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%'e use certain qualitative features of quantum chromodynamics in the framework of a potential
model in order to obtain a number of inequalities and equalities among the masses of ground-state
hadrons. Of those relations which have been tested experimentally, every one is in agreement with
the data within the experimental errors.

I. INTRODUCTION

Many authors have obtained various relations among
the masses of hadrons within the framework of the
constituent-quark model. ' In this paper, we shall con-
sider this problem once again, relaxing some of the as-
sumptions made in previous works. We shall be guided
by the theory of quantum chromodynamics (QCD), but
shall avoid as much as we can predictions which depend
on the details of specific models. We shall also make use
of the experimental values of masses in cases in which we
can relate those masses to certain mass splittings.

Our approach limits us in the number of things we can
say about hadron masses, but it is gratifying that none of
the inequalities and equalities that we have been able to
obtain within our framework is in disagreement with ex-
periment. Furthermore, future experiments can provide
further tests of our predictions.

We include in our discussion hadrons which contain the
quarks of the standard model with three generations, in-
cluding the t quark. We confine ourselves to those
ground-state rnesons and baryons which in the simple
quark model have no orbital angular momentum: namely,
the vector and pseudoscalar mesons and the baryons of
spin —,

' and —, . Furthermore, we omit those mesons which
have only hidden flavor (self-conjugate mesons of isospin
zero) because of complications arising from annihilation
and mixing effects. We also omit the p and tr mesons be-
cause relativistic effects are strongest for these mesons.

We frame our discussion in terms of a potential model
with constituent-quark masses, and consider a Hamiltoni-
an containing an unperturbed part Ho and a perturbation
H'. The unperturbed Hamiltonian includes the rest ener-

gy of the quarks, their relativistic kinetic energy, and a
spin-independent potential V, which consists of a term
arising from one-gluon exchange and a confinement term,
which presumably arises from multigluon exchange.

We assume that the spin-independent potential is flavor
independent. By this we mean that V does not explicitly
contain terms which depend on the quark masses and that
any parameters in V are the same for all quarks. The
variation of the running coupling constant cx, with quark
masses, which one might expect to be a problem, is not.
This is because we can incorporate asymptotic freedom
into the potential by letting a, depend on the separation r
between quarks rather than on the quark masses.

The perturbation H' includes a Coulomb term Vc, a
magnetic term Vz, and Fermi-Breit corrections to the
one-gluon-exchange potential and to the confining poten-
tial. These corrections include a hyperfine or color-
magnetic term Vz, the existence of which is well estab-
lished empirically.

Because we are restricting ourselves to those hadron
ground states which (to a good approximation) have zero
orbital angular momentum, we can omit the spin-orbit
term and the tensor term of the Fermi-Breit interaction.
The spin-independent term in the Fermi-Breit interaction
depends strongly on whether the confining potential
transforms like a Lorentz scalar or like the time com-
ponent of a Lorentz four-vector. Unfortunately, the
transformation properties of the confining potential are
not established empirically, and so this term is highly
model dependent. For this reason we shall omit the spin-
independent term is so far as it depends explicitly on
quark masses. Any part which does not contain the quark
masses can be lumped into the potential V.

An eigenvalue of the unperturbed Hamiltonian for a
hadron is given in our formulation as a sum of the
constituent-quark masses plus an energy E, which in-
cludes the effect of the potential and the relativistic kinet-
ic energy. We note that E can be either positive or nega-
tive, depending on whether the state in question (neglect-
ing the perturbations) has a mass greater or less than the
sum of the masses of its constituent quarks. Because the
constituent-quark masses are not known precisely, dif-
ferent models can yield opposite signs for E. Fortunately,
this sign ambiguity is not troublesome because we are con-
cerned, not with the value of E, but only with how E
changes when a quark of one flavor is replaced by a quark
of another flavor. As we shall see later, if the new quark
has a larger mass than the old one, the change in E is neg-
ative.

The perturbative terms Vz, Vz, and V~ are operators
whose expectation values are of known sign in any meson,
although their magnitudes depend on a specific model. In
baryons the perturbative terms are sums of two-body
operators. The expectation value of each of these two-
body operators is of known sign in any baryon, although
the sign of the sum may be model dependent.

We are concerned first with the mass difference be-
tween two ground-state hadrons which contain quarks of
the same flavor but which differ either in their total spin
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or in their spin configuration. These mass differences
arise primarily from the color-magnetic (or hyperfine)
term V~. The magnetic term also contributes, but is
much smaller and may be neglected. We are also con-
cerned with the mass splitting of isospin multiplets con-
taining the same quark flavors except that one or more u

quarks may be replaced by d quarks, and in this case we
must keep all terms.

The isospin mass differences are often called elec-
tromagnetic. There is an electromagnetic contribution to
these mass differences, but the mass difference between
the u and d quark also plays an essential role. At present
we do not have a good explanation for why any of the
quarks have their observed masses and cannot make a
good case that the u —d mass difference is electromagnet-
ic. Once the u and d have different masses, then the
strong interaction will lead to additional mass-dependent
effects. In particular, a change in mass will change both
the binding energy and the color-magnetic energy.

In Sec. II we formulate the problem. In Sec. III we ob-
tain some inequalities among meson mass differences, and
in Sec. IV we obtain both equalities and inequalities
among baryon mass differences. Then in Sec. V we brief-
ly present our conclusions.

II. GENERAL FORMULATION

According to the discussion in the previous section, the
mass of a hadron containing quarks with masses m; can
be written as

M= pm;+E+Ec+E„+ER (2.1)

where g,.m;+E is the eigenvalue of Ho, and Ec, E~,
and Ez are, respectively, the expectation values of the
Coulomb, magnetic, and color-magnetic energies. These
energy terms depend on the quark content of the hadron
M, and we shall sometimes make this explicit by using ap-
propriate subscripts.

The quantities E~ and Ez depend on the charges of the
quarks, and Ez and Ez depend on the quark spins. We
can factor out this known charge and spin dependence as
follows (we introduce a factor 3 into certain definitions
for later convenience):

vector. In order to obtain Eq. (2.7), we have had to as-
sume that the vector part of V is a sum of two-body po-
tentials. The quark masses appearing in Eqs. (2.6) and
(2.7) must be constituent masses for these equations to be
even approximately correct for the light quarks.

A simplification arises if the spin-spin interaction arises
entirely from one-gluon exchange and if the variation of
a, with r is neglected. ' In this case the color-magnetic
energy has the same form as the magnetic energy except
for color factors and the replacement of the fine-structure
constant a by the strong-interaction coupling strength a, .
Then

R~J
——3Fa, A~J la,

where E is —', for mesons and —, for baryons. However, it
turns out that we do not need to make this assumption.

We can see from Eqs. (2.5), (2.6), and (2.8) that Ci, A;J,
and R;J are positive-definite quantities. In a wide variety
of potential models, including models with potentials of
the form

(2.8)

V„(r)= ga„r ", a„z„&0, z„& —1, (2.9)

with a„and z„constants, the R,J are positive definite
even if the more general expression given in Eq. (2.7) is
used. Because the expression for V, is quite flexible, we
believe the R,J are positive for any realistic potential.

Although C;~, A;1, and R;~ are the expectation values of
two-quark operators, for baryons these quantities depend
in general on the third quark through their dependence on
the baryon wave functions. Despite this additional com-
plication for baryons, our framework allows us to obtain
more predictions concerning baryons than about mesons.
The basic reason for this is that there are more ground-
state baryons than mesons with no orbital angular
momentum, and furthermore, there exist baryon isospin
multiplets with three or four different masses, whereas the
meson isospin multiplets composed of a single quark-
antiquark pair have at most two distinct masses.

In the following sections, we denote the mass of a had-
ron by its symbol as given by the Particle Data Group. '

We use an asterisk on the symbol to denote a meson of
spin 1 or a baryon of spin —,

' . Otherwise (except for the b,

baryon) mesons have spin 0 and baryons have spin —, .

Ec=3g Q Q, «J (2.2)
III. MESONS

E„=—3 g Q;Qj.cr;.oJA;J, (2.3)

(2.4)

where

C;~. =a( 1 lr J ) l3,
A;J =2m.a(6(r,j ) ) l(9m;mj ),
R,J. ——(V' V„(r;J))I(6m;m)) .

(2.5)

(2.6)

(2.7)

In the expression for R,J., V, (r 1 ) is that part of the poten-
tial V which acts between quarks i and j and which
transforms like the time component of a Lorentz four-

Let us consider meson states first, as they are composed
of only two particles and are therefore easier to handle, al-
though, as we have remarked, our method does not allow
us to say very much about their mass splittings. We first
briefly mention the difference in mass of a vector and
pseudoscalar meson containing the same quarks. As has
been pointed out many times previously, the sign of the
color-magnetic term is such as to make the vector meson
heavier than the pseudoscalar in all cases.

The question of the mass dependence of the magnitude
of the splitting requires some discussion. It is true that
the color-magnetic term R;J contains the quark masses in
the denominator. However, for some potentials the mag-
nitude of the matrix element ( V V, (r;J ) ) appearing in the
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numerator also increases with increasing quark masses.
In these cases, whether R;J increases or decreases with in-
creasing mass depends on the form of the potential V.

We have examined the behavior of R,J using a number
of different potentials motivated from QCD. All the po-
tentials we have considered have the property that for a
meson containing a light quark (u, d, s), (V V, (rj)) in-
creases as any quark mass increases, but the magnitude of
the increase is not sufficient to overcome the effect of
m;m& in the denominator. Therefore, R;& decreases as the
quark masses increase. If we take this to be a general re-
sult and if we use approximate values of the constituent-
quark masses as input, we obtain the inequalities (we omit
the symbol for the meson charge in cases where the in-
equality holds independently of the charge):

K*—K)D*—D)D,' —D, )8*—8)B,*—8, )T —T,
(3.1)

Mdh ™uh 6+Edh Egh +Cg Cqh +AQSAqh

+Rg(Rdh —R„h ), (3.3)

Edh Euh EEqh, Rdh
—R uh ERq (3.4)

where Eqh and Rqh are the derivatives of Eqh and Rqh,
respectively, with respect to the average light-quark mass.
Then we get

where 6=md —m„and C&, A~q, and R~ are factors
which depend on charge Q and/or spin S and can be cal-
culated by making use of Eqs. (2.2)—(24). For example,
the spin factor Rs (S=1,0) is given by R, =1, Ro= —3.
We need not distinguish between the masses of the u and
d in Cqh and Aqh because these quantities are already
small, being proportional to the fine-structure constant a.
On the other hand, the differences in binding energy and
color-magnetic energy vanish if we neglect e. However,
because e is small, we can write

T*+—T+ )T,*+—T+ (3.2) Mdh ™uh e(1++qh + sRqh )+CQCqh +~gs~qh

Of these inequalities, the ones involving the B„T,and T,
have not been tested, but the others hold experimentally,
as can be seen from Table I. Mesons composed only of
heavy quarks may not obey the pattern of (3.1) because
the part of the potential which goes like 1/r becomes
more and more important as the quark masses increase.
Eventually, for sufficiently heavy quark masses, the ma-
trix element can increase faster than m;mj and so can
overcome the effect of this factor in the denominator.

We now turn to consideration of the splitting of meson
isospin doublets, each of which contains one u or d quark
and one other quark h, which may be s, c, b, t, or another
heavy quark. There are contributions to the mass split-
ting both from electromagnetic effects and from the d —u

mass difference.
The mass difference of the members of an isospin doub-

let can be written

(3.5)

We are assuming that the constituent mass difference e
can be treated like a unique quantity which is independent
of the hadron in which the u or d is bound. This assump-
tion is not true in all models. However, even if e is a sin-
gle constant, we see from Eq. (3.5) that the meson isospin
mass splitting depends on electromagnetic effects and on
an effective d —u mass difference ehs, which is given by

eh' =e( 1 +Eqh +R+Rqh ) (3.6)

This effective mass difference depends explicitly on the
binding energy and color-magnetic energy of the meson,
and so is not the same for all mesons. If we make use of
Eq. (3.6) and evaluate the Coulomb and magnetic factors,
we obtain the following expressions for the mass splittings
of K, K*, D, and D* isospin doublets:

K —K+ =e,p
—Cq, —3Aq, ,

K* —K*+=e,
&

—Cq, +Aq, ,

(3.7)

(3.&)

Hadrons

K*—K
D —D
D, —D,
B*—B
X—N

X—A

X —X

Mass difference (MeV)

397
142

139
52

253

191
77

191

216
151

168

TABLE I. Experimental values of hadron mass splittings (ex-
cluding isospin splittings) which are relevant to the considera-
tions of this paper. The data are from the Particle Data Group
(Ref. 10) except for the X, —A, splitting, which is from Macfar-
lane (Ref. 16).

D+ —D =e,p+ 2Cq, +6Aq, , (3.9)

D + D*:e i+2Cq 2Aq (3.10)

Expressions for the mass differences B B+ and—
8* —8*+ can be obtained by replacing s by b in the
right-hand side of Eqs. (3.7) and (3.8). In the model,
analogous expression hold for the mass splitting of any
meson isospin doublet containing a heavy quark of charge

Likewise, expressions analogous to those of Eqs.
(3.9) and (3.10) hold for any meson isodoublet containing
a heavy quark of charge + —', . Expressions similar to
those given in Eqs. (3.7)—(3.10), have been written down
some time ago, except that it was assumed in Ref. 5 that
eh+ did not depend on mass or spin. Chan has also writ-
ten similar expressions, neglecting the variation of matrix
elements with h.

What can we say about the meson isospin mass split-
tings within this rather general framework? First, in
nearly any model, Cqh will increase as the mass of h in-
creases because the size of the wave function decreases
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—1 &Eqp &0 . (3.1 1)

It is plausible that this inequality holds for all viable
models, a result which, when combined with our expres-
sions for the meson mass differences and with the experi-
mental values of those differences, requires e to be posi-
tive.

A loophole in our argument is that the spin-
independent part of the Breit-Fermi correction to V,
which we have omitted, contains the quark masses expli-
citly, and therefore contradicts our assumption that V is
flavor independent. Nevertheless, we believe our result is
correct, because it is unlikely that the mass-dependent
contribution to V, for which there is little if any empirical
evidence, can be large enough to overturn our conclusion.

We next turn to the quantity Rq~. Although Rq~ is
positive definite, in order to ascertain whether Rq& is posi-
tive or negative, we need to compare Rd~ with R„~, and
this depends on whether (5(rd~ ) ) /md is larger or smaller
than (5(r„l, ) ) /m„. Although both the magnitude and
sign of R;J are model dependent, we shall give a plausibili-
ty argument that Rq~ is negative and small in magnitude
compared to unity. Empirically, as noted previously, '

with increasing mass, thereby causing the expectation
value (1/r) to increase. However, the magnitude of the
variation of the expectation value with m~ depends upon
the form of the potential V. Second, just as Rq~ decreases
with increasing m~, so also will Aq~ and for the same
reason.

The behavior of Eq~ with mass depends on the potential
V. According to QCD, V goes like a, /r at small dis-
tances; if we want to include the effect of asymptotic free-
dom, we can let a, vary approximately logarithmically
with r. Also, there is evidence from lattice QCD that the
potential rises linearly at larger distances. A potential of
this form is consistent with what we know about the mass
spectra of quarkonium states.

However, we do not need to specify the form of V pre-
cisely. It is sufficient for our present considerations to as-
sume that V is a local potential which rises monotonically
as r increases and also that V does not depend on the
quark masses. Then it is a rather general property of both
relativistic and nonrelativistic two-body quantum-
mechanical wave equations that the energy eigenstates
E~q (excluding the rest energy) decrease as the mass of ei-
ther particle increases. The reason for this behavior is
that as the mass increases, the kinetic energy decreases. It
follows that Eq~ is negative.

For some potentials, it is possible that Eq~ & —1, so
that a positive value of e~z, which is required phenomeno-
logically, might require a negative value of e. (It is con-
ceivable that the constituent mass of the u quark might be
larger than that of the d quark even if the d has the larger
current mass. ) The possibility that e might be negative
has previously been considered. " However, it has not
been shown that potentials which require e to be negative
are compatible with QCD or that they can be used suc-
cessfully in calculating quarkonia mass spectra. For the
successful quarkonium potentials of which we are aware,
whether phenomenological or motivated by QCD, we
have

there is an approximate relation between the mass M of
the ground-state vector meson and the mass M of the
ground-state pseudoscalar meson containing the same
quarks:

M;* —M;. =0.56 GeV =a . (3.12)

This relation holds quite well, except for self-conjugate
mesons with zero isospin (which, as we have already
remarked, are subject to complications from annihilation
and mixing effects). If we neglect electromagnetic effects,
in our picture we have

R;.= (M,* M~J —) /4 =x'/[4(M~J. +M~J )] .

If we make the approximation

M J*+MJ =2(m;+ mj ),
we obtain

R,, =~/[8(m;+m, )] .

Then, taking the derivative, we obtain

R;~ = —sc/[8(m;+mj ) ] .

(3.13)

(3.14)

(3.15)

(3.16)

We can improve this expression by once again using Eq.
(3.14) in order to obtain a formula involving known
meson masses. We obtain

R 1
= —x /[2(M~J +M~1 ) ] . (3.17)

If we substitute into this expression the masses of the
strange and charmed mesons, we find

Rq: 0 & 5 Rq&: 0 02 (3.18)

and Rqb is negligibly small. We see from Eqs. (3.5) and
(3.18) that even in the case of the s quark, R' is consider-
ably too small in magnitude to change the sign of e rela-
tive to that of e, ~.

In view of Eqs. (3.7)—(3.10), our argument that R' is
negative and small has as a consequence the following ine-
qualities:

D+ —D )D + —D*, D+ —D )0, (3.19)

both of which are satisfied by experiment, as can be seen
from Table II. Somewhat stronger relations hold for B
and T mesons because the magnetic and color-magnetic
contributions are negligible. We obtain

B —B+=B* —B*+, (3.20)

T+ —T =T*+—T', T+ —T )O. (3.21)

The above equalities should hald considerably better than
1 MeV. The first is consistent with the data, but the ex-
perimental uncertainty is rather large. The second is un-
tested. We cannot say whether the T* or T+ has a
larger mass because in this case the effects of the d —u
mass difference and the Coulomb energy may be larger
than the color-magnetic energy.
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TABLE II. Experimental values of isospin mass splittings
which are relevant to this paper. Data are from the Particle
Data Group (Ref. 10) except for the X,—X,+ mass difference,
which is from Macfarlane (Ref. 16).

Hadrons

z' —a+
D+ —D'
B —B+x"—ac*+
D4+ D 40

n —p
ro —r+
X —X+

~o

2' —6++
y40 @4+

y+
~go

y++

Mass difference (MeV)

4.05+0.07
4.7+0.3
4.0+3.4
4.4+0.5

3+2
1.29

3.09+0.07
7.97+0.07
6.4+0.6
2.7+0.3

1+1
4.4+0.7
3.2+0.6

—2.5+1

IV. BARYONS

We shall restrict ourselves to baryons containing at
most one heavy quark, as measurement of the masses of
other baryons seems more remote. However, it is straight-
forward to obtain formulas and inequalities for baryons
containing two or more heavy quarks which are analogous
to the ones we derive here.

The mass of a baryon is given by Eq. (2.1), with Ec,
Ez, and ER defined by Eqs. (2.2)—(2.6) and (2.7) or (2.8).
The charge matrix elements are simple to evaluate in
terms of the constants C~ and A;~. However, in order to
evaluate spin matrix elements, we need to specify the
baryon spin wave functions. We use wave functions of
Franklin, Lichtenberg, Namgung, and Carydas' which
are either symmetric or antisymmetric under the inter-
change of the spin coordinates of the first two quarks.

In order to make the above wave functions unique, we
need to specify which quarks in the baryon are the first
two. We follow the prescription of Franklin, Lichtenberg,
Namgung, and Carydas. ' If a baryon contains two iden-
tical quarks, these are the first two, and the spin wave
function is symmetric under their interchange. If all three
quarks are different, the two lightest quarks are the first
two, and their spin wave function may be either sym-
metric or antisymmetric. It was shown that with this
choice, mixing effects in eigenstates of the mass operator
are small, and so we shall neglect them. The spin wave
function which is antisymmetric in the spins of the first
two quarks is the same as the spin wave function of the A
baryon, and so we shall use a subscript A on the symbol
for any baryon which has this wave function.

The energy eigenvalue of Ho for a baryon depends on
all three quarks it contains, and therefore we shall indi-
cate all three quarks by subscripts, i.e., E;;k. Because Hp
contains no spin-dependent terms and because the poten-
tial is independent of flavor, the eigenvalue E;Jk depends
on the quark masses only through the kinetic energy

operator, which is a sum of one-body terms. It follows
that E;~k is symmetric under the interchange of any pair
of its indices.

As we have remarked previously, matrix elements of
two-quark operators depend on the presence of the third,
or spectator, quark through its influence on the baryon
wave function. We take note of this explicitly by indicat-
ing the spectator quark as a third subscript on the matrix
element. Thus, we make Eq. (2.S) more explicit by writ-
ing

C;J.~C;Jk a(i—j—k
~

IIr;J' lijk)I3 . (4.1)

ijk (Cijl~ Cikj & Cilj ~ Cikl & Cilk~ mk & m (4.2)

Similarly, the expectation value of 5(r;J ) will increase as
the mass of any quark increases. However, this does not
imply that A;Jk will increase because the expression for
A;jk contains the quark masses m; and mj in the denomi-
nator. We have found that for a number of models with
realistic potentials and baryons containing no more than
one heavy quark, A,jk in fact decreases with increasing m;
or mj. Because mk does not appear in the denominator,
A,jk will increase with increasing mk.

The above considerations lead us to believe that the A,jk
satisfy the inequalities

A jk & A'jl A'lj & A kj A'lk & A'kl k & l (4.3)

Furthermore, in our picture the R,jk have structure which
is similar to the A;jk, and so satisfy inequalities analogous
to those of Eq. (4.3). In applying these inequalities, we do
not distinguish between the u and d quarks in Cjk and

We now make the further approximation that replacing
a u spectator quark by a d spectator has a negligible ef-
fect on the average distance between the nonspectator

Similarly A j'~Aij k and Rj'Rij k The Ctj'k Aij k and
R;Jk are symmetric under the interchange of their first
two indices.

We next take up the difficult question of the variation
of E;jk, C&jk Aijk and Rijk with quark masses. F«a
general three-body potential we can say little. However,
there is good evidence that the potential between quarks in
a baryon is well approximated by a sum of two-body po-
tentials of strength half as great as the quark-antiquark
potential in mesons. This evidence is partly from the suc-
cessful phenomenological treatment of baryons with such
a potential' and partly from lattice gauge theory. '

With this approximate potential, increasing the mass of
any quark lowers its kinetic energy and does not increase
its potential energy, so that the eigenvalue Ejk will de-
crease. Furthermore, the heavier the quarks i and j, the
more their wave function will be concentrated at small
distances and the larger will be the expectation value of
llrj. . If the mass of the third quark k increases, the
wave function will also shrink, but will affect the expecta-
tion value of 1/r;z less than the expectation value of 1/r;k
or 1/rjk. Therefore, the following inequalities hold
among the C;jk..
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X*—b, ) (3A —X —2N)/2,

X—X&-—X

X, —A, )X—A)0,
t tA& b bA& c cA&0 ~

Z* —r, & r,*—X, & Xb —Xb & Xt* —Xt,
Xt —A, )Xb —Ab) Xc —A, ,

~ )fc

c c& b b& t t

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

quarks. Then, even in R,jk, we need not distinguish be-
tween u and d spectator quarks, and can write

j+ =R jd=R J
The sign of the color-magnetic term is such as to make

any baryon of spin —,
' heavier than its spin- —,

' counterpart
(containing the same flavors). Aside from this well-
known result, we can use the inequalities satisfied by the
R,J1, to obtain the following inequalities:

(4.4)

r- —r+ & r- —r', x- —r+ )0,
X —X+)X* —X*+, X —X &X*

(4.17)

(4.18)

The 6 mass splittings are not known well enough from
experiment to test Eq. (4.14). Equation (4.15) is satisfied
within the experimental error (see Table II) and Eq. (4.16)
is not yet tested. We obtain an equation similar to Eq.
(4.15) if the s quark is replaced by the b quark or by any
heavy quark of charge ——,', and an equation similar to
Eq. (4.16) if the c quark is replaced by the t or any heavy
quark of charge —, .

We gave arguments in Sec. III on mesons why the
quantities Eq~ and Rq~ should be negative and smaller
than unity in magnitude. It is plausible that analogous re-
sults also hold for baryons. We assume that this is the
case: namely, that E;Jk and R,zk are negative and that
their magnitudes are sufficiently less than unity so that
the effective values of e~, where the subscript denotes any
baryon, are positive. (These statements are true for
models we have investigated. ) Then we obtain

AQV W
c cA& c c& c c (4.12)

~Q ~g ~gp
hasal heassl (4.19)

Edjk Elk ~Eqj k & Rdjk Rpj k ERqjk (4.13)

With these results we can write down formulas for the
baryon isospin mass splittings in terms of Ej'k R'jk C jk,
2;~k, and e. There are quite a few such formulas and so
we relegate them to an Appendix. Making use of these
formulas, we obtain the following relations, which have
been previously obtained many times under a variety of
more restrictive assumptions:

In obtaining the first of the inequalities given in (4.12), we
have had to use a rough estimate of the constituent-quark
masses as well as the inequalities satisfied by the R;jk.
Inequalities analogous to those of (4.12) hold if the c
quark is replaced by a b or t.

The inequalities (4.4)—(4.7) are in agreement with ex-
periment, as can be seen from Table I (the remaining ones
are untested), and so give us further confidence in our
model. In particular, many models predict that (4.4) and
(4.5) should be equalities. However, experimentally, the

—:-splitting is about 25 MeV greater than the X*—X
splitting, and the X —A splitting is about 13 MeV greater
than the combination (3A —2 —2N)/3, as can be seen
from Table I. The reason we get an inequality for (4.4) is
that in the case of the =' and:-, the relevant matrix ele-
ment is Rq», while in the case X and X, it is Rqzq The
latter matrix element is smaller because of a lighter spec-
tator quark. Similarly, on the left-hand side of (4.5), the
relevant matrix element is Rqq„while on the right-hand
side it is the smaller Rqqq. Again, the spectator quark in-
fluences the matrix element through its effect on the
baryon wave function.

We next define derivatives analogous to those of Sec.
III as

P + —Q —+
cA cA& c c

as well as

~P ~+ ~gp
-cA cA & c c

~Q ~Q
bA bA& b b &0.

(4.20)

(4.21)

(4.22)

~Q ~ — ~QQ
~b —~b

~Q ~+ gQ
Immit ~t ~t o

It can be seen from the Appendix that

X —2X +2+=3(Cqq, Aqq, ) . —

(4.23)

(4.24)

(4.25)

The inequalities (4.17)—(4.19) are in agreement with the
data, but (4.20)—(4.22) have not been tested.

The inequalities (4.8) and (4.20) tell us that, of the two
sets of:", isospin doublets, the doublet of smaller mean
mass has the larger isospin mass splitting. Our formulas
do not enable us to say whether the =, —=,z splitting is
greater or less than that of the X —A, and so we guess that
the splittings are comparable. The significance of this is
that the =, should decay electromagnetically to =,~, be-
ing stable against strong decay. If so, the =, should be
quite narrow, and in principle the mass difference
:",—:-,+ should be measurable quite accurately.

An inequality analogous to (4.20) should hold if the c
quark is replaced by a t, but it should be very nearly an
equality because the magnetic and color-magnetic matrix
elements which violate the equality are small. We also get
two other inequalities, which, because of the smallness of
the relevant magnetic and color-magnetic matrix ele-
ments, are approximate equalities. Although the pros-
pects for measuring the relevant masses in the near term
are not good, we exhibit these equalities here:

n —p =b, b, +=(b, —b, ++)/3, —
X —2XQ+ X+ =X*-—2X*Q+X*+,
X' —2X++X++=X,*'—2X,*++X,*++

(4.14)

(4.15)

(4.16)

We see from experiment that the left-hand side of Eq.
(4.25) is positive, and so can be satisfied only if
Cqqz )3qqz It is plausible that the same inequality holds
independently of the flavor of the spectator quark. Then
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the following inequalities hold:

y+ y+ y++

(4.26)

(4.27)

(4.28)

baryon isospin multiplets:

p 6N Cqqq +Aqqq

X X E'g 2Cqqs +Cqsq +2Aqqs +2Aqsq

X qqs + qsq + qqs + qsq

(Al)

(A2)

(A3)

as well as analogous inequalities involving the Xb and X, .
So far, except for (4.26), these inequalities have not been
tested.

V. CONCLUSIONS

In this work we have obtained a number of equalities
and inequalities among the masses of hadrons, all of
which are in agreement with the present data. ' ' Our ar-
guments have depended principally on general features of
QCD which are believed to be qualitatively correct, on the
approximate validity of the constituent-quark picture to
describe hadron bound states, and on the existence of ordi-
nary electric and magnetic interactions among bound
quarks.

We have avoided, on the one hand, making quantitative
calculations which depend on the details of particular
models, and, on the other hand, assuming that energy
eigenvalues and certain two-body matrix elements are in-
dependent of quark masses. Both of these latter ap-
proaches lead to additional results, but some of them are
in disagreement with experiment. In particular, our tak-
ing into account the effect of the spectator quark on the
matrix elements of two-body operators has led to two ine-
qualities (4.4) and (4.5) which agree with experiment,
whereas the neglect of the influence of the spectator quark
leads to predictions in disagreement with experiment.

Because we have not made predictions which depend on
the details of particular models, we expect that our ine-
qualities will hold without exception. Owing to our
neglect of certain small terms and our use of perturbation
theory, our equalities cannot be exactly right, but we ex-
pect them to be good to better than 1 MeV. The complete
agreement with experiments done so far gives us confi-
dence that the interactions of quarks inside hadrons are
qualitatively understood. Additional measurements of
hadron mass differences can provide further tests of our
general picture.

=~:-+2Cqss +4Aqss

N
—4Cqqq +4Aqqq

Cqqq +Aqqq

36'N 3Cqqq + 3Aqqq

qqs +Cqsq + 2Aqqs A qsq

X* X* 2E'y g Cqqs +2Cqsq +Aqqs 2A qsq

laces ~ E~ Q +2Cqss 2A qss

~c ~c ~x qqc qcq + Aqqc Aqcq

Xc —Xc =26'& —
Cqqc

—4Cqcq +Aqqc —8Aqcq

O
cA cA ~ p+ Cqsc 2 qcs +3 qsc

~o
E= +Cqsc —2Cqcs —Aqsc —4Aqcs

Xc Xc E'~g 2Cqqc 2Cqcq +2Aqqc +2Aqcq
C

C

~QO ~Q +
c c =~=+ + qsc qcs Aqsc +2Aqcs

C

where

e~ ——e(1+E' +2R' ),
Ez E( 1 +Eqqs +Rqqs 2Rqsq )

@==e(1+Eq» 4Rq» ), —

e&„——E( 1 +Eqqs +Rqqs +Rqsq ) ~

e „=e( 1+Eq„+2Rq„),
&z =~( 1+Eqqc+Rqqc 2Rqcq ) ~

(A4)

(A5)

(A6)

(A7)

(AS)

(A9)

(A10)

(Al 1)

(A12)

(A13)

(A14)

(A15)

(A17)
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APPENDIX

The considerations of Secs. II and IV lead to the fol-
lowing expressions for the mass splittings of a number of

e =e(1+Eq„+Rq„—2Rq„),

Ex s' =E( 1 +Eqqc +Rqqc +Rqcq ) ~

E s' =E(1+Eqsc +Rqsc +Rqcs )
C

We obtain equations for Xb —Xb+ and Xb —Xb+ by re-
placing s by b in Eqs. (A2) and (A3). Likewise, we obtain
equations for Xb —Xb+ and Xb —Xb+ by making this
replacement in Eqs. (A8) and (A9). It is straightforward
to obtain expressions for the mass splittings of other
baryon multiplets.
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