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Singular integral equations for quarkonia (qq) spectra are solved in momentum space for nonrela-
tivistic and relativistic Coulomb plus confinement potentials. The confinement potential in momen-
tum space is defined using an analytical regularization scheme. Further manipulations give rise to
integro-differential equations and we obtain analytical expressions for the remaining singular in-

tegrals. The procedure is tested on previously solved relativistic and nonrelativistic cases. The ener-

gies of the first few eigenstates are obtained accurately to six significant figures. The method works
in all partial waves. Straightforward extensions are sufficiently general to treat nonlocal potentials
and combinations of singular potentials.

I. INTRODUCTION with the definitions

As interest has grown in developing a co variant
description of the mass spectra of elementary particles
based on QCD, there has emerged a need for stable and
accurate methods to solve the Bethe-Salpeter' integral
equation in momentum space with nonlocal and singular
kernels. We have adopted the quarkonia problem to illus-
trate a method for treating singular potentials.

We begin by showing how the potential V'(r) =a; r' can
be written in manageable form in the momentum repre-
sentation. We next show how a suitable basis for the solu-
tion of integral equations containing such potentials can
be chosen. We then indicate how the appropriate integrals
may be evaluated accurately and efficiently. When this
combination of techniques is applied to several problems
we obtain results with a small basis which agree quite well
with exact results or with precision numerical results from
other techniques. In an earlier treatment of such prob-
lems, which we refer to as I, confinement potentials were
treated by introducing a numerical cutoff and then
correcting for the effects of the cutoff by using perturba-
tion theory. In this treatment we introduce techniques to
evaluate analytically the limit in which the cutoff goes to
zero. In addition, we present here results for the Bethe-
Salpeter equation in the instantaneous approximation.
Thus, the current effort improves the the results of I in
several ways and retains the advantage that general nonlo-
cal potentials can be treated in addition to these singular
potentials without requiring new techniques.

II. TREATMENT OF SINGULARITIES

It can be shown that the momentum-space partial-
wave projection of a power-law potential, V'(r) =a; r', can
be expressed in terms of Legendre functions of the second
kind as
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Because of their singularities when q =q' and p =0, these
expressions require care in their interpretation.

As an example of our procedure for treatment of the
singularities due to confining potentials, we consider the
nonrelativistic, spin-zero case of two particles, with a
linear confinement potential V(r)=a&r. We choose a
wave function in the Lth partial wave which has a con-
venient explicit dependence as q~0. That is, we choose

RL(q)
O'L (q)= YIM(q) ~

q

RL(q) =q~XL(q),

whereby the momentum representation for the
Schrodinger equation is

V'(q, q') = 2a; tl Ql. (Z)
lim

o Bp 2qq'
In this case we use integration by parts and the boundary
conditions to reason as
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where P denotes the Cauchy principal value.
For L & 1 we use the recursion relation and definition

of Z to obtain

C}2
lim

z QL+ i(Z)
p 0Bp

kin method. For the colocation method, one colocation
point was placed at the origin and used to enforce the con-
dition XL(0)=0, one point was placed at r&/2 and the
remainder at the knots ~J, j =5, . . . , N+2. We wish to
emphasize this attractive feature that a single set of the
parameters governing the knots for each method worked
for all our potentials and in all partial waves we tested.
These parameters can be chosen in other applications by
simply requiring that eigenvalues are independent of the
number of splines.

IV. EVALUATION OF INTEGRALS

With these manipulations and with the spline basis intro-
duced below, the integrals occurring in Eq. (7) for any
partial wave may be performed analytically. This
represents the most important practical achievement of
our method.

III. CHOICE OF BASIS

The wave equations were solved by approximating

XL, (q)= QPQ„(q)
v=1

with the functions 8 (q) being cubic 8 splines having two
continuous derivates. The coefficients P„were then deter-
mined by either the colocation method or the Galerkin
method. The functions 8 (q) are then defined by a re-
cursion relation in terms of N+4 (distinct) knots Iri j.
For j & 4 these were chosen to be the images of the zeros
of a Chebyshev polynomial I xj. I,

For the colocation calculations it was necessary to
evaluate integrals of the general form

Ir'(v)= I Vl (q, q')q' 8„(q')dq', (16)

where we found greatest stability by analytically evaluat-
ing integrals of the form

IM = VI. q, q' q™dq (17)

and substituting the resulting expressions into the recur-
sion relation defining 8„(q'). Since the resulting func-
tions of q were reasonably smooth, we elected to perform
numerically the second integrations required by the Galer-
kin calculations with Gauss quadrature over the subinter-
vals (rj,rj+i). This choice to evaluate the second integra-
tion numerically was made solely to avoid the extra labor
of developing a computer code based on the analytic ex-
pressions for these simple test cases.

V. RESULTS

xj = —cos 2j —1

2X We have tested this combination of procedures with the
nonrelativistic (NR) Schrodinger equation for Coulomb,

under a mapping so that

7) +4=q
1+x~

1 —x- (14) TABLE I. Bound states of the NR Coulomb potential, L =0,
V'=a;r'(i= —1). The energies are in units of a; ' +'m ' ' +"
with A=c =1.

and for j & 4, ~4 ——0 and the remaining are chosen symme-
trically so that

z4; ———w;+4, i =1,2, 3 . (15)

Satisfactory choices for the remaining free parameters in
these calculations were q =1.0, y = —,, 6=0, for the colo-
cation method, and q=1.0, y=1, 6=10 for the Galer-

Exact

—0.250000
—0.062 500
—0.027 777
—0.015 625
—0.010000

Galerkin

—0.249 999
—0.062 500
—0.027 777
—0.015 625
—0.010010

Colocation

—0.250 190
—0.062 526
—0.027 796
—0.015 750
—0.015 675
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Exact Galerkin Colocation

2.338 107
4.087 957
5.520 560
6.786 708
7.944 134

2.338 110
4.087 957
5.520 597
6.786 847
7.944 787

2.338 24
4.095 18
5.53647
6.81032
7.971 78

TABLE II. Bound states for the NR linear confining poten-
tial (i =1) for L =0. The units are the same as those quoted in
Table I.

NR (Exact) NR (Regularization) BS

TABLE III. Eigenenergies of charmonium in the lowest state
of each partial wave in GeV units obtained with our method for
the Schrodinger (NR) and Bethe-Salpeter (BS) equations. The
Coulomb-plus-linear confining potential V(r )=ar '+ br
(a =0.49,b =0.176 GeV, m =1.35 GeV) is taken from Ref. 9
where it was obtained by fitting the spin-averaged data. The
NR results with a regularization method are those of Ref. 2 and
the exact results are given in Ref. 8.

1S
1P
1D

0.364
0.772
1.060

0.368
0.775
1.062

0.364
0.772
1.060

0.375
0.787
1.037

linear confinement, and Coulomb plus linear confinement
(charmonium) potentials. In addition, we have tested it
for the relativistic case of the instantaneous approxima-
tion to the Bethe-Salpeter (BS) equation. In the relativis-
tic case we reproduced results to the accuracy available
(four significant figures) for the Cutkosky model. This
was done in the strong-coupling limit with coupling con-
stant equal to 1.0 in the I =0 and 1 partial waves and
with equal-mass particles exchanging a zero-mass meson.
For details of the model, the eigenvalues, and another
method of solution not easily applicable to the confine-
ment case, see Ref. 7.

The results for the exactly soluble NR pure Coulomb
and s-wave pure linear confinement are illustrated in
Tables I and II using N =31 splines. They indicate that
the Galerkin method yields approximately twice as many
significant figures as the colocation method. This seems
reasonable as the Galerkin method is a variational method
while the colocation method is not. The cost of this extra
accuracy is the increased computer time to do the second
integration numerically. As might be expected the accu-
racy of the computed eigenvalues decreases with increas-
ing energy. We note again that the same set of knots was
used for all of these Galerkin calculations, and a different,
but fixed, set of knots was used for all of the colocation
calculations.

Our results for the energies for the lowest states for the
first few partial waves in a NR model for charmonium
are given in the third column of Table III. Note that they
are identical with precision numerical results ' to the ac-
curacy available. Presented for comparison in the second

column are the results obtained using the numerical regu-
larization technique of I. In the fourth column of this
table we present our results for a corresponding relativis-
tic problem obtained by adding a confinement term to the
kernal of the BS equation for the Cutkosky model.

VI. CONCLUSIONS

For Coulomb and confining potentials the procedures
outlined here seem to satisfy the criteria of stability and
accuracy with a small spline basis, and because one in-
tegration was done analytically, the amount of computer
time needed was quite small. Since the results obtained
are in excellent agreement with exact results and with oth-
er precision numerical studies we have chosen not to carry
the comparisons with other methods beyond the eigen-
values. Our main goal is now to apply these techniques to
relativistic two-body and relativistic three-body problems
with spin.
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