider adding E6 singlets to the rank-5

models considered above. In models with no 27's, the
bounds obtained above remain unchanged, since there is
no E6-invariant cubic coupling between the singlet field
and the 27's. In models with 27's and 27's, we can have
such cubic couplings (e.g. , H, H1S). The analysis of such
models resembles the analysis of the rank-5 models with
more than one N field. Namely, new couplings in the su-
perpotential introduce new A, parameters which appear in
the formula for the lightest scalar Higgs-boson mass.
Again, we must resort to renormalization-group argu-
ments to bound these A. parameters in order to bound this
mass. Based on our numerical analysis of such models,
we expect the resulting bound to be even tighter than the
ones found above since numerous Higgs fields now contri-
bute to the 8' and Z masses and thus must "share" their
vacuum expectation values.

In our analysis of the rank-5 models, we chose the
quantum numbers of the states by assuming that the low-

TrMp ——TrMz +TrM (13a)

where Mz is the neutral-vector mass matrix, M~ is the
neutral-scalar mass matrix, and MHO is the pseudoscalar

3

mass matrix. This relation turns out to be far more gen-
eral. One can easily show that Eq. (13a) holds in any su-
persymmetric model based on an extended gauge group in
which gauge-singlet fields are absent. The second relation
of Eq. (3) is slightly more model dependent. In the
minimal rank-5 model, we have found that

mH+ =miir +mHp —A, (Ui +U2 )+02 2 2 2 2 2 I

n&

1
2) 2

np
J

(13b)

energy gauge group emerged directly from the compactifi-
cation of the ten-dimensional string theory. Another way
to get an extra U(1) is to have a rank-6 subgroup break at
some intermediate scale to the rank-five group. This can
occur if either N, , N2, or a linear combination of the two
gets a vacuum expectation value at some intermediate
scale (typically of order 10" CseV). Consider the case in
which either N~ or a combination of N~ and Nq gets a
vacuum expectation value. In that case, an H&HzN& term
in the superpotential cannot exist since it would generate
intermediate scale vacuum expectation values for H& and
Hq. But if this term does not exist then the tree-level
mass of the pseudoscalar vanishes (the pseudoscalar can
still acquire a small mass through gaugino loops). Since
the determinant of M in Eq. (2) would then vanish, one
of the scalar masses vanishes (at the tree level). As a re-
sult, the case in which either N ~ or a combination of N~
and Nz acquires an intermediate scale vacuum expecta-
tion value results in a scalar mass which is very small. In
the case in which Nq acquires an intermediate scale vacu-
um expectation value, the quantum numbers of Hi, H2,
and N1 under the remaining additional U(1) are 3/v 6,
2/v 6, and —5/W6, respectively. In this case the factor
of —,

' in Eq. (10) becomes —,', tightening the bound. Final-
ly, the other rank-5 group SU(4), XSU(2)L XU(1)i has
severe phenomenological problems with proton decay or
neutron oscillations (as discussed in Refs. 6 and 8) and
will not be discussed further.

We can also consider the generalization of the relations
in Eq. (3). It is straightforward to show, independent of
the quantum numbers under the extra U(1), that the first
relation in Eq. (3) becomes
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as expected from analyses of the minimal model with a
singlet added. '

B. Rank-6 models

We now turn to the rank-6 subgroups of E6. The sim-
plest rank-6 subgroup is SU(3), X SU(2)1 X U(1)r

XU(1)r XU(1)r . Since only one of the U(1)'s (the hy-
percharge) is specified, there is freedom in defining Y'

and F". This freedom is manifested by the presence of an
arbitrary angle in the quantum numbers under U(1)r and
U(1)r-. This arbitrary angle thus enters the potential
through the D terms. Denoting the couplings of the
U(1)r and U(1)r- groups as g& and gz, respectively, and
denoting the arbitrary angle as 6I, the potential is

V =m ( H )H ) +m 2 H 2H2 +m ~, N, N ) +m ~, N 2N2 —A A (H (H2N ( +H. c. )
2 2 2 2

+1, (H(H)HzH2+H)H)N(N(+H2H2N, N))+( 2 g A )
I
KH2 I

'+
8 (g +g')(H, H) H2H2—)'

2

+ [cg(H)H(+4H2H2 —SN(N) —5NzNz) —V 15sg(H&H, N)N)+—N2N2)] 2

72
2

+ [sg(H&H~+4H2H2 —5N&N~ —SN2N2)+~15cg(H~H& N~N~+—N2N2)]
g2 2

72

where cg and sg are the cosine and sine of the arbitrary angle 8. Note that N& and Nz do not have the same quantum
numbers, and both are needed to break the group down to rank 4. The F terms and the cubic soft-supersymmetry-
breaking terms are identical to the previous model.

The neutral-scalar mass matrix can be easily calculated from this potential. Again, we find that the smallest eigen-
value of the matrix is very near its maximum value when n1 and n2 are large. This value is given by

(Ssg —v 15cg) (Scg+ v 15sg)
(ms ),„=mz cos 2P+A, (v~ +uz ) sin 2P+ —', (3cos P+.2sin P) —„', A,

(15)

As discussed above, in realistic models g1-g2-g'. Setting them equal, the angle 0 drops out. Again, mz has a max-
imum for a particular value of X and we find

ms &mz cos 2p+ [sin 2p+ —, (3cos p+2sin p)] (u~ +uz ) . (16)

This is maximized when p=0, thus

ms &mz + —,g' (vr +vz ) =107 GeV .

It is also straightforward to verify that Eqs. (13a) and (13b) are unchanged. The discussion of models with additional
generations, 27 s and/or E6 singlets, is similar to the one given in the previous section.

The next rank-6 group to consider is SU(3), X SU(2)L X SU(2)R X U(1)1 X U(1)R. Under SU(2)1 X SU(2)R, H~ and Hz
form a (2,2) representation, Nz is in a (1,2) representation denoted by

2= N

and N~ is in a singlet representation. The most general potential is (after some simplification)

V=m (H(Ht+H2H2)+m~ N)N)+m~ qzriz AA(H)H2N—)+H.c. )
2 2 2 f

2

+k (H,H, H2H2+H)H, N(N)+H2H2N)N))+ (H)Hi H2H2) + 2(gzL —+g2R —X ) IHiH2 I

2 2 & 2 2 2 ~ 2

2

+ [(H )H, H2H2+rIzrlz) +4e R
—eR(H2H2 H,H, )+4(e RN2H, H—2+H. c. )]2

8
2 25g 1L 5g 1R 2+ (H )H) +H2H2 —2N )N) —22)zz)2) + (H )H) +H2H2 —2N )N( +qzz)2)72 72

Going through the same procedure as before, we again see that the smallest eigenvalue is very near its maximum when
n1 and n2 get large, and is given by

2gzR (2g&1 —g~R )cos2p —2A, ( , gzR +4g&l. +g&—R )

(ms ),„=mz cos 2p+A, (v& +uz ) sin Zp+2+ (17)
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where

Here,

g2R (glL +giR )+ glL glR
2 2 2 2 2

mz ——mii (I+a)/a,
where

2 1 1 1
2+ 2+

g2R g1L g1R

Setting g2L —g2R and g1L-g1R as expected in realistic
models and using the value of mz to fix giL, we find
m~ & 100 GeV. (Here we have used the fact that tanP ~ 1

in order that the top quark be heavier than the bottom
quark. If we relax that restriction, the bound is 117 GeV. )

It is also straightforward to show that relations (13a) and
(13b) are still valid.

The final model that we need to consider in detail is the
group SU(3), XSU(2)L XSU(2)1v XU(1)1 XU(1)i . Here,
SU(2)1v is the subgroup of SU(3)R which commutes with
electric charge, and the U(1)i is the saine U(1) as in the
rank-5 group discussed earlier. The SU(2)~ gauge cou-
pling is denoted by gq1v. Under the SU(2)& group, H2 is a
singlet,

and
N2

N 1

are doublets, and we need a second

N2

N'
1

doublet in order to break the group down to
SU(3), XU(1), . Note that a field with the quantum
numbers of a scalar neutrino gets a vacuum expectation
value. This will give the associated neutrino a large Ma-
jorana mass (through t-channel exchange of a Z). How-
ever, if v comes from either a fourth 27 or from an in-
complete multiplet, this may not be a problem.

The mass matrices for the neutral scalars and pseudo-
scalars are now 7X7 matrices. The former has one zero
eigenvalue and the latter has four zero eigenvalues, corre-
sponding to the five Goldstone bosons eaten by the five
massive neutral. vector bosons [the zero eigenvalue of the
scalar mass matrix corresponds to the freedom to perform
an SU(2)z rotation in order to set one of the neutral vacu-
um expectation values to zero]. We must resort to numer-
ical techniques to find the eigenvalues of the scalar mass
matrix (the presence of the required number of zero eigen-
values provides an excellent check on the numerical com-
putation). As another check, we note that the relation in
Eq. (11a) is still valid. Interestingly, in this case, the trace
of the neutral-vector mass matrix in Eq. (lla) must in-
clude the W~ fields, which are the neutral nondiagonal
bosons of the SU(2)1v group.

The superpotential can contain two terms involving

Higgs fields: Atf2A ~ and A, 'H2A ~. The complete
potential thus has nine parameters: k, A, ', the coefficients
of the two trilinear A terms, the four mass-squared pa-
rameters (one for each multiplet), and a term
( —m3 ~~+H. c. ) which couples ~ and ~. There
are six physically relevant vacuum expectation values [one
of the seven vacuum expectation values can be set to zero
by an SU(2)& rotation], thus three undetermined parame-
ters remain, which we take to be A, , A, ', and m3 . For
every set of values of A, , A, ', and m3, we then searched nu-
merically for the minimum of the potential (by adjusting
the various vacuum expectation values until the eigen-
values of the Higgs-boson mass matrices are positive or
zero) and read off the value of the smallest nonzero eigen-
value of the scalar mass matrix. We then varied A, , A, ',
and m3 to find the largest possible value of this eigen-
value. We found that the largest value of the smallest
nonzero eigenvalue is 33.4 GeV; this value occurs when
A, '=0, I,= —,'g2~, and mq ——1700 GeV. Thus this model
must have a Higgs scalar lighter than 33.4 GeV. An in-
teresting feature of this model is that A. must be greater
than —,g2& in order for all of the relevant vacuum expec-
tation values to be nonzero. [Although we found this re-
sult numerically, we have also found the same feature
analytically in a simplified SU(2)1v model with only one~multiplet. ]

The only other rank-6 subgroups of E6 contain low-
energy SU(3)L groups (which are ruled out by the weak
mixing angle), low-energy SU(4), or other extended color
groups, which are either ruled out by proton decay or neu-
tron oscillations.

C. Rank-4 models

The recent activity concerning superstring-inspired E6-
based models has focused on rank-5 or -6 gauge groups, as
these groups can arise naturally from compactification on
Calabi-Yau spaces. However, we can extend our argu-
ments to the rank-4 case. Consider a model based on the
gauge group SU(3), X SU(2)L XU(1)1 with a Higgs sector
consisting of the fields H„H2, and Ni, as in the minimal
rank-5 case, with superpotential O'=A, H]H2N1. Note
that the superpotential must be composed of E6-invariant
terms if we follow the standard superstring scenario.
However, in general the SU(2)L XU(1)r electroweak
gauge symmetry no longer prevents extra soft-
supersymmetry-breaking terms proportional to H1H2,
N1, N1, and N1 from being added to the potential. The
general case will be discussed briefly in Sec. III. There are
two ways in which such terms can be avoided. First, let
us recall that the soft-supersymmetry-breaking terms are
determined by the structure of the hidden sector which
breaks supergravity. Most authors choose a particularly
simple form for the hidden sector, in which case the re-
sulting A and B terms are proportional to terms in the su-
perpotential. (However, we note that such a procedure is
not the most general. Following the method of Soni and
Weldon, " using a more complicated hidden sector can re-
sult in arbitrary gauge-invariant soft-supersymmetry-
breaking terms. ) Second, one can assume that the "low-
energy" theory just below the compactification scale has
rank 5 or 6 which later breaks to SU(3), X SU(2)L
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III. GENERALIZATION TO MODELS
NOT DERIVABLE FROM E6

For rank-5 or -6 groups, we only assumed that the
gauge group is a phenomenologically acceptable subgroup
of E6. For the rank-four standard-model group, we added
the additional assumption that only terms which could
arise from E6-invariant terms are permitted, as would be
the case in an E6 grand unified theory which broke down
to SU(3), XSU(2)L XU(1)z. Can this latter assumption
be relaxed'? Consider a model with an SU(3),
X SU(2)L XU(1)r gauge group and a superpotential given
by 8'=A,H&H2S+k'S . Following the same procedure
as before, we find that the lightest Higgs scalar must
satisfy

(ms )m,„=mz cos 2P+A, (u~ +u2 )sin 2P

—12(u) +uq ),+sin2p (19)

Since one could choose sin2p= 1 and A, '= —A, , one can get
a bound of ms &A, (u~ +vz ). As before, if A. is too
large, its value will diverge before reaching the unification
scale. If we require that A, not get large before reaching
the unification scale, we find that A, (0.7, and so
m& &125 GeV. By imposing the condition m2 &m], as
expected in realistic models and as we did in Sec. IIA,
this bound will be reduced by approximately 10%. [In
addition, we note that the general relation given by Eq.
(13a) no longer is valid, due to the presence of a gauge
singlet. ]

In the rank-four model in which the superpotential is
composed of E6-invariant terms, but the most general
SU(3), X SU(2)L XU(1)r-invariant soft-supersymmetry-
breaking terms are allowed in the potential, we also find a
bound similar to Eq. (19) but with the last term replaced
by a different (but negative) combination of the parame-
ters. As in the rank-5 model with two A'& fields,
renormalization-group arguments give a bound close to
our bound of 108 GeV.

The only way to avoid such a bound completely is to re-
quire dimensionful terms in the superpotential (such as an
m S term or an mH~H2 term, ' where m is an arbitrary
mass scale). This, in combination with the S and

XU(1)r. Then the terms proportional to H&Hz,
X&, and N~ are forbidden and the potential is the same
as in Eq. (5) with g&

——0. However, it would be incorrect
to simply put g& ——0 in Eq. (9) and claim that ms &mz.
The reason is that Eqs. (8) and (9) were derived under the
assumption that the 3-3 element of M in Eq. (6a) is of
O(n~ ). This is no longer true if we set g~

——0. The best
one can do without additional assumptions is to diagonal-
ize the upper 2 X 2 block of M . The end result is

(ms ),„=mz cos 2P+A, (v, +vz )sin 2P .

As before [see Eq. (12b) and the discussion following], a
bound on ms can be obtained by using renormalization-
group arguments to bound A., with similar results to those
previously obtained. '

H&H2S terms, allows all such bounds to be evaded. How-
ever, there may be severe naturalness problems in putting
an —100 GeV parameter in the superpotential of a grand
unified or superstring-inspired model. We conclude that a
bound similar to our bound of 108 GeV will occur in any
model in which only dimensionless parameters are al-
lowed in the superpotential. These arguments will also
apply to SU(5) and SO(10) models.

IV. PHENOMENOLOG ICAL IMPLICATIONS

1—A, (v, +v2 )sin 2P+0
n n

(20)

Thus if the Hz mass is near the maximum allowed by our
bound, all other Higgs bosons are much heavier and there-
fore phenomenologically irrelevant. On the other hand, it
is possible for both H2 and H3 to be light if the bound is
far from being saturated.

The best experimental signature for finding the H2 is
via the process e+e ~H+f through s-channel Z ex-
change. This process has the advantage that the H2 can
be inferred by studying the invariant mass recoiling
against the ff system. Hence, this signal is independent
of the various Higgs decay channels and depends solely on
the strength of the ZZH2 coupling. If the H2 is suffi-
ciently light, the production rate for the decay of a real
Z~H+f will be large enough to be seen at the Stanford
Linear Collider or CERN LEP. Otherwise, one needs to
have the s-channel Z be virtual. In this case, the optimal
e+e center-of-mass energy is vs =mz+V2m~ (Ref.

2

14). Using our bound of m~ & 110 GeV implies that
Vs &250 GeV. Given that LEP II is expected to have
V s =200 GeV, we see that most of the allowed parameter
space will be explored at LEP II. As discussed earlier, the
bound is only saturated for very particular (and unrealis-
tic) values of the parameters and any realistic model will
have a much lower bound. We thus expect that the small
window remaining after LEP II will be insignificant.

However, even if the mass of H2 is light enough to be
observed, we must check that the rate for e+e ~Huff is
not unduly suppressed by a small ZZH2 coupling. This
coupling has been worked out in the case of the minimal
supersymmetric (SUSY) model. ' If we compare this cou-

We now turn to the phenomenological implications of
the bound obtained in this paper. Consider the two light-
est Higgs scalars in the model. (Following the notation
used in the minimal model, we denote the lightest scalar
by H2 and the second lightest scalar by H&. The pseudos-
calar is denoted by H3. The corresponding masses will be
denoted by m;, i =1,2, 3.) We have shown that the value
of the lightest scalar mass ( m&) is near its maximum in
the limit where n&, n2~oo. In this limit, m3~oo and all
additional Z-boson masses (beyond the standard model
Z), mz ~ao (i =2,3); with mqlmz ~0 in the same lim-

t t

it. Remarkably, in this limit the formula for the mass of
H, is the same in all models we have examined (which
contain a single A, term):

m~ ——m3 +mz sm 2p2 2 2 . 2
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pling g (ZZHz ) to its value in the standard (nonsupersym-
metric) model (SM), we find

0H2 )minimal SUSY

g ( ZZH 2 )SM

(21)

Note that in the limit where mz attains its maximal value
of mz, the above ratio approaches one. Also, in the limit
in which the second lightest eigenvalue m

&
gets large the

ratio is also one. The only way for the ratio to be signifi-
cantly suppressed is in the region where m

&
~mz. How-

ever, if g(ZZH2) is suppressed, then g(ZZH, ) is nearly
full strength, and it would be H

&
which would be detect-

ed. These considerations can be extended to all the ex-
tended gauge models we have studied. It is not hard to
see that the conclusions in these models are similar to
those of the minimal supersymmetric model. We con-
clude that the lightest Higgs boson of E6-based supersym-
metric models will be produced in e+e collisions at a
rate roughly equal to the rate of a SM Higgs boson.
Detection of such a Higgs boson is then assured (in princi-
ple) by the standard missing-mass techniques.

V. SUMMARY

We have analyzed supersymmetric models in which the
gauge group is a subgroup of E6 and in which scalar fields
come from 27, 27, or 1 representations of E6. In models
in which the relevant Higgs fields come from one genera-
tion of 27 and/or 27, we find that the lightest Higgs sca-
lar in the model is lighter than 108 GeV. This is nearly
independent of the numerous parameters of the models
and the precise gauge group. In more general models, one
must resort to renormalization-group analysis and the as-
sumption of perturbative unification to limit the A, param-
eter (which appears in the superpotential). This in turn
puts an upper bound on the lightest Higgs scalar mass
which is at most 120 GeV. We also find a new general-
ized Higgs-boson mass relation Eq. (13a) which is valid in
all extended gauge models without gauge singlets. Thus
failure to find a Higgs scalar lighter near or below 108
GeV in future e+e collider experiments can rule out all
low-energy E6-based superstring-inspired models proposed
to date.

Note added in proof .In our derivation of Eq. (8), we
considered the limit of nissan with A, and A, A fixed.
After this work was submitted, M. Drees [Phys. Rev. D
(to be published)] pointed out that if A were of order n,
then one could fine-tune 2 to cancel the A, term in Eq.
(8). By choosing sin 2f3= 1, and A, large, our bound of 108
GeV could be evaded. Note that this requires A to be
large (of order n) and to be find-tuned [to an accuracy of
0 (U'/n')].

A potential problem with such a large value of A is the
possibility that the potential may possess unacceptable
minima (see, e.g. , Ibanez and Mas ). In fact, for
sin 2@=1, it is straightforward to show that the value of
A required to cancel the A, term in Eq. (8) does not satis-
fy the conditions necessary to avoid unacceptable vacua.
However, as shown more recently by J. F. Gunion, H. E.
Haber, and L. Roszkowski [Report No. UCD-86-41, 1986
(unpublished)], a very narrow region of parameter space
still remains, for A of O(n) and fine-tuned appropriately,
A, large and sin 2@=1, which satisfy the necessary condi-
tions. (Since these conditions are necessary but not suffi-
cient, it is still possible that this region of parameter space
will be disallowed. )

Even though a narrow range of parameter space may
exist for which our bound is not valid, we may recover the
Higgs mass bound by imposing the constraint of perturba-
tive unification, as discussed in this paper. In this regard,
we note that our bound from perturbative unification is
somewhat smaller than the bound found by Drees (in the
paper cited above). We chose to define perturbative unifi-
cation by requiring that A. /~& 1 at the Planck scale; he
required (we believe) that a Landau pole not be reached by
the unification scale. These differing definitions give a
20% difference in the Higgs mass bound, accounting for
most of the discrepancy between our bounds.
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