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We provide the construction of a complete and irreducible set of gauge-invariant objects that can
be formed out of Wilson loops passing through a point. Thus we provide a complete solution to the
problem of assignment of gauge-invariant variables to loops.

I. INTRODUCTION C( 'C2+C2'C i (2.2)

Wilson loops'

W(c,x) =p exp(()), „Azdx")

are very important objects in a gauge theory. It is possible
to describe pure Yang-Mills theory in terms of these ob-
jects alone. ' There has been attempts to describe the full
QCD in the large-N limit in terms of these objects.

It is obvious that in a gauge theory all observables must
be gauge invariant. The set of gauge-invariant objects
that can be formed out of Wilson loops in some sense gen-
erate all gauge-invariant objects in a gauge theory.
Moreover, in the description of gauge theories in terms of
variables defined on loops, one must have knowledge of
the complete and irreducible set of gauge-invariant vari-
ables that can be assigned to the loops. The aim of this
paper is to provide such a construction. In Sec. II, we
provide relevant definitions. In Sec. III, we provide con-
struction of the basic set of gauge-invariant objects on a
single loop. In Sec. IV, we provide the same construction
for the case of 2 loops passing through a point for gauge
theories with structure groups SU(2) and SU(3). In Sec.
V, we discuss the multiloop invariants. At first, we con-
struct the complete and irreducible set of gauge-invariant
objects for the case of SU(2) and then state the general re-
sult for the case of SU(N). At the end, we provide some
concluding remarks.

b~ f&b&T (2.3)

where f,b, 's are the structure constants of the Lie algebra
of the group SU(N). Let A& A„'T' be th——e gauge poten-
tials. Now for a loop c, we define a path-ordered ex-
ponential in the following way. At first, we approximate
the loop by a polygon (x,x, , . . . , x„,x) (Fig. 2). The
lengths of the sides of the polygon are sufficiently small.
Let (x —x()"=a), (xi —x2)"=a~&, . . . , (x„—x)"=a„".
The path-ordered exponential is defined as

W(c, )x"=p exp(P, „A„dx")
A&(x)a() A&(x( )a ( AP(xn ~ri

) (2 4)

The path-ordered exponential W(c,x) is called the Wilson
loop. To every element of the group of loops we now as-
sociate a Wilson loop defined as in (2.4). From the defini-
tions, the following properties follow trivially:

The set of loops ( c i,c2, . . . , c„)passing through the point
x forms a non-Abelian group under loop multiplication
with the point x as the unit element. We denote this
group by GL, .

Now let us consider a gauge theory with structure
group SU(N). Its generators T' satisfy the commutation
relation

II. LOOPS AND WILSON LOOPS

Let us consider the set of loops (c(,c2, . . . , ck, . . .)

passing through the point x (Fig. 1). These loops are
given directions and the point x on the loops is to play a
special role. We can define a rule for the multiplication
of these loops. It is just the oriented product of the loops.
The inverse of a loop is the loop traversed in the opposite
direction. The point x, which we call the 0 loop, plays the
role of a unit element under loop multiplication. If we
denote the operation of loop multiplication by ~, then

C C—=C

c c ':—IxI .

It is clear from the definition that

(2.1)

FIG. 1. (c&,c2, . . . , ck, . . .) are the loops passing through the
point x.
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als out of W(c) and its higher powers, we use the theorem
of Hamilton and Cayley which states that the characteris-
tic polynomial of any matrix M becomes zero if one re-
places the eigenvalue A, by M: i.e.,

[Det(AI —M)]g M
——0 . (3.2)

At first, let us write down the recurrent formula for the
Hamilton-Cayley polynomial for W (from now on, we
drop the arguments c and x for the convenience of nota-
tion):

FICs. 2. A loop is approximated by the polygon
(x,x&, . . . , x„,x). p] ——W —tr W,

1p„=p„~W ——tr(p„, W) .
n

(3.3)

W(c&.cz ') = W(c, ) W(cz

= W(ci)W '(cq),

W{x ] = W(c c ') = W(c) W '(c)
(2.5)

p„ is the polynomial of degree n in the matrix W. Ac-
cording to the theorem of Hamilton and Cayley,

(3.4)

Clearly, the set of Wilson loops form a non-Abelian group
and is a representation of the group of loops GL. We
denote this group by G~. Under gauge transformation,
the Wilson loops transform as

W(c,x)~g '(x)W(c, x)g(x) .

The quotient G~/SU(N), is the set of gauge-invariant ob-
jects constructed out of the Wilson loops. These objects,
clearly, are the traces of the product of Wilson loops. We
want to construct the minimal set of gauge-invariant mo-
nomials, such that any other gauge-invariant object can be
expressed as a polynomial in them. The elements of this
set we shall call the basic invariant monomials on loops or
simply, basic loop invariants.

when W is an N XN matrix. From (3.4) it is clear that
tr( W") for n & N can be expressed as polynomial in
(tr W, tr W, . . . , trW ). Hence, the basic invariant mono-
mials for 1 loop are (trW, trW, . . . , tr W ).

IV. 2-LOOP IN VARIANTS

Let us consider the loops c1 and c2 passing through the
point x (Fig. 4). The elements of the group of loops GL
are of the form

n& n2 n3 n
C C1 2 1 2 7 (4. 1)

where n1, n2, n3, . . . , n„. . . are either zero or any arbi-
trary integer. The elements of the group of Wilson loops
are of the form

III. 1-LOOP IN VARIANTS

Let us consider the 1 loop c (Fig. 3). The elements of
the group of loops Gl for this are (c,c, . . . , C", . . . ).
The group of Wilson loops G~ consists of the elements

W'(c),

W(c ) = W(c.c) = W (c),
(3.1)

W118 228'23 W2n ~ ~ ~

W~
—= W(c&,x),

Wz
—= W(c2,x),

W)"——W(c)",x) .

(4.2)

(4.3)

W(c")= W(c.c . .c)= W"(c) .
n times

To construct the minimal set of gauge-invariant monomi-

At first, we shall construct basic invariant monomials for
the Yang-Mills theory with structure group SU(2). In this
case the Wilson loops are (2 X 2) matrices. The
Hamilton-Cayley equation for the matrices
W1, W2, W1 W2 are

FIR. 3. c is a 1 loop passing through the point x.
FIG. 4. cl and c~ are the 1 loops passing through the point
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W( —W)trW)+ —,
' (trW) } ——,

' trW) ——0,
Wz —Wztr Wz+ —,(tr Wz ) ——,tr Wz ——0,
( W( Wz ) —W( Wztr( W) Wz )

(4.4)

(4.5)

+ —,[tr(W~ Wz)] ——,tr(W~ Wz) =0 . (4.6)

The matrices ( W~ + Wz ) and ( W~ —Wz) satisfy the
Hamilton-Cayley equation of the type (4.4). Adding up,
these two equations, we obtain

W) W2 + W2 W] —W] tr W2 —W2 tr W)

+ tr W& tr Wz —tr( W& Wz ) =0 . (4.7)

Now let us consider the most general invariant:

n& n2 n
tr(W) Wz W' ). (4.8)

It is clear from Eqs. (4.4) and (4.5) that if n„&2 for any r,
it can be further reduced except for the case of tr W&,
tr Wz . So instead of (4.8) let us consider the invariant

tr( W) Wz W). . . ) = tr( W( Wz )" . (4.9)

In this equation if n & 2, then using (4.6), it can be ex-
pressed as a polynomial in tr( W, Wz) and tr(W, Wz).
Now let us write tr( W& Wz) as tr[( W& Wz)( W& Wz)] and
replace one of the W~ Wz by using (4.7). We obtain

tr( W& Wz) =trI(W~ Wz)[ —Wz W~+ W~trWz+ WztrW~ —trW~ trWz I+tr(W~ Wz)I]]

=——tr( W& Wz W&)+tr( W, Wz W~ )trWz —2trW~. trWz+2trW& Wz . (4.10)

Using Eqs. (4.4) and (4.5} and the cyclic symmetry of the
trace (4.10) can be expressed as a polynomial in tr W„
tr Wz, tr W&, tr Wz, and tr( W& Wz). So, the 2-loop basic
invariant monomials for Yang-Mills theory with structure
group SU(2) are

W] W2 + W] W2 W] + W2 W2

=2Wztr(W&Wz)+W&trWz +tr(W&Wz ), (4.14)

W2 W] + W2 W$ W2+ W] W2

tr W~, tr Wz, tr W~, tr Wz, tr( W~ Wz ) . (4.11)
=2W~tr( Wz W~ )+ WztrW& +tr( Wz W& ) . (4.15)

Now let us consider the 2-loop invariants for the Yang-
Mills theory with structure group SU(3). The elements of
the group of loops GL are given in (4.1). To each element
of the group we associate a Wilson loop defined as in
(2.4). The elements of the group of Wilson loops are of
the form given in (4.2). Now, the Wilson loops are (3 X 3)
matrices. The Hamilton-Cayley equation for a (3 X 3) ma-
trix M is

P&(M) =M~ MztrM+ , M trM—z—

From Eq. (4.13), it is clear that any invariant of form

tr(WI'Wz' . Wz" . . ),
where some r; greater than 2 can be expressed as polyno-

f2
mials in tr( W

~ Wz Wz" ) where r; (2 for any i
Hence, we shall consider only these invariants and show
that they can be further reduced. If r; =1 for any i, then
the invariant must have one of the following forms:

«( Wq Wz )", tr[( Wq Wz )"Wq ], tr[ Wz( W& Wz )"] .

——M(trM) ——trM + —trM trM1 2
2 3t 3t

+ —,(trM) =0 .
1

3t

Now the Hamilton-Cayley equations
Wl Wz Wl Wz, [ WI Wz] Wl + Wz Wl Wz are

Pg(W))=0,

Pg( Wz)=0,

Pg(W), Wz) =0,
P3 [Wl, Wz] =0,
Pp( W)+ Wz) =0,
Pp( W) —Wz) =0 .

(4.12)

for

(4.13)

(4.16)

Using the Hamilton-Cayley equations (4.13), it is easy to
show that tr( W&, Wz )" for n & 4, and tr[( Wt Wz )"W~ ]
and tr[ Wz(W& Wz)"] for n &3 can be expressed as poly-
nomials in tr W&, tr W&, tr W&, tr W2, tr Wz, tr W2,
tr( W) Wz ), tr( W, Wz), and tr( W, Wz ) . Now let us con-
sider the invariant tr( W& Wz W& Wz ). Using (4.15), we
obtain

tr( W] Wz W] Wz )=—«[W&'( Wz W] Wz+ Wf Wz )Wz ]

+ (sums of products

of traces of lower order)

= —trW& W2W& W22 3

—trW) W2 +. . .3 4

Using the Hamilton-Cayley equation for
W~, Wz ( W&+ Wz ) and ( W& —Wz), we obtain the equa-
tions

(4.17)

Now using Hamilton-Cayley equations for the matrices,
it can be expressed as polynomials in trace monomials of
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degree less than or equal to 6. These are precisely the
ones, mentioned above. With the help of the procedure
described above, any monomial of the form

P
1 P2

~tr( Wi W2 . . Wz" ) where r; & 2 for any i, can be
expressed as polynomials in

tr W), tr W), ir W)

tr(Wi Wq), tr(Wi W2), tr(Wi W2)

(4.18)

They cannot be further reduced (see the next section).
Hence these are the 2-loop basic invariant monomials for
the Yang-Mills theory with structure group SU(3).

V. MULTILOOP INVARIANTS

Let us consider the set of loops (c~,c2, . . . , ci„.. . )

passing through the point x (Fig. 1). The elements of the
group of loops GL are of the form

P2 "k
(5.1)

I cr, ,aj I =25~,

[Wl~ jc]r=2l &ijk r

where E''jk is the totally antisymmetric tensor:

ij k 6kmn 5im 6j n 5in 6jm

(5.2)

(5.3)

(5.4)

We can take II,cr; ) as the basis of (2X2) matrices. In
this basis

W = W;p-I+ W;J-oj,

W;p ———,trW; .
(5.5)

It is easy to see that

trW, . WjWk ——ie;~kW;WjWk . (5.6)

Now using (5.2)—(5.5) it is easy to show that
1 2 ktr( W; Wi W, ) for any set of indices ( i „i2, . . . , ik )

and integer powers (ri, r2, . . . , rk) is a polynomial in the
monomials of the form

trW;, tr( W, WJ), tr( W; Wz Wk) (5.7)

where the indices (i ii,2. . . , i )knumbering the loops are
either the same or different and rk ——0, 1,2, . . . , for any
k.

Let us, at first, consider the case of the Yang-Mills
theory with structure group SU(2). To every element of
the group of loops GL, we associate a Wilson loop as de-
fined in (2.4). Now the Wilson loops are (2X2) matrices.
Let W;:—W'(c;, x) for any i Let cr;., i =1,2, 3 be the Pauli
matrices:

for any i,j,k. Hence, these are the basic multiloop invari-
ants for the Yang-Mills theory with structure group
SU(2).

Let us now consider the most general case of the Yang-
Mills theory with the structure group SU(N). To every
element of the form (5.1) of the group of loops Gc, we
now associate a Wilson loop as defined in (2.4). Clearly,
the Wilson loops are (N XN) matrices. Let Wi = W(c;,x).
The problem of construction of multiloop basic invariant
polynomial reduces to the construction of basic invariant
monomials out of matrices W; 's where k = 1, . . . , n.

k

For this construction we use a theorem due to Processi. '

The proof of the theorem is based on the Hamilton-
Cayley theorem. However, we shall not provide the proof.
The statement of the theorem is every invariant polynomi-
al in F„F s being (N XN) matrices, 1 &i, & n and
transforming adjointly under the action of the group
SU(N), i.e., F;~g Fg, g&SU(N), is a polynomial in a
small set of invariant polynomials consisting of
tr(F;,F;, . . . , F;„)=S;,; . . . ;„, where i„iz, . . . , ik are ei-

ther the same or different indices and k obeys the bound
k &2 —1 for N&3, independent of n For .N =3, the
bound is k (2 —2 =6 and is also independent of n.

Now using Processi's theorem we have the following re-
sults. The multiloop basic invariant monomials for the
Yang-Mills theory with structure group SU(N) are of the
form

where i &,i2, . . . , ik are either the same or different indices
and (r, +rz+ . . +rk) &2 —1 for N&3 and (r, +r2
+ . . +rk) &6 for N =3.

VI. CONCLUSION

It is to be noted that the study of the loop invariants
and the basic loop-invariant monomials was started by
Christos. However, he considers only the symmetric
product of loops and, hence, the group of loops he consid-
ers is an Abelian group. We have considered here the
most general case where a group of loops is non-Abelian
and thus we provide complete solution to the problem of
loop invariants. Our result is applicable for the case of
lattice gauge theory. In particular, it might be useful for
the construction of the most general Symanzik-type La-
grangian for the lattice gauge theory.
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