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The transverse-momentum distribution of lepton pairs produced in ultrarelativistic nuclear col-
lisions is analyzed in different scenarios for the phase transition from quarks and gluons to hadrons.
A first-order phase transition at equilibrium is characterized by an intermediate phase where

quarks, gluons, and hadrons coexist for an appreciable amount of proper time. The subsequent
transition from one phase to the other is therefore very smooth. This is reflected in the dilepton
production rate by a smooth change from the small- to the large-dilepton-invariant-mass region. A
detonation is characterized by substantial supercooling of the quark-gluon-plasma phase with a sub-

sequent superheating of the hadronic phase. The superheating is so intense that the dilepton rate
arises almost completely from the hadronic phase, leaving almost no trace from the quark-gluon
phase. A second-order phase transition is characterized by an instantaneous transition from one

phase to the other. This reflec'ts itself in a clean separation in the invariant mass in the dilepton pro-
duction rate. It is suggested that experimental measurement of the average transverse momentum as
a function of the invariant mass might help considerably in determining the dilepton production
mechanism and through it reveal part of the evolution of the quark-gluon-plasma phase to the ha-
dronic phase.

I. INTRODUCTION

The aim of this work is to examine the dilepton yield in
high-energy nuclear collisions in different scenarios for
the phase transition from quarks and gluons to hadrons.
The precise thermodynamic mechanism for this transition
is not known at present and, lacking further information
on its space-time evolution, several paths appear to be
equally plausible presently. Different possibilities will be
investigated successively. A first-order phase transition is
characterized by latent heat, by a possible coexistence
phase between hadrons and quarks and gluons, and by a
finite correlation length. The latent heat could cause the
transition to proceed via supercooling of the quark-
gluon-plasma phase to a subsequent violent superheating
of the hadronic phase. ' A first-order phase transition
could also proceed via a Maxwell construction where the
system spends an appreciable amount of time going
through a mixed phase before turning to a purely hadron-
ic system. A second-order phase transition, on the other
hand, is not accompanied by the production of latent heat
nor is there a coexistence phase but the correlation length
becomes infinite at the critical temperature and the sys-
tem changes instantaneously from one phase to the other.

In this respect, lepton pairs are a highly valuable source
of information on the evolution of the system since they
are emitted continuously and do not suffer rescattering as
they have no strong interactions. The bulk of the ha-
dronic material, in contrast, provides information about
the time when the system is at freeze-out temperature.
Clearly the yield of dileptons will be sensitive to the
scenario which is being followed by the system and it is

the purpose of the present paper to point these differences
out wherever they arise. To start our discussions we ex-
plain the equation of state used, respectively, for first- and
second-order phase transitions. For the space-time depen-
dence of the temperature we will use Bjorken's scaling
solution for longitudinal hydrodynamic expansion. This
solution has been discussed repeatedly in the recent litera-
ture and we limit ourselves to emphasizing one of its
physical assumptions. In the central region of rapidity
the system is assumed to have a plateau structure. This is
known to be approximately correct for the final state of
high-energy pp collisions. It implies that to a reasonably
good approximation all thermodynamic quantities depend
on the proper time ~ but not on the rapidity variable y.
For a nondissipative system, this solution leads to conser-
vation of the entropy current and, in particular, for the
case of one-dimensional expansion one finds

sr=const,

where s is the local entropy density.
The dilepton production rate and especially the trans-

verse momentum pT show interesting features when con-
sidered as a function of the invariant mass M. The in-
variant mass is relevant because heavy lepton pairs can
only be produced when the system is at a high tempera-
ture, i.e., in the quark-gluon phase, while low-mass dilep-
tons are produced predominantly in the hadronic phase
where the temperature is low. The separation between the
two phases is not always very clean. For example, for a
first-order phase transition at equilibrium there exists a
long-lived intermediate region where both phases coexist
at the same temperature. This reflects itself in a broad
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overlap region; dileptons with an invariant mass between
1 and 2.5 GeV are produced either in the quark-gluon
phase or in the hadronic phase with no clean separation
possible. Above 2.5 GeV the quark-gluon-phase contribu-
tions dominate and below 1 GeV the hadronic-phase con-
tributions dominate. For a second-order phase transition
the coexistence region is completely absent and the transi-
tion from one phase to the other is instantaneous. This
reflects itself in a much narrower overlap region; already
above 1.6 GeV the quark-gluon phase completely dom-
inates.

The dependence of the dilepton production rate should
be considered with the above results in mind. For invari-
ant masses below 1 GeV the production mechanism is
dominated by the hadronic phase and the transverse
momentum will behave accordingly. Above 2.5 GeV for a
first-order transition and above 1.6 GeV for a second-
order one the production mechanism changes and the
transverse momentum reflects the quark-antiquark-
annihilation mechanism. This change in mechanism will
be the main focus point of this work.

Our choice of parameters may seem somewhat peculiar
to the reader (initial temperature=284 MeV, critical tem-
perature=227 MeV, freeze-out temperature= 154 MeV).
They were forced upon us by the availability of results
from lattice QCD and by the value of the QCD lattice pa-
rameter AL ——1.5 MeV as explained below. For ready
comparison between different scenarios we used these pa-
rameters consistently for all our calculations.

The plan of this paper is as follows. In Sec. II we
present, for completeness, the equations of state we use as
well as the space-time evolution of the temperature for
different scenarios. In Sec. III we present the formulas
used for the dilepton production rates. In Sec. IV we dis-
cuss the results we obtain for different scenarios and in-
vestigate their dependence on the parameters chosen. In
Sec. V a summary of our results is given.

II. EQUATION OF STATE AND TEMPERATURE
EVOLUTION

2
7T 46h= T
10
2~'

Sh= T
15

(3b)

(3c)

Keeping the pion mass different from zero leads to devia-
tions from the above equations which are at most 20%%uo in
the temperature range under consideration. We consider
the following possible scenarios.

2. Supercooling with subsequent superheating

In case the transition from quarks and gluons to had-
rons is inhibited by a slow hadronization rate, the system
can become supercooled. Because of the latent heat there
will be a subsequent violent transition to superheated ha-
dronic matter. If there exists a sharp front separating

1. Equilibrium phase transition

If the transition from quarks and gluons to hadrons is
fast, a Maxwell construction can be performed where the
system remains continuously in thermal equilibrium. The
one-dimensional hydrodynamic expansion leads to a de-
crease of the temperature as shown in Fig. 1. Several
features are worth noticing. First of all, for reasonable
values of the initial temperature, the system spends only a
short fraction of its lifetime in the pure quark-gluon
phase. Second, the mixed phase dominates completely.
This is a consequence of the entropy law since the number
of degrees of freedom in the quark-gluon phase is much
larger than in the hadronic phase and therefore tends to
inhibit the transition. If one takes into account the trans-
verse expansion of the system, then its overall lifetime is
reduced because the transverse rarefaction wave propaga-
ting inward provides for additional cooling of the system.
The hadronic and intermediate phases will thus be shor-
tened but the pure quark-gluon-plasma phase will not be
affected substantially because of its short lifetime at the
beginning of the system.

A. First-order phase transition

The most widely considered model for a first-order
phase transition is based on the bag-model equation of
state. The energy density, pressure, and entropy density
in the high-temperature, baryonless quark-gluon-plasma
phase in this model are given by

].0,
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for two massless up- and down-quark flavors. B is, as
usual, the bag constant. For the hadron phase we consid-
er a gas of pions with the following equation of state:
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FIG. 1. Dependence of the temperature on proper time for a
first-order phase transition (Maxwell construction). To is taken
to be 284 MeV, ro ——1 fm, T, =227 MeV, Tf, ——154 MeV.
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III. PRODUCTION OF DILEPTONS

A. Rate in the quark-gluon-plasma phase

To calculate the production rate of dimuons in the
quark-gluon plasma phase we use the expression

with p being the chemical potential and u" the local
four-velocity of the plasma element. In the final analysis
we will put p equal to zero. If we restrict ourselves to the
longitudinal expansion, u can be parametrized as

u =(cosh8, 0,0,sinh8),

d&g d3q d3q
, U o(qq~p+p )

d'xd4p (2~)' (2rr)' " where 0 is the plasma rapidity given by

0=arctanhu (8)

xf f-6(p —q —q), (4) and U is the plasma velocity. In terms of 0 and the rapidi-
ty Y of the lepton pair, one obtains

2 8~a 2 m 2

v cr(qq~p+p ) = g e; 1+2
1

1/2

1 —4
M

(s)

e; is the charge of the quark, a is the electromagnetic cou-
pling, M the invariant mass of the dimuon, m the muon
mass. The factors f» and f are the mome-ntum distribu-
tion functions of the quarks and antiquarks:

where N& is the number of dimuons produced, d x is the
infinitesimal space-time volume, p is the momentum of
the dimuon, q (q) is the momentum of the quark (anti-
quark), U is the relative velocity, and o.(qq —+p+p ) is
the electromagnetic cross section for the annihilation of a
quark-antiquark pair into a dimuon:

u q=M&cosh(8 —Y)

with

(9)

(10)

d&g a2 2m'1+dxdp 4~" M

1/2
4m1—
M

being the transverse mass of the dimuon and with Y de-
fined as

E+pzY= —,
' ln E —pz

its rapidity.
The integrals over quark and antiquark momenta can

be performed analytically with the following result:

6f =
(u -q —P )/T+ 1e

(u.q+P)/T+ 1

(6a)

(6b)

Xe E~rKg(p, T—,p, ) g e

where the function K& is defined by

(12)

T 1 [x2+exp[ —(E+p)/T)]][xi+exp( p/T)]-
Kg =— ln

p 1 e
—E~r [x&+exp[ —(E+p)/T]][x2+exp( p/T)]— (13)

with

Emax
(14a)

2
m&

F (M )=g
~ m —M —im I yp.p.

(16)

Emin
x2 ——exp T

——(E +p)
——(E p)

B. Rate in the hadronic phase

(14b)

(1Sa)

+ 4~+ m~I (p~e+e ) =
3 r: (17b)

In the vector-meson-dominance approximation only the p
pole is kept in the summation and one has g& „——y&. The
constants g~ and yz can be obtained from the p decay
into two pions and from the p decay into a lepton pair:

m 4m
3/2

I (p~vrvr) =(gp ) 1—,(17a)
48m m 2

The production rate for dimuons in the hadronic (pion)
phase is calculated along similar lines as in the quark-
gluon phase. The main difference is that now resonance
formation plays a prominent role. The diagram we con-
sider for pion annihilation into leptons is shown in Fig. 5.
In the Breit-Wigner approximation, where the form factor
of the pion is given by a sum of p-like resonances, FIG. 5. Pion annihilation diagram.
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This leads to the following approximate result for the pion form factor:

(g )'
iF (M )i

Xp

4
mp g ~

(m~ —M ) +mz Iz g~ „
'2 2

3 p
2

Xp

m 4

+ 0 ~ ~

(m, ~ M~)~+m
P P P

or, in terms of decay widths, neglecting m vs mp,

(g „)' m 4

iF (M )i P
2 (m 2 M2)2+m 2P 2

P . P P P

I (p' ~n)I .(p' e+e ) m

I (p 7r~) I (p e+e ) m ~ (m ~ —M ) +mz I ~

(19)

where I (p'~e+e ) is known experimentally to be ap-
proximately equal to 1(p~e+e ). Inserting the known
values

2 2
1 m~ m~E „=—E 1+ +p 1—
2 M M

(25a)

I (p'~e+e )=7.5 keV,

I (p'~~+a)=60 M. eV,

I (p'~all)=260 MeV,

leads to

(20a)

(20b)

(20c)

2

E;„=—E 1+
2 M

2m~—p 1—
M

(25b)

Having thus established the basic formulas for the evalua-
tion of the rate we now consider different mechanisms for
the phase transition.

4
mp

(m ~ M~)~+m
P P P

m 4

+0.12
(m, & M&)&+ mP P P

I
F (M )

i
=1.2

(21)

which we will use subsequently as our model for the pion
form factor.

At a first stage we present our results for the approxi-
mate expression derived from vector-meson dominance
(gp =rp),

4

iF (M )i
(m —M )+m IP P P

(22)

dXH m~1+2
d xd p 4877

2 3/2

1 —4
M

in order to allow more easy comparison with the numeri-
cal results of other calculations.

Proceeding as in the quark-antiquark annihilation case
one obtains, for the production rate (use Bose-Einstein
distributions for the pions),

IV. DILEPTON RATE IN DIFFERENT SCENARIOS
FOR THE PHASE TRANSITION

A. General remarks

70T=T0
7

(26)

where To is the initial temperature and zo the proper time
at which hydrodynamic expansions starts. This rate is
given by

The total dilepton rate is given by an integral over the
space-time volume of the system. Because of the proper-
ties of Bjorken's scaling solution the appropriate variables
are the proper time ~, the space-time rapidity y, and the
transverse coordinates xz with d x=~d7. dy d xz. The
thermodynamic quantities e, p, s, and T only depend on ~
and it is most appropriate to keep this as the final integra-
tion variable. In the scaling solution one identifies the
space-time rapidity variable y with the fluid velocity rapi-
dity 8. For the different scenarios we need four produc-
tion rates.

(a) Dimuon production in the quark-gluon plasma
phase with a cooling law given by

1/3

X
i
F„(M )

i
exp ——KH(p, T)

with the function KH(p, T) being defined as

T 1
KH(p, T)—=-

p 1 —exp( E/T)—

(23) dN~(hydro), ~u &,„dN&
'7 d7

dMdp dY ' ~ ~ dxdp
+0T= To
'T

1/3 '

[xz —exp( E/T)](x, —1)—
~ln

[x )
—exp( E/T) ]( x p

—1)—(24)

The definitions of x ~ and x2 remain unchanged but E
and E;„are now given by

(27)

where ~~ is the proper time at which the system leaves the
pure quark-gluon phase. The value of v~ differs consider-
ably according to the considered mechanism. The rates
are not strongly dependent on the limits of the space-time
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x(&=T, ), (28)

rapidity because the rapidity dependence is very much
centered around the value of y (or 9)=0 as can be seen
from Eq. (9). It is therefore a good approximation to cut
off the rapidity integration at the value corresponding to
the rapidity of the incoming beam.

(b) Dimuon production in the intermediate mixed phase
from qq annihilation with the system still expanding but
the temperature fixed at the critical temperature. This
time the rate is given by

dN& (mixed ) de~d~ dy f(~)
dMdp dY 'a d xd p

(d) Dimuon production in the purely hadronic phase.
The cooling law is given by

1/3
7HT=Tc
7

(32)

where T, is the critical temperature and 7H is the starting
proper time of the hadronic phase. The rate is given by

dNH(hydro) ~o & ., dNH
7d7 dP' 4d4x d'p ' &- d4x d4p

1/3
7H

X T=T,
7

where 7H is the proper time at which the system leaves
the mixed intermediate phase. The function f (w) is the
fraction of the entropy in the quark-gluon phase:

where 7~ is the value of the eigentime at which the sys-

tem reaches the freeze-out temperature.

s(~) =f(~)sg+[1 f (7.)]sH .— (29)
B. First-order phase transition (equilibrium)

Since the temperature remains fixed at T„both s and
sH remain constant but there is a continuous change from
one phase to the other phase. It is very well known by
now that the time spent in the intermediate phase is long
because of the difference in the number of degrees of free-
dom:

$g 37
$H 3

so that 7H is an order of magnitude larger than 7&. This
stage is only present in the first-order equilibrium phase
transition (Maxwell construction) and is completely absent
in all other scenarios we consider. The function f(r) is
shown in Fig. 6.

(c) Dimuon production in the intermediate mixed phase
from pion annihilation. The corresponding rate is given
by

dNH (mixed), 'H &,„dNH
~d~ dy[l —f(r)]

dMdppdY 'a & ~ dxdp

For a first-order phase transition at equilibrium the
temperature evolution with proper time is as shown in
Fig. 1. The rate for dilepton production is obtained by
adding the four contributions given above [(a),(b), (c),
and (d)]. The simple vector-dominance model for the
pion form factor gives the rate shown in Fig. 7. Below
M =1 GeV the hadronic contribution dominates while
above M=2.5 GeV the quark-phase contribution dom-
inates. Intuitively this can be understood easily: to pro-
duce high-mass lepton pairs one needs high temperatures
and these are only available in the initial quark phase, cor-
respondingly the colder hadronic phase produces many
low-mass lepton pairs. There is a region of width 1 GeV
where both phases are prominently present. This reflects
the presence of the intermediate region where both phases
coexist at the same temperature and thus contribute simi-
larly to the production rate. The production mechanism
changes smoothly from quark-antiquark annihilation to

1,0

x(T=T, ) .
—10 '

I

~ 10

C3
II~10-'-
D

10 4-
k'4D

+gal S
510 s~(

U
10-'-

0, 5
10

0

)vl [GeV ]

0
1 10 t' / v'g

FICx. 6. Mixing ratio in the intermediate phase as a function
of proper time; f= 1 corresponds to pure quark-gluon phase.

FIG. 7. Cross section for the production of muon pairs calcu-
lated for the equilibrium first-order phase transition. Dashed-
dotted line—hadron contribution; dashed line —quark contribu-
tion; solid line—sum of quark and hadron contributions; To is
taken to be To ——284 MeV, 70——1 fm, T, =227 MeV, T~, ——154
MeV.
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FICs. 8. Average transverse momentum (p, ) of the lepton
pairs. The phase transition is equilibrium first order and pa-
rameters as in Fig. 7.

I

0,26
I

2,0
I

3,26 /8

FIG. 10. Allowed and forbidden region s in the eq, eI, plane.

pion annihilation. The average transverse momentum
(pT) follows this trend and the derivative of (pr) as a
function of M indicates no structure as one sweeps over
the M range. This is shown quantitatively in Figs. 8 and
9.

relates the temperatures, pressures, and energy densities
existing on each side of the front. This analysis has been
carried out in Ref. 1. The most stringent constraint
comes from the entropy law leading to an increase of en-
tropy across the front:

C. Supercooling with subsequent superheating t)„s")0, (35)

8 T"=0 (34)

0.8,

~ 06-
o

CL
0.4-

D

0.2-

M [GeV]

FICx. 9. Derivative of the average transverse momentum with
respect to the invariant mass of the lepton pair for first-order
equilibrium phase transition. Parameters as in Fig. 7.

If the rate of hadronization is not fast enough com-
pared to the expansion rate, a substantial amount of su-
percooling will occur. It is not known at present how
much supercooling is likely to occur and we concentrate
our attention on mechanisms where supercooling is as lit-
tle as possible. To calculate the amount of supercooling
we work with a model where a sharp front exists separat-
ing the hadronic from the quark-gluon-plasma phase. En-
ergy and momentum conservation in the form of conser-
vation of the energy-momentum tensor

dN(detonation)
d~ dyd p

dN&(hydro) dNH(hydro)
+d~ dyd pT d~ dyd pT

(36)

We assume that the violent jump from one phase to the
other is approximately instantaneous and therefore contri-
butes very little to the dilepton production rate. The re-
sults from Eq. (36) are shown in Fig. 11. This time there
is no region in M where the quark-gluon-plasma phase
dominates. Intuitively this can be understood as follows:
after the detonation takes place, the resulting hadronic
phase is very much superheated and dileptons can be pro-
duced in a broad mass range. There is a smooth evolution
in the average transverse momentum as a function of the
invariant mass (Fig. 12). A different mechanism was con-
sidered recently in Ref. 10. This can be obtained from the
detonation mechanism described above if the velocities on
both sides of the front are the same. With a sharp front
this is inconsistent with the constraints of energy and
momentum conservation. At best it might be conceivable
if their mechanism is viewed as a bulk volume transition
where no sharp front exists. In their considerations the
energy density remains the same: thus, eq(Tq)=el, (TI, ).
This leads also to a discontinuity in the temperature but a
much weaker one. Since this mechanism is not consistent
with the hydrodynamic equations of motion we do not
consider it further.

where s"—:su".
The energetically allowed transition region is shown in

the eq, eI, plane in Fig. 10. %'e indicate by a small circle
the region with the smallest amount of superheating and
indicate in Fig. 2 the resulting jump in temperature.

The corresponding dilepton spectrum is given by a sum
of two terms [(a) and ( d) above]:
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FIG. 11. Cross section for the production of muon pairs in

first-order detonation phase transition. Dashed line —pure
quark contribution; solid line —hadron plus quark contribution.
Parameters as in Fig. 7.

D. Second-order phase transition

dN(second order)

dM dYd pz-

dN&(hydro) dNH(hydro)+dl dyd pr d~ dyd py

The result is shown in Fig. 13 for the vector-meson-
dominance form of the pion form factor.

In Fig. 13 one observes that the quark-gluon phase
dominates for large values of the invariant mass M and
the hadronic phase dominates for small values. There is,
however, one striking feature: from Figs. 7 and 13 one
notices that the region where both phases have compar-
able contributions is considerably smaller for a second-

With a second-order phase transition the system
changes its phase instantaneously at a critical eigentime ~,
upon reaching the critical temperature. A first estimate
of the rate for dilepton production is obtained by sum-
ming contributions (a) and (d) above:

FIG. 13. As in Fig. 7 but for second-order phase transition.

order phase transition. In other words, there is now a
cleaner separation between the region dominated by the
hadronic phase and the region dominated by the quark-
gluon-plasma phase. The origin of this can be traced back
to the fact that there is a clean break in proper time be-
tween the two phases. Also the temperature is always
consistently higher in the quark-gluon phase than in the
hadronic phase. This is reflected in the average transverse
momentum of the dilepton pair shown in Fig. 14 which
shows a relatively clean break around M=1 GeV corre-
sponding to the tail of the contribution from the p reso-
nance. To enhance this feature we show the derivative of
(pr ) with respect to M in Fig. 15.

To investigate this interesting feature in more detail we
consider a series of modifications to the above treatment
which we discuss in the following.

1. Variations on temperature

Bearing in mind the possible errors typical for the lat-
tice Monte Carlo calculations and also those connected
with the hopping-parameter expansion we have considered

1.3-

1.1—

- 0.9-
CL p

CL

07- 0.5—

0.5
0

M [GeV]
0.3

0
M [GeV ]

FIG. 12. Average transverse momentum vs invariant mass
for a detonation with parameters as in Fig. 7.

FICx. 14. (p, ) vs invariant mass for second-order phase tran-
sition and parameters as in Fig. 7.
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FIG. 15. Derivative of the (p, ) distribution with respect to
invariant mass M for second-order phase transition with the pa-
rameters as in Fig. 7.

FIG. 16. Interpolation in temperature between pure-quark
(curve 1) and pure-hadron (curve 2) rate. Dotted curve corre-
sponds to n =30; dashed curve corresponds to n = 10.

variations in the functional dependence of the temperature
on eigentime. We have observed that even if the tempera-
ture T(r) is very close to the first-order Maxwell transi-
tion curve (Fig. 1), the bump structure still persists. This
is because the contribution of the mixed phase to the pro-
duction rate is in general different from the contributions
arising from the corresponding quark-gluon and hadronic
phases in the same interval of eigentime for the second-
order phase transition.

2. Influence of smoothing

In terms of the considered model the electromagnetic
current-current correlation function related to the produc-
tion rate of dimuons is discontinuous across a phase tran-
sition. When the second-order phase transition is as-
sumed in the system, the current correlation function
(J"(x)J"(0)) should presumably be a continuous function
in the full region of temperature. This is due to the long-
range correlations in the transition region for a second-
order phase transition. It could happen that the observed
jump in the d(pT )/dM distribution is due to the above
singular behavior of the model at T= T, .

In order to examine this possibility we performed an in-
terpolation between the thermal rate formulas valid below
and above critical temperature (Fig. 16). The contribution
of the quark-gluon phase was multiplied by a factor

T
1 —exp

Tc

with n being a large number (typically between 10 and
30). Correspondingly, the contribution of the hadronic
phase was multiplied by the complement of the above fac-
tor, namely,

ing lepton rate is, however, not modified appreciably. We
have also considered a spreading in terms of the energy
density instead of the temperature but again the signal in
d(pT)/dM survived the smoothing transition. This is
shown in Fig. 17.

3. Influence of other resonances

As the change in transverse momentum occurs at the
tail of the p resonance we investigated also the influence
of the higher resonances, in particular the p'(1600). The
results obtained here show that there is a clear connection
between the observed behavior and the presence of reso-
nances. The interference pattern we obtain this way is
shown in Figs. 18—20.

4. First-order equilibrium phase transition
with very high initial temperature

Since the p' contribution occurs in the region where
considerable overlap occurs between the two phases in the
first-order phase transition scenario we have also investi-

o.e

0,6-
"O

CL
0.4—

0.2—

exp
Tc

In this way the transition is spread out over a range of
temperature values corresponding approximately to the
spread observed in results from lattice QCD. The result-

00

M [GeV]

FIG. 17. As in Fig. 1S but computed with interpolated rate
formula. n = 10—solid curve; n =30 dashed curve.
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FIG. 18. As in Fig. 13 but with p'(1600) resonance taken into
account.

gated the influence of a very high initial temperature in
this case. By changing the initial temperature one in-
creases the contribution from the quark-gluon phase to
the dilepton production rate. It is thereby possible to tune
this contribution such that it will start dominating im-
mediately after the tail of the p' peak (Fig. 21). This
occurs for an initial temperature of the order of 1 GeV
and produces a pronounced change in the average trans-
verse momentum shown in Fig. 22. It is, however, of in-
terest to note that in this case the structure in the tail of
the p meson is not very pronounced.

O.e-

X~ o6-

CL
O.o—
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(b)

M [GeV]

V. SUMMARY AND CONCLUSIONS

In this work we investigated the dilepton yield in ul-
trarelativistic nuclear collisions in different scenarios for
the phase transition from quarks and gluons to hadrons.
The relevant kinematical variables are the invariant mass
M and the transverse momentum pT of the lepton pair.
High values of the invariant mass M can only be reached
if the temperature of the system is high while correspond-
ingly low values of M rise mainly from the system being
at low temperatures. Therefore, M is the relevant variable

FICs. 20. Derivative of (p, ) vs invariant mass M with
p'(1600) resonance taken into account for second-order phase
transition (a) with initial temperature To ——284 MeV, (b) with
To=1.1 GeV.

to distinguish between the quark-gluon plasma contribu-
tion and the hadronic phase contribution. We then
focused our attention on the intermediate region where
the system changes from one phase to the other and thus
interesting information about the phase transition scenario
can be expected. The invariant mass can, roughly speak-
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FIG. 19. As in Fig. 14 but with p'(1600) resonance taken into
account.

FIG. 21. As in Fig. 7 but including contribution from
p'( 1600) resonance.
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FIG. 22. Derivative of (p, ) vs invariant mass with p'(1600)
taken into account for first-order equilibrium phase transition
(a) To ——284 MeV, (b) To ——1.1 GeV.

ing, be considered as representing either the temperature
of the system or the eigentime. High invariant masses
correspond to early times or high temperatures while low
invariant masses correspond to late times or low tempera-
tures. The region in between can tell us something about
the nature of the transition. In the first scenario we inves-
tigated, namely, a first-order phase transition with the
system always being in thermal equilibrium, there exists a
long-lived intermediate region where both phases coexist
at the same critical temperature. In this case we found a
smooth transition from one region to the other and no
abrupt changes in the transverse momentum. In the
second scenario the quark-gluon plasma phase undergoes
substantial supercooling before making a transition to su-
perheated hadronic matter via a detonation. Here we
found that the hadronic phase dominates the dilepton pro-
duction rate over the whole invariant-mass range con-
sidered. No information can thus be obtained on the
quark-gluon plasma phase in this scenario. A second-
order phase transition is characterized by an instantaneous
transition from one phase to the other. This leads to a
clean separation between each phase in the invariant mass
M. Consequently, there is a noticeable change in the
transverse-momentum variable when M is between 1 and
1.5 GeV. To enhance this change we considered the

derivative d (Pr ) /dM as a function of M. A clear jumP
is seen here when crossing the intermediate region. This
is due to the interference between the quark-gluon phase
and hadronic phase contributions to the dilepton yield. It
is interesting to note that the observed jump appears for
realistic values of the parameters (initial tempera-
ture =284 MeV, freeze-out temperature= 154 MeV) and is
enhanced when increasing the initial temperature.

To investigate this interesting feature further we con-
sidered a series of modifications to the scenarios discussed
above. We performed an interpolation, in temperature as
well as in energy density, between the thermal rates below
and above the critical temperature T, . The bump in
d(pz. )/dM decreases but does not disappear completely.
Even in the case when the interpolation is performed in
quite a large-temperature interval (0.15—0.24 CJeV) the
bump in d(pr)/dM decreases only by about 20%. The
structure of the (pz ) distribution similar to the one ob-
tained in the second-order phase transition can also be
found with other scenarios if one increases substantially
the initial temperature. It is the outstanding property of a
second-order phase transition that the bump already ap-
pears for low values of the initial temperature. We con-
clude therefore that the region between 1 and 2 GeV in in-
variant mass for the lepton pair is sensitive to the dynami-
cal mechanism for the phase transition from quarks and
gluons to hadrons.

Finally, let us consider the dependence of our results on
the assumptions made to derive them. First of all, we will
consider the influence of the equation of state on the
behavior of pz- as a function of the invariant mass M.
For the case of a first-order phase transition we have used
the bag-model equation of states above T, and ideal-gas
equation of state below T, . This assumption has been fre-
quently used in the literature. It is presumably far away
from reality, especially around T, . The numerical
analysis of lattice QCD does suggest that just above T,
gluons behave as an ideal gas; however, the inclusion of
quarks leads to a behavior which is far away from the
ideal-gas type. This can be seen in Fig. 3 and also from
recent Monte Carlo data. " The importance of interac-
tions just above T, has been discussed recently by De-
Grand. ' Also in the hadronic pion gas phase interactions
can lead to significant deviations from the ideal-gas equa-
tion of state. Thus one can easily imagine a situation
where the system undergoes a first-order phase transition
but due to interactions the latent heat is much smaller
than in the case we have considered. In such a case the
contribution from the mixed phase to the dilepton produc-
tion will be small and the overlap region between pure
quark-gluon phase and pure hadronic phase contributions
will decrease significantly. As a consequence the nontrivi-
al structure in the pz- vs M distribution could be presum-
ably observed already for reasonably small values of the
initial temperature. Otherwise, such a structure appears
only for initial temperatures of the order of 1 GeV [see
Fig. 22(b)]. Our results suggest that the most significant
change in dpi'-/dM is obtained in the limit where the pro-
duction of latent heat goes to zero, which is the limit
where the first-order phase transition becomes a second-
order one. For the case of a second-order phase transition
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we have used the equation of state from lattice QCD re-
sults which we consider to be the realistic equation of
state. The purpose of our analysis was to indicate the in-
fluence of the equations of state on the pT behavior taking
as a basis the equation of state for a strong first-order
phase transition (as given by the bag model) and compar-
ing it to a second-order phase transition with equation of
state taken from lattice gauge theory.

The second assumption in our considerations concerns
the formulas for thermal rates used in the computations.
For the strong first-order phase transition the rates have
been computed following suggestions made previously in
the literature. In general, however, the behavior of the
electromagnetic current-current correlation function in
strongly interacting matter cannot be computed at present
in terms of one model which admits a phase transition.
Such a computation could be performed using lattice
QCD but the lattice size presently available is too small
for this kind of analysis. In this point our results strongly
depend on the assumption we have made for the thermal
rates formulas. For the second-order phase transition case
we have used modifications of the thermal rates formulas
in order to assure continuity across the phase transition.
All results presented in Figs. 16—22 dealing with a
second-order phase transition have been obtained using
the modified formula for rates. As we indicate this modi-
fication does not significantly change the results obtained
using the lattice QCD equation of state. Thus in terms of
the model considered we can clearly see the difference be-
tween a strong first-order and a second-order phase transi-
tion. However, for a weak first-order phase transition, be-
cause of uncertainties in the behavior of the thermal rates
we are not able on the level of our approach to see a
difference with a second-order phase transition because
the equations of state for both of these transitions will be
very similar and also the rates have similar behavior
across the phase transition.

There is, however, an interesting feature of the analysis
which seems to be common to equilibrium first- and
second-order phase transitions. This is the general struc-
ture of pT as a function of the invariant mass. If there is
no quark-gluon-plasma formation, then the pT distribu-
tion is a smooth function of M and does not show any
structure even for very high initial temperatures (see Fig.
23). If there is, however, a first- or second-order phase
transition in the system then a nontrivial structure (Figs.
16—22) can be observed. The only difference we have

1,3—

0, 8—

0, 3
0

M lGevj

FIG. 23. (p, ) vs invariant mass for pure hadron gas with

To ——1. 1 GeV and other parameters as in Fig. 7.

ACKNOWLEDGMENTS

We acknowledge very useful discussions with Larry
McLerran, Helmut Satz, Rudolf Baier, E. Hilf, and G.
Franke. One of the authors (J.C.) acknowledges financial
support from the Council of Scientific and Industrial
Research, Faure, South Africa. Another (K.R.) acknowl-
edges the financial support of the Alexander von Humbolt
Foundation.

seen between strong first- and second-order phase transi-
tions is that for the former this structure is seen only for
very large initial temperatures. The observed behavior of
pT on M seems to be connected with the resonance struc-
ture of the hadronic dilepton production process and ap-
pears due only to the interference between pure hadronic
and pure quark contributions just above the position of
the resonance. Thus our results suggest that observation
of a structure as shown in Figs. 16—22 would be evidence
for the production of a quark-gluon plasma. One could
also imagine a scenario where the first-order phase transi-
tion proceeds via a detonation wave. In this case the ha-
dronic phase completely dominates the dilepton produc-
tion rate; therefore, naturally, one will not observe any
structure in the pT distribution. Thus the behavior shown
in Figs. l6—22 is not a necessary but rather a sufficient
condition to conclude that a quark-gluon plasma was pro-
duced.
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