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Excess-path-length distribution of fast charged particles
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The Yang equation of the excess-path-length distribution of fast charged particles due to multiple
Coulomb scattering under general conditions is completely solved. The solution is an improvement
of the Fermi solution, giving the joint distribution of only the angular and the lateral spreads, to in-

clude the excess-path-length distribution. The distributions are indicated in figures, and the mean
values and the variances of them are tabulated. The influence of the excess-path-length distribution
upon the width of other related distributions is found important; e.g., the distribution gives about
four times more correction on the width of the energy-loss distribution than on the probable energy
loss. The effect of a single scattering on the excess-path-length distribution is also investigated using
the Moliere theory.

I. INTRODUCTION

Many detailed investigations have been accumulated on
the angular and the lateral distribution of fast charged
particles due to multiple Coulomb scattering. ' But the
excess-path-length distribution in the process has not been
clearly understood.

Yang proposed a diffusion equation for the excess-
path-length distribution of charged particles under the
small-angle and the Gaussian approximations. The Yang
equation was an advance on the Fermi formulation of the
multiple-scattering theory which is a simple and clear
diffusion equation to give the joint distribution of the an-
gular and the lateral spreads of the Williams type. Yang
derived the excess-path-length distributions of normally
incident electrons irrespective of the deflection angle 0
and the lateral displacement r at emergence (defined as
case I by Yang), and with 8 fixed at zero and r integrated
(case II). Scott also dealt with a similar equation. He ob-
tained the solution for the projected excess-path-length
distribution corresponding to case II (Ref. 5). But no oth-
er work with general solutions followed after Scott and
Yang.

Some previous workers discussed and evaluated effects
of the average excess path length using Yang's result on
various problems, such as the probable energy loss or
the average range' of fast charged particles traveling
through matter, or limitations of the maximum step
length of tracks of electrons in the Monte Carlo calcula-
tion of electron-photon showers. " But the corrections by
including the excess path length on those problems were
small, with a magnitude of a few percent or less, because
the ratio of the average excess path length to the thickness
of the material was so small, as can be evaluated by one-
half the average square deflection angle according to the
method of Yang.

The effect of the excess-path-length distribution, how-
ever, becomes important through the width in various dis-
tributions of those particles having passed through a com-
mon thickness. An example of such problems is the shape
and the width of the energy-loss distribution of fast

charged particles in matter. Although it is dominantly
determined by the statistical fluctuation of collision losses
predicted essentially by Landau, ' ' it receives an addi-
tive correction from the excess-path-length distribu-
tion. ' A correction factor due to the excess-path-
length distribution is about four times greater for the
width of the energy-loss distribution than for the probable
energy loss, as discussed in Sec. IV. Many experimental
results of the energy-loss distribution were compared with
the Landau distribution. ' ' ' Among them, some re-
sults having a wider width of energy-loss distribution than
the Landau theory could be attributed to the effect of
multiple scattering, ' but a thorough investigation of the
effect could not be done because of the insufficiency of
the theory, applicable for experiments of limited
geometries. The range distribution ' of charged parti-
cles has a similar problem, having the biggest influence
from the residual energy distribution, but requiring
corrections for the multiple-scattering detours. '

Another important example, which is not discussed in
this paper, is the arrival time distribution of electron-
photon showers developing in the atmosphere. As all the
shower particles run almost with the velocity of light, the
excess-path-length distribution folded over many succes-
sive paths is observed as the arrival time distribution of
shower particles. The magnitude of the time spread is a
few nanoseconds near the shower core, and a few mi-
croseconds far from the core. The arrival time distribu-
tion is one of the representative observables of an exten-
sive air-shower experiment and the mechanism mentioned
above was pointed out in an early report by the MIT
group. The accurate calculation, however, has not been
done yet due to the difficulty of the scattering theory. If
we obtain the excess-path-length distribution function
with boundary conditions general enough to pursue elec-
trons in the shower, we can derive the arrival time distri-
bution of the shower particles by the Monte Carlo
method ""

Analytical solutions of the excess-path-length distribu-
tion derived by Yang so far were also used to check and
evaluate results obtained by a numerical method or a
Monte Carlo method for more complicated problems.
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Case

I
II

IV
V

gen

0
0
0
0
0

Hp

Correlation
H

integrated
0

integrated

H

integrated
H

integrated
integrated

0

integrated
r

TABLE I. The conditions for various cases of excess-path-
length distribution.

The problem is to obtain the correlated probability den-
sity of charged particles, having passed tp with Op, rp, and
b,p, and having reached t with 8, r, and b (Ref. 41) in the
most general condition, P(t, O, r, h, t p, Op, rp b,p)dOdrdk,
in the form of a Green's function. We obtain the distribu-
tions according to Yang's method.

Under the Gaussian approximation, scattering is in-
dependent in y and z components, so P can be represented
as the product of distributions for projected components
in the t-y and the t-z planes:

P =F(t, Oy, y, b y, tp, Oy p,y p, b~p)

XF(t, O„z,b„tp, O, p, zp b&p) . (2.3)

Thus, the excess-path-length distribution is very impor-
tant in a total understanding of the behavior of charged
particles in matter. So we searched for the solution of the
Yang equation for various conditions, one by one, follow-
ing the Yang method and obtained the solution for the
most general condition. The obtained joint distributions
of excess path length are with 8 integrated and r fixed at
zero (case III), with 8 fixed and r integrated (case IV),
with 8 integrated and r fixed (case V), and with 8, r, and
the incident angle Op fixed (case gen), as indicated in Table
I.

Although solutions under the Gaussian approximation
are complete in the mathematical sense, they have defects,
and have limits in their applications because they only
take account of the pure multiple-scattering process. So
many authors improved the theory by adding both the
single and the plural scattering processes to the multiple-
scattering process and examined the effect of including
these processes on the angular distributions. ' In the latter
half of this paper, the single and the plural scattering ef-
fects are included in the equation of the excess-path-
length distribution by taking account of the representative
Moliere theory, ' and the solutions are obtained up to
the second term in cases I and II. The effects of single
scattering and limits of the Gaussian approximation in
the path length problem are also discussed.

II. SOLUTIONS OF THE YANCx EQUATION

X &(y —yp)&(b, —bp),

(2.4)

where

w =2pu/E, (2.5)

and E, is the scattering energy defined by Rossi and
Greisen. Because of the translational invariance of Eq.
(2.4) with respect to t, y, and 6, we see they will appear in
the solution in the form of t-to, y-yo, and 6-60, so we can
put zeros into to, yo, and 60, temporarily.

Applying the Fourier transforms with y and the La-
place transforms with 6

F= f dA, e f e'~"g(t, O, rt, A, , Op)de,
1

4~ s

(2.6)

we can obtain the solution g in a form of orthogonal ex-
pansion by the eigenfunctions, as Yang did,

2 oo

t ci)t g l/—J„waco Op+
n=0

The diffusion equation proposed by Yang for the project-
ed components is

aF aF 1 a'F, , aF
t c)y ~2 Qg2 2 c)g

— 0+8 — + —,
' 0 =5(t —tp)5(8 —Op)

Charged particles traversing through a material of
thickness t undergo multiple Coulomb scatterings and
change their directions of motion 0 successively, so that
they receive lateral displacement r and the excess of path
length 6: where

Xf, tp«p 0+
&

—Zfk CgfXe (2.7)

dr=Odt, dh=(secO —1)dt = ,
' 0dt—(2.1)

db, +db, ,= ,'(8» +0, )dt =db . — (2.2)

in the small-angle approximation, where we take the t axis
along the thickness of the material and the y and the z
axes orthogonal to the t axis, all in units of the radiation
length and we define the deflection angle 8 by the pro-
jected vector of direction in the y-z plane, (0~,0, ) in ele-
ments. Then the excess path lengths of the projected
track in the t-y and the t-z planes, A~ and A„respectively
(defined as the projected excess path lengths), are related
to the spatial excess path length 6 by

P„(x)=(&m2"n!) ' H„(x)exp( ——,
' x ),

A, =2w co
(2.8)

and H„(x) and He„(x), appearing later, are both Hermite
polynomials.

The series (2.7) must be summed before we apply the
inverse Laplace transforms. Yang derived the sums only
for the case that the variables in P„'s are both zero, when
the series is reduced to the binomial one (cases I and II).
To get the solutions for other conditions, the series of
greater generality must be summed. By using the general-
ized generating function of the eigenfunctions,
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1 (x +y )(1+z ) —4xyz

~(i —z')'" 2(1 —z )
(2.9)

as proved in Appendix A. The sum corresponding to the most general condition is

p = (2m sinhv s ) '~~w v co exp t — (0 +go )coshvs —280o+ (0+go) — '(coshvs —1)
2l 'g 2~'

2A. 2sinhv s A.
2

where we have introduced a new complex variable

s =4t co =2t k/ta

Applying the inverse Fourier transforms against g we obtain

gdgd
s

[3(2—2coshvs+vssinhvs )]'

(2. 10)

(2.1 I)

s 2

&( exp
3(2—2 coshv s +v s sinhv s )

sinhv s, 2v 3
p — (coshv s —1)p(p+po)

S s

+3s (vs coshvs —sinhvs )(p +go )

—6s (v s —sinhv s )pro (2.12)

where we used nondimensional variables for the deflection
angle and the lateral displacement of the track by dividing
by their spatial root mean squares at a thickness t predict-
ed under the gaussian approximation:

8/(g2) 1/2 /( 2) 1/2 (2.13)

and

(0').„=4tiw', (r'),„= ', t't'w' . — (2. 14)

u= —,'w b/t (2.15)

as defined by Yang (a factor of —, is multiplied into the
Yang definition for a slight simplification of expressions),
then we have

d dp du 'o+' "
F dgdy db = . f, e"'g(P, p, s, Po)ds, (2.16)

where the path of integration is taken parallel to the imag-
inary axis, in the half-plane of convergence of g. It
should be noted that t does not appear explicitly after we
used the nondimensional variables P, p, and u.

The joint distribution for the spatial excess path length,
Ag,„(t,g, r, b.,go)dgdrdb„can be obtained using the fold-
ing property of the Laplace transforms. Then

The probability density for the projected components
are obtained by the inverse Laplace transforms against k.
If we change the integral variable from k to s and intro-
duce the new nondimensional variable

=('tpp s 4'o)=P(4y py ~,pp~)g(p„p„s, po, ) . (2.1&)

The distributions corresponding to other situations,
from cases I—V, can be obtained by integrating the joint
distribution with respect to 0 and/or r or substituting
zero into them. The I.aplace transformed solutions for
the spatial excess path length so obtained are tabulated in
Table II together with their abscissas of convergence,
where we introduced new variables

0'=4' —4o p'=p —v 34o . (2.19)

dp s 3/2
=m(~)dp =

3~ ~s coshv s —sinhv s

2dp 3r2 —~ss e
377

1

vs —1

1 2+vs —1 (vs —1)'

III. CALCULATION OF THE DISTRIBUTIONS
AND THE MOMENTS

The distributions for the spatial excess path length and
their moments will be derived in this section. The results
for cases I and II are already given in Yang's original pa-
per.

For case III only those particles with an arbitrary angle
and r=0 at an emergence are detected. Then

2 (t, g, r, A, go)d 8 dr d b, =B(P,p, u, go)dg dp du

d dpdu f "'e=(P,p, s,f, ) sd,
7Tl

(2.17) hence

3Z2 —3~s (3.1)
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TABLE II. Laplace-transformed distributions of the spatial excess path length and their abscissas of convergence. The results of
Yang and Scott (cases I and II) are listed together. p is the smallest positive solution satisfying p =tanp.

Case

1

coshV s

Laplace-transformed distribution Abscissa of convergence

I 'jr4

Vs
~ sinhvs

dp S 3/2

3~ V s cosh v s —sinhV s

IV Vs
exp( —V s P cothV s )

sinh s

dP
3/2 s' coshV s

exp
3~ Vs coshV s —sinhV s V s coshV s —sinhV s

gen
dPdp s /3

2 —2 coshV s +V s sinhv s

s /3
Q exp

2 —2 coshV s + V s sinhvs

l

X
Vs coshV s —sinhV s,, m cosh s —1 (. . . »nh s 2P' —2v 3 (j p'+q o P~+ P

S 3/2 s s

Btn(u)dpdu = 2dpdu
3m

1 1 1+1 exp
8u 2u 4u

+e" 'erfc —V u
2 u

v'Q 27 9 6 74+ 3+ 2+ —+4 exp
su 2u u

—(4u +3)e" erfc —V u +
2 u

(3.2)

By taking the asymptotic approximation derived from the first term of the alternating series, good to within 1%,

Bttt(u) = '

2 1

3~ v'~u
1 1 1+1 exp

8u 2u 4u

1+e" 'erfc —V u
2 u

for u (0.2,

(3.3)
P — 2u

e "" for u&02,
37T cosp

where p=4.493. . . is defined by the smallest positive
solution of the transcendental equation

p = tanp, (3.4)

and —p is the abscissa of convergence for case III.
In cases IV, V, and gen, the inverse Laplace transforms

conducted in the preceding cases are difficult to apply due

I

to the existence of essential singularities, so we will apply
the saddle-point method, which is less accurate but yields
a fairly good result for the image functions with rapidly
increasing values along the real axis.

Generally, in this method, we can approximate the
complex integral at the saddle point s, appearing on the
real axis at the right-hand side of the abscissa of conver-
gence; thus
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FIG. 1. Comparison of the solution for case I obtained by the
saddle-point method (dashed curve) and the exact results (solid
curve). Gamma distribution of the same mean value and vari-
ance is also compared (dot-dashed curve). Abscissa u is nondi-
mensional spatial excess path length defined by (2.15) in the
text.

B(u)= f e"'=(s)ds
277l

—1/2

2~ in=(s )
Bs

:-(s)e"', (3.5)

with

u = — In=(s) . (3.6)
cps

It should be noted that V's, sinhMs, and cosh''s are re-
placed by iv' —s, i sinv' —s, and cos& —s when s takes
negative values. The accuracy of the method in the gen-
eral case is discussed by Nishimura. The difference of
the result obtained by this method for case I from the ac-
curate one is shown in Fig. l. The discrepancy between
them is within a few percent.

The logarithmic derivatives are used in this method.
As an example, the explicit calculation for case V is
shown in Appendix B.

The Fermi solution should be derived by integrating our
solution B(u) over the excess path length (zeroth mo-
ment), or by taking the limiting value of:-(s) at s ~0:

lim=s, „———exp[ —4(P' —~3/' p'+p' )] (3 7)
s~O

which agree with the Fermi solution indicated by Scott
where the nondimensional incident angle $0 is not fixed at
zero.

Mean values and variances are easily calculated from
the limit of s~0 of the first and the second logarithmic
derivatives of:-,

( u ),„=—lim In=(s)
a

s~O Bs
(3.8)

and

a2
( u'), „—(u)„'=lim, ln=(s),

o 0s
(3.9)

and are shown in Table III (Ref. 46). The table contains
the Bichsel and Uehling results of mean excess path
length for case III and O=r=0 (Ref. 10) as special cases.
One characteristic feature is that the mean excess path
length of cases IV, V, and gen at a deflection angle and a
lateral displacement of covariant values,
(P )„=(p )„=1and (P p),„=v 3/2, agree with that
of case I.

IV. THE EXCESS-PATH-LENGTH DISTRIBUTION
UNDER THE GAUSSIAN APPROXIMATION

We will discuss characteristic features of the excess-
path-length distributions in this section.

The peak position uz of case I can be evaluated from
the first term of Yang's expansion, Eq. (13) of Ref. 2;
thus,

u~ = —,', Bt(u = —, ) = 1.85, (4.1)

within an accuracy of 0.015%. The positions at the half-
peak value are determined numerically as ua ——0.0727 and
0.4954; thus the full width at the half-height is

I u =0.423 (4.2)

Bq(u) is compared in Fig. 1 with the gamma distribu-
tion of the same mean and variance:

G(u)= (3u)'i e
6

(4.3)

The latter has the peak value 1.45 at u = —,, and the full
width at the half-height of 0.598. So, BI starts more
slowly near u=0 but increases more rapidly, and reaches
the peak at almost the same position with a greater peak
value, and decreases more slowly as exp( —, vr u) after —the

peak. B~ has narrower full width at the half-height than
the gamma distribution.

If we assume continuous ionization losses, the excess-
path-length distribution is regarded as the energy-loss dis-
tribution. We compare it with the statistical fluctuation
of the collision energy loss predicted by Landau. ' Al-
though the latter is the dominant factor of the process the
additional correction due to the excess-path-length distri-
bution becomes serious with an increase of path length,
because the width of collision Auctuation increases pro-
portional to the traversed thickness of material while that

TABLE III. Mean and variance of the excess-path-length distributions.

Case Mean Variance

II,IV

III,V

gen

2

—,+ —,p'

&o+ sP
1 2P' 3(4 P'+4p P)+6P—

15 15

6

1 2
350 + 525 P

11 & &4' 3+3(4'P +00'P)+3P
12 600 3150
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of the excess path length increases proportional to the
square of the traversed thickness.

If we take e as the constant energy loss per unit radia-
tion length, then the width of the energy-loss distribution
due to the multiple scattering evaluated from (4.2) is

2t2
eI &

——0.423m
N

(4.4)

r, =3.98'. (4.5)

g is a measure of the thickness' proportional to t, with
the dimension of energy, expressed as

e is called the critical energy and usually used in the
shower theory. On the other hand, the width due to the
collision loss fluctuation is

0.2

Z'
UJ~ 0.&-
I-

CQ

CQ

O
CC
CL

0
0 5 10

(E,-E)/g
0. 154Xp MeV cm

p'gA gz
(4.6)

where Xo is the radiation length, p is v /c, and

g A /g Z is the ratio of the sums of the atomic weight
to the atomic number of the substance.

If we measure the thickness of material in units of
P c /E, and introduce a nondimensiona1 thickness q,

q = r /(pc /E, ) (4.7)

then the ratio of the former width to the latter becomes
proportional to q:

a+A gz
~r, /r, = (4.8)

2.90Xp MeV cm

The coefficient of q at the right-hand side is nearly 1, 1.25
for H20, 1.18 for Al, 1.09 for Cu, and 1.01 for Pb, for ex-
ample, so we could use q as a parameter to approximately
represent the correction ratio due to the excess-path-
length distribution on the width of energy-loss distribu-
tion due to the collision-loss fluctuation.

The ratio of the mean excess path length to the thick-
ness can be evaluated as

(~,),„/r =q/(4p'), (4.9)

A, =e(b b,~)/g—
a+A gz

~ q(u ——,
' ),

0.308Xp MeV cm
(4.10)

for N, Al, and Pb at q=1, and are compared with the
Landau distribution, Eq. (13) of Ref. 12, explicitly derived
by the saddle-point method:

P(A, )d A. =
&2me

exp ———exp( —A, —1)
2

(4.11)

so that we see the correction factor due to the excess-
path-length distribution is about four times greater for the
width of energy-loss distribution than for the probable en-
ergy loss.

The excess-path-length distributions of case I translated
to the energy-loss distribution assuming the continuous
energy loss are plotted in Fig. 2 against the variable of

FIG. 2. An energy-loss distribution translated from the
excess-path-length distribution with an assumption of continu-
ous energy loss at a thickness of t/(pe/E, ) =1 in N (dashed
curve), Al (dot-dashed curve), and Pb (double-dot —dashed
curve), compared with that evaluated by the statistical fluctua-
tion of collision loss predicted by Landau (solid curve). The
width of the former increases proportional to the square of the
thickness, while the width of the latter increases proportional to
the thickness. Abscissa is energy loss in the unit of g defined by
Landau.

Toward a small energy-loss region of the peak, the Lan-
dau distribution rapidly decreases, but it has a meaning-
less long tail reaching to —oo of k. On the other hand,
the former decreases more rapidly and falls to zero corre-
sponding to the fact that there is no excess of the path, ir-
respective of using the saddle-point method. Toward the
large energy-loss region both distributions decrease ex-
ponentially, but the former decreases twice as slowly as
the latter distribution. Thus multiple scattering gives a
larger contribution than the Landau distribution in the
high-energy-loss region.

We see the typical elongation caused by the multiple
scattering in the data of Hungerford and Birkhoff [pas-
sage of 624-keV electrons through 54.5-mg/cm Al
(q=0.96)], and McDonell, Hanson, and Wilson [1-MeV
electrons through 156-mg/cm Al (q=1.4)], although in
those experiments through the thinner material, we see
good agreement with the Landau distribution; through
15.1-mg/cm Al (q=0.27) in the former and through
thickness less than the critical thickness, 50 mg/cm Al
( q=0.45), in the latter.

In experiments through gaseous matter with q less than
0.1 (Ref. 23) we see good agreement with the Landau dis-
tribution at the tail of the distribution. In the experiments
of higher-energy electrons with q less than 0.3, the results
agree well with the Landau distribution after taking ac-
count of polarization effects. ' For heavier particles, by
cosmic-ray muons with q of order of 10 (Refs. 28 and
29) and by protons with q of order of 10 5 and 10 6 (Ref.
30) the results agree well with the Landau distribution.

According to Symon, ' the relative width of the range
fluctuation of electrons is
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The area under the distribution curve is
4m exp[ —4(P' —V 3P'p'+p' )], as shown in (3.7). Thus
with /=1, for example as in the figure, it becomes max-
imum at p=v 3/2. As angle between p and p in the y-z
plane increases, the area decreases and the mean excess
and the width of the distribution increases, reflecting a
longer detour of the path. The smallest excess path
length, uo ——p /3, is also determined by the geometrical
excess.

V. EXCESS-PATH-LENGTH DISTRIBUTION
UNDER THE MOLIERE THEORY

The Gaussian approximation assumes the lower and the
higher cuts, 8;„and 0,„,on the Rutherford cross section
and requires vanishing of the fourth and the higher mo-
ments with respect to the nondimensional angle P, or

p,„=wO, „/(2v t ) « 1 . (5.1)

Equation (5.1), however, corresponds to a long path
length, say t))25 as indicated in Appendix C, so at an
ordinary thickness the tail of cross section at large angles
strongly influences the angular distribution. Thus the sin-
gle and the plural scatterings should be taken into account
in the theory. Moliere included the single and plural
scattering probabilities in his multiple-scattering theory
by regarding O,„as infinite. So he assumed only the
lower cut of the cross section corresponding to the screen-
ing potential of the Thomas-Fermi potential, and evaluat-
ed it as ~eX, by the WKB method.

The excess-path-length distribution under the Moliere
theory can be solved for cases I and II using the Kamata
and Nishimura formulation ' ' indicated in Appendix D.

Let A (t, O, b, )dOdb denote the correlated probability
density between the spatial excess path length and the
direction of motion, with the lateral displacement in-
tegrated. The diffusion equation is

at
—f f [A (8—8') —A (8)]a(8')dO'+ —8 =0 .

2 BA

(5.2}

and

A(t, g, A)=, f f e 'e&A(t, O, A)d,O. (5.4)

Then the transformed diffusion equation for (5.2) becomes

BA gA
Bt

+ 8 i3 — 1+ A= — 2 ln
Bg Bg & w' w'

(5.5)

where the additive term characteristic of the Kamata and
Nishimura formulation appears at the right-hand side,
and w' is defined by

w' =2pv/K, (5.6)

and K is a constant defined by Kamata and Nishimu-
ra.~ "

If we expand the solution in a power series as

A(t, g, A) =A "'(t,g, A. )+—A ' "(t,g, A. )+ (5.7)

the recurrence equations are obtained (hereafter we abbre-
viate w' with w):

8 g A. 8 i3 g (n)

zA'" "ln
z for n &0,

N W

6(t) for n =0 . (5.8)

This is a linear differential equation equivalent to the
Yang equation of case IV, with a known inhomogeneous
term in the right-hand side. As we see in (5.8}, the first
term of series (5.7) gives the solutions of the Yang equa-
tion.

We can solve this equation using the Green's function
defined by

P

2 2 gg 2
Qg

2

The Laplace transforms with 6 and the Fourier
transforms with 8 are

= 6(t —t')52(g —g') . (5.9)

A(t, O, A)= f e , A (t, O, b, )dh The explicit form of the Green's function is obtained by
the same mathematical method indicated in Sec. II:

1 f-2+ p I

G(t, g, t', g') =
2 exp — ~ coth[2co(t t')]+-

2m w co sinh[2co(t —t')] 2w co w co sinh[2co(t —t')] (5.10)

The incident angle of zero corresponds to the uniform distribution with g' at t'=0, so the first term A ' '(t, g, A, ) be-
comes

A ' '(t, g, A, )= f f dg'G(t, g, 0,g')= exp — tanh(2cot)
cosh(2cot)

and the subsequent terms can be obtained from

(5.11)

A'"'(t, g, A, )= f dt' f f dg'G(t, g, t', g')A'" "(t',g', I, ) ~, in~, . (5.12)
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A. Case I

The Laplace transformed distribution is obtained by substituting /=0 in (5.11) and (5.12). Using the complex variable
s, the first term becomes

A ' '(t, g=O, A,)=:—:"', '(s),
cosh s

which agrees with the Yang solution, and the second term becomes

t 1
A "'(t,g=O, X)= f dt' f f dg' exp

0 2~w co sinh[2co(t —t')]

&2

coth[2t17( t —t '
) ]

2M co

(5.13)

1
/2 /2 /2

X exp — tanh(2cot') ln
cosh(2cot') LU M

In(coshV s ) u s sinhMs+ 2
1 —@+in + ln

s 1 ~~ sinhx coshx
dx

2 coshv s 2 cosh~v s t coshv's V s X

=:-I' (t,s) . (5.14)

Inverse Laplace transforms from =(s) to B (u) will be obtained in the next section.

B. Case II

Applying the inverse Fourier transforms with g for (5.11) and (5.12) and setting 8=0, the Laplace transformed distri-
bution for case II is obtained. The first term agrees with the Yang solution

A ' '(t, 8=0,A, )d8= — dP=:-It'(s)dP, (5.15)sinh s

and the second term becomes

t2

tanh[2~(t —t')]
2w co

1 g/2 g/2X, exp — tanh(2cot') ln
cosh 2Mt LU N

Vs sinhV's +s coshv s
2wsjnh V'g

~s s cosh& s 1—y+ ln, + 1+ f In(coshx)dx dPt sinhVs m sinh s s

—==II (t (5.16)

VI. THE CORRECTION TERM OF THE DISTRIBUTION BY THE MOLIERE THEORY

Applying the inverse Laplace transforms against A, , the excess-path-length distributions are obtained. The first terms
B' 's are the solutions of the Yang equation themselves. So we will obtain in this section the second terms B"'s and
their asymptotic forms for large excess path length, in cases I and II.

A. Case I

From (5.14)

2
:-I '(t, s) =[In&'s +1—y —In(2t)]U'se '-+ ln2 — e

24

2—3[lnVs +2—y —ln(2t)]Use ' — 1+ln2 — e '+
8

(6.1)

Using the formulas with the inverse Laplace transforms,
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L —
1(& (n —1)/2e k~—s

) 2
—

n( n 4. 1)—1/2H (6.2)

and

(s n/2 —'e k sinv s ) = — (2u) 1—n+11/2 [y+ ln(x —k)]He„
v2 oo X

V rr k V2u
X

exp — dx,
4u

(6.3)

we obtain the series with rapid convergence in the small u region:
r r

2
B'1"(t, u) =L '(vs e 'lnMs )+— [1—y —ln(2t)] ——2 +21n2 — exp

u (~u')'"
1

4u

21—3L (Mse 'in& s ) ——[2—y —ln(2t)) ——2 +2+21n2— 1

4 u 4 (7ru )' exp
9 +'

(6.4)

The terms relevant to (6.3) can be calculated by numerical integrals.
In the large-u region, the contributions from the singularity of s with largest real components give rapid convergence.

Equation (5.14) has logarithmic branches at s =0, —(m/2), —m, . . . , and poles at s = —(n./2)2, —(3m/2)2,
—(5n/2), ... . , Logarithmic branches can be paired as 1n[s/(s + —,m. )],In[(s + , n)/(—s+.n)], . . .. , then we see they
contribute analogously as poles. A counterclockwise complex integral around the cut connecting the pair of branches is
reduced to a curvilinear integral on the cut:

1 s —a
s ln ds = s — principal part at pole on the cut ds

2ni & s —P
as proved in Appendix E, which corresponds to the residue in case of pole.

Thus we can develop (5.14) as

1 cosh'
t, s ln

2 cosh~s s + —~

(6.5)

v s sinh~s+
2cosh ~s

1+ 4 ~ im ~ ~s 1 vs sinhx coshx—1 —y+ ln + ln —+ + ln, dxtc soho s Ws 2 i ~$ x(x+ 4~ )

Vs sinhMs s 1+ +
2cosh vs q+ —,

' 2 2cosh ~s

2

LENT

S+ 477
v s — sinhv s —coshMs ln

2 +O(ln(s +m )) .
2 s+m

(6.6)

The first and the second terms only have a pole at s = ——,rr in the region of R (s) ) —m, where R indicates the real
part, so

B1"(t, u) = ——
I
—5+4y+41nt +m u [2—y —ln(2t)] I e

—&/4 v s sinhMs+ . e +
2cosh &s

m exp( —
4 m u)3 2

4(s+ ,'rr)—1+ u — (s+ 4m. ) .ds
4 2

~2

f 1+ —&/42cosh U s

I
QS —7T Qv s — vr sinh~s ——cosh' s e "'ds +0 (e ")

2

6—4y+4ln ——w u 1 —y+»4 8t 16t
e

—m~u //4

1+5us +2u s e"'ln
2 s 1+i sinh s

2vs
u +

2
1 —i sinhV s

( ~„)
1+i sinh s (6.7)
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where we applied partial integrals in order not to drop significant digits in the subtractions.
Series (6.4) for small u and (6.7) for large u agree well within 2% in the vicinity of u =0.7.
Asymptotic features at u »1 are derived from the first term of (6.7). Near s=0,

V SslnhVS us I S P . ~ use = —,s ——„s+ . . )e
2 cosh'v s

so

(6.8)

BI (t u)- ( —,s ——„s + . )e"'ds-(&) & 5 2 . . . us

2u 6u

B. Case II

(6.9)

From (5.16)

1 vs
:-II (t,s)= —1 —y+1n

2t
Vs 1 rt 2MS

se '+ — —y+ ln se
12

3 vs
2 —y+ ln

7T 2t
se

—' '+ — —y+ln vse —" '+. . .2vs
4

(6.10)

So in the small-u region

BII'(t, u)= L'[(s—+vs )e 'lnv s ]

+——[1—y —ln(2t)]
1 1 1

4 u 2u

772 2—3 + —y+ln—
12 t

——2 (nu) exp
1 —3/2

u 4u

+ L'[(3s—+vs )e 'lnv s ]

+ —[2—1' —»(2t)] —3 + —y+1n — ——2 (nu) exp
1 9 9 2 9 —3/2

4 u 2u 4 t u 4u + ~ ~ 0 (6.11)

We can develop (5.16) as

Vs sinhvs +s coshv's
II

2rtsinh vs
vs(s+~ )—y+ ln

t sinhv s

—1+ ln —+ + f ln
scoshvs i~ ~ vs 1

msinh s s 2 i s

coshx

X +477

2
2s i~vs — ~ s+ 4~ (s i~v's —)coshv s —vs sinhvs s+~+ cosh~ s ln + ln

2vr sinh vs s+~ 2nsinh vs s+ 477

+0(ln(s + —, ~ )),
so in the large-u region we have

(6.12)

BII'(t, u) = —2me " (rr u —2) 1 —@+in——21n2
L

1 —+ im 5in Itr q 2» 1 —coshVS
3 — + 7— us+ 2 — u s e"'ln ds

—&/4 2U s 2VS vs 1+coshv s

1 —9+/4 i n 5i vr 11T g 1 „s 1 —coshl/s
1 — + 3 — — us+ 1 — u s e"'ln ds-

2v s 2v's vs 1+coshv s

+0 (
—9n u/4) (6.13)
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f u=0.4.Series 6 11 for small u and (6.13) for large u agree well, within 1%, in the vicinity of u =
The asymptotic expansion at u ~& 1 is

()) 1 —& s coshv sB'"(r,u)-—
—+~4 sinh Vs 2v s

j. — e aS— 1 3 5~ —6
u + u +~3" z~'

—m u/4e (6.14)

VII. EFFECT OF THE MOLIERE CROSS SECTION
ON THE EXCESS-PATH-LENGTH DISTRIBUTION

The first terms B' 's are Yang's solutions themselves,
only w being replaced by w' or E, by K. There is no ex-

licit dependence on t in B' 's after we used the nondi-p lcl
mensional variable u. In the second termss B"'s the
dependence on t appears through lnt, reflecting the Ka-
mata and Nishimura formulation. 8

B(1)~B"'(t,u)'s at t= 1 as well as the coefficient of lnt in B' ' s
are indicated in Figs. 6 and 7 for cases I and II, respec-
tively.

The corrections by the second term characteristic to the
Moliere theory are a long tail appearing in the distribution
for case I and a slight additional contribution appearing at
a small excess path length. They qualitatively agree with
the corrections indicated by Moliere in the angular distri-
bution, i.e., the long tail of the distribution at large angles
and the slight additional contribution at small angles.

B"'(t,u) must be weighted by I/O. Comparison of the
first term and the weighted second term for air (II == 15.2)
at t=1 is indicated in Fig. 8. The distinctive long tai
tends to fall as I/(2$lu ) as predicted in (6.9). This tail
can be interpreted as the geometrical excess from the sin-
gle scattering.

In fact, the single scattering at t' yields the geometrical
excess of

2 K dO
cr(8)2m. 8d8dx'= —

~ 2 3
dt'

Q 2 2 g

2 K d6
2 2 4g2

where we used the constants introduced by Kamata and
Nishimura. Integrating (7.2) with t' from 0 to t, we ob-
tain

1 K tB(u)du =— dh
Q 2 2 4g2

1 du
& 2u'

This interpretation, attributing to the geometrical excess,
is reinforced by the fact that we see no distinctive tail oth-
er than the exponential fall in case II.

VIII. CONCLUSION

The excess-path-length distribution of fast charged par-
t 1 due to multiple Coulomb scattering is completelyic es ue

all-solved in the Laplace transformed form under the sma-

, 8'(t r'—)— (7.1)

at t in the small-angle approximation. Its probability is
given by the Rutherford cross section:
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FIG. 6. Path-length distribution in case I under the Moliere
cross section. The first term 8~ ' (solid curve) and the second
term B'I" at t=1 (dashed curve) with its coefficient for lnt
(dot-dashed curve). The long tail reflecting the single scattering

(&)appears in B~
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FIG. 7. Path-length distribution in case II under the Moliere
cross section.
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EXCESS PATH LENGTH

FIG. 8. Comparison between the first term Bi (solid curve)(0)

of the distribution in case I and the weighted second term
B&"/0 at t= 1 (dashed curve). The long tail tends to the
geometrical excess by the single scattering (double-dot —dashed
curve) indicated in (7.3) in the text.

angle and gaussian approximations following Yang's
method (Table II). And the inverse Laplace transforms
can be obtained to sufficient accuracy by the rapidly con-
verging series, up to case III in Table I, and to good accu-
racy by the saddle-point method for general cases (in
Table I and in Figs. 1—5).

The energy-loss distribution translated from the
excess-path-length distribution with an assumption of
continuous energy loss is compared with that due to the
collision-loss fluctuation. It is found that the ratio of
correction due to the former on the width of the distribu-
tion, approximately represented by a new nondimensional
thickness of traversed material defined by (4.7), is about
four times greater than that on the probable energy loss
[Eqs. (4.8) and (4.9)].

Effect of the single scattering on the path length prob-
lem is investigated following the Moliere theory (in Figs.
6—8). It is reconfirmed that the solutions under the
Gaussian approximation are still a good first approxima-

tion under the more advanced Moliere theory. But a dis-
tinctive long tail appears corresponding to the geometrical
excess by the single scattering, and the distribution in-
creases slightly in the small excess region, especially in the
case of small thickness, which qualitatively agrees well
with Moliere's results for the angular distribution.

In spite of these known defects, the solutions of the
excess-path-length distribution under the gaussian ap-
proximation are important because of their completeness
in mathematics and their relative convenience in handling,
if enough care is taken for their limits. The time struc-
ture of the electron-photon shower ' as an application
of the solution derived in this paper and the analyses of
related problems will be reported in subsequent papers.
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APPENDIX A: GENERALIZED GENERATING
FUNCTION OF THE EIGENFUNCTION

The summation is obtained by using various levels of
the generating functions with Hermite polynomials, writ-
ten as

H2 (x)=( —1) (2m)! g ( —4x )", (Al)2k! m —k)!

H2 +i(x)=( —1) (2m+1)!2x

m

( 4 2)k
0 (2k+1)!(m —k)! (A2)

We use the following generating functions:
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lated to the analyses of the result. The calculation was
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oo
jy2 4x

t H2 (x) =(1+4t) ' exp
0 m! 1+4t (A3)

oo 4 tt H2 +, (x) =2x (1+4t) ' exp
0 rn! 1+4t (A4)

2—"H, (x)=(1+4t) H~k &
e p

x 4x

k (m —k)™ v'1+4t 1+4t (A5)
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1 k —k —1 x 4x t
t H2~+ i (x)=(1+4t) Hpk+ i ~ exp

k (m —k)! v'1+ 4t 1+4t

or to be summarized as

(A6)

,
t H, +k(x)=(1+4t) '"+—""H„

, m~ + 1+4t
4x t

exp 1+4t (A7)

Equations (A3) and (A4) can be derived by binomial series. Equations (A5) and (A6) are derivatives of (A3) and (A4),
respectively, and can be proved by the mathematical induction method, or directly proved using the Laplace transforms
and the formula

dm 1 k
exp

dt 4t

Then

=L '[s ' exp( —kv's )]=(4 t v'vrt ) 'H2 exp
k k

2 t 4t
(A8)

1 Z

0 (2m! 2
Hp (x)H2m(y)

2771

H2 (x)
1 z

0 (2m)! 2

2m

( —1) (2m)! g ( —4y )"
0 (2k)!(m —k)!

z 2

4
H2 (x)

Similarly

(1 —z )
2 1/2

(1 —z )
2 1/2

z x 1
( 4 2)k

1 —z2
k 0 (2k)!

X +P 2 2XJZ
2

z cosh
1 —z 1 —z2

(1—z ) "Hpk
(1 —z )

(A9)

1 Z

2m+1! 2
H2 +&(x)H2 +i(y)

2m +1
1 x +p 2 . 2xJz

exp —,z' »nh
(1 —z ) 1 —z 1 —z

(A10)

Thus we obtain

H„(x)H„(y)—
on! " " 2

n

(1—z )
2 1/2

(x +y )z —2xyz

1 —z
(A11)

known as Mehler's formula. Hence

oo
1g g„(x)g„(y)z"= . . .exp-

v'~(1 —z') '"
(x +y )(1+z ) —4xyz

2(1 —z )

(A12)

APPENDIX B: AN EXAMPLE OF CALCULATING
LOGARITHMIC DERIVATIVES OF LAPLACE

TRANSFORMED SOLUTION

We indicate a simple method to obtain the logarithmic
derivatives of:-(s), for case V:

1 3/2
-"v(s) =

3m v s coshv s —sinhv s

2 3/2
p s cosh~ s (Bl)
3 v s coshv s —sinhU s

then

f'(x) =x sinhx, f"(x)=x coshx +sinhx

and so on. And if we put

1nf (x)=g (x) and 1n=(s) =L (x),
then

2

L (x) = —1n(3')+31nx —g — x (1+g"+g' ),
6

(B3)

(B4)

(B5)

Putting

f(x) =xcoshx —sinhx where x =vs (B2)

3L'(x)= ——g' — [x (gI '+2g'g")+2x(1+g" +g' )],x 6

(B6)
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2

L "(x)= — —g"—p [x'(g' '+2g'g"'+2g"')
x2

+4x (gI'I+2g'g")

APPENDIX C PHYSICAL RESTRICTION
CORRESPONDING TO THE GAUSSIAN

APPROXIMATION IN MULTIPLE-SCATTERING
THEORY

Thus we obtain
+2(l+g" +g' )] . (B7) The angular distribution of fast charged particles due to

multiple scattering is determined from stochastic superpo-
sition of Rutherford single scattering:

1ln=(s) = L'(x),
ds 2x

1 „1ln=(s) = L "(x)— L'(x) .
ds 4x 4x

(BS)

(B9)

The logarithmic derivatives for other cases can also be ob-
tained by the same method.

o(8)27r8d8dx = E.' do
—1/3 2 2 321n(183Z '~3) p2p2 83

(C 1)

After passing through material of thickness x, the angular
distribution represented by the nondimensional angle P
becomes

maxf(x,8)d8= J /de Jo($9)exp —x J [1—Jo($8')]cr(9')27r8'd9'

dion ~maxa da Jo(ag)exp 1 —Jo o.
2m 2 ln( 183Z ) ~min

(C2)

where we assumed the upper limit 0,„-k/d —100 MeV/pc and the lower limit 0;„-A,/a -0.01 MeV/pc on the cross
section corresponding to the radii of the nucleus and atom.

If we develop 1 —Jo(ag') in power series, we get

f(x,8)d8= ada Jo(ag)exp( —~Mqa +—„M4a —»'04M6a + ),2n
(C3)

M2 ——1, (C4)

where M2„ is the 2nth moment of single scattering with p
at the depth x, and, as Omax/~min —183 Z holds,

APPENDIX D: THE KAMATA AND NISHIMURA
FORMULATION OF THE MOLIERE THEORY

AND ITS RELATION TO THE MOLIERE
AND BETHE FORMULATION

min

Omax

2n —2

1 1
M2„——

2n —2 21n(183Z '
)

(n & 1) . (C5)

Under the Moliere theory we neglect the upper limit in
the single scattering cross section (8,„~oo ) and take the
lower limit at v eX, . Then the diffusion equation for the
transformed angular distribution becomes

If we can neglect the 4th moment and higher of M2„, Eq.
(C3) becomes the form derived from the Fokker-Planck
approximation and we get the simple Gaussian distribu-
tion

—d lnf =dx J — [1—Jo(g')]o'(8)2m8d8 .
&em,

Kamata and Nishimura represented the Moliere theory
in differential form

f (x,8)d8= e
z

(C6)
K2g2 1 K2g2—d lnf = 1 ——ln dt,
4 2 2 Q 4 2 2

(D2}

(t'max 8max
E,

Vt «1 or t »25. (C7)

It should also be noted that with an increase of t, integral
range from P;„ to P,„ in (C2) becomes narrow and the
value of the integrand increases; at the limit of t~ oo we
reach the mathematical restriction against the Gaussian
approximation shown by Nishimura [(A.3.11) in Ref. 44],

xtr(8)2m 8 d8= lim dP
&(P —e)

e~O

6(8—6
(C8)

5~Op

This situation corresponds to the physical restriction of
traversing a very large thickness, as

1 u'
lnf = — 1 ——ln —lnt

4 A 4
(D4)

where the prime is attached to indicate that the value is
defined from K instead of E, .

by introducing a new scattering energy E, almost identical
with E„and a weight 1/0, indicating the magnitude of
correction by the logarithmic term. E and 0 both are
specific to the traversed material and independent of
thickness t and momentum p. Introducing a new nondi-
mensional variable and a complex variable,

8 and a'=pv Kv~
(D3}

K pU

then
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In the Kamata and Nishimura formulation we can easi-
ly convert a diffusion equation from the Gaussian approx-
imation to the Moliere theory by only altering the term

E,V K'g' 1 K'g'
to 1 ——ln

4p2U2 4p2U2 0 4p2U2
(D5)

but the explicit t in the logarithm appears generally in the
solution by this method due to an existence of lnt in (D4).

In the case of the angular distribution, Moliere and
Bethe originally introduced their weight and integration
variables, 1/B and u (Ref. 54) which are slightly dis-
tinguished from I/O and a' by

(D8)

But in the path length problem under the Moliere theory,
the author could not find such a variable removing the ex-
plicit t.

APPENDIX E: CONTOUR INTEGRAL
COMPRISING LOGARITHMIC PAIR

Let C be a contour on which f(j) is an analytic func-
tion of g and inside which f (g) has a finite number of
poles. Then for all z inside the contour and on poles, we
have"vaB —lnB =II—lnQ+1nt and u = a' .

Then we get the Moliere and Bethe formulation

(D6) ( )
. f dg=f(z) —g (principal part) .

2~i & g —z

2

lnf =—
4

1 Q
1 ——ln8 4

(D7)

instead of (D4). Thus we can represent the angular distri-
bution in a single nondimensional variable complementary
to Q:

Thus, integrating with z from a to P along any path in-
side the contour we get

. f f (g)ln dg
13= f f (g) g(princip—al part) dg . (E2)
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