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Mass splittings in quasi Nambu-Goldstone models
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Spontaneous internal-global-symmetry breaking in a supersymmetric theory is nonlinearly real-

ized by Goldstone superfields. We discuss a mechanism by which the components of the Goldstone

supermultiplets are given nonzero mass splittings by a generalized current-current coupling to a hid-

den O'Raifeartaigh sector. Particular attention is focused on a U(6)/U(4) XSU{2) model.

I. INTRODUCTION

The introduction of composite structure for quarks and
leptons is an attempt to better understand their complicat-
ed mass patterns and the replication of generations. A11

such preon models, however, face an immediate serious
constraint. Since no substructure of leptons or quarks has
been yet discovered, it follows that the momentum scale A
of the preonic binding energy must be at least of order
100 GeV—1 TeV which is much larger than the physical
masses of the quarks and leptons. For gauge theories to
give satisfactory explanation of this behavior, some sym-
metry must be imposed to force the composite states to be
light.

One such symmetry mechanism' utilizes the spontane-
ous breakdown of a global internal symmetry in the pres-
ence of a rigid supersymmetry (SUSY). More specifically,
when a supersymmetric preon theory with internal-
symmetry group 6 is spontaneously broken down to a
subgroup H via preon condensate formations, Goldstone
supermultiplets are generated as preon bound states. In
particular, the fermionic partners of Goldstone bosons,
which are massless as a result of the supersymmetry, are
identified with the quarks and leptons. The Goldstone
multiplet interactions are determined by constructing the
nonlinear realization of the 6~H breakdown. SUSY re-
quires that the Goldstone superfields take values on a
Kahlerian coset space.

Such SUSY preon models wi11 not be complete until a
mechanism is introduced to break supersymmetry and
generate the nonzero-mass spectru~ for quarks and lep-
tons while at the same time lifting all the scalar partner
masses above the present experimental limits. In this pa-
per we study a model involving a hidden O'Raifeartaigh
sector to accomplish these goals. Imagine a 6-invariant
supersymmetric sector where supersymmetry is spontane-
ously broken via an O'Raifeartaigh mechanism. The idea
is to construct an interaction connecting the hidden
O'Raifeartaigh sector with the observable Goldstone sec-
tor so that the Cxoldstone supermultiplets acquire nonzero
masses once the supersymmetry is broken. This technique
is reminiscent of the method used to break SUSY in su-

persymmetric extensions of the standard model using a
hidden %=1 supergravity sector.

We shall illustrate the mechanism in the context of a
specific model based on the coset G /H =U(6)/U(4)

XSU(2). The super-Kahler potential describing the in-

teractions of the Goldstone supermultiplets in the unbro-
ken SUSY case are reviewed in Sec. II. In Sec. III we in-
troduce the hidden O'Raifeartaigh model spontaneously
breaking the SUSY as well as explicitly but softly break-

ing the internal 6 symmetry. When this sector is coupled
to the Goldstone multiplets, we find, at the tree level, a11

bosonic degrees of freedom and exotic fermions acquire
large nonzero masses while one generation of fermions
remains massless. Thus, there is an encouraging indica-
tion that in this class of supersymmetric preon models, it
is possible for the composite fermions to remain light,
while the boson masses are made large.

For clarity, we shall indicate the fields in the Goldstone
sector by the lower case letters P,a, g,f, while the upper
case letters N, A, %',F are reserved for the fields in the
O'Raifeartaigh sector.

II. U(6)/U(4) XSU(2) SUPERSYMMETRIC
NONLINEAR REALIZATION

Zumino has shown that the construction of supersym-
metric extensions of nonlinear models requires the intro-
duction of a super-Kahler potential. The coset manifold
6/H is demanded to be Kahlerian such that the two-
form

co= —g.—.(A, A)dA'Ada ~

2
(2.1)

is closed, dao=0. Here A' is a complex scalar field and
the metric g.—. is Hermitian. A 6-invariant and super-

I J
symmetric action can then be constructed as

I = JdVIC($, $),
where

(2.2)

dV=d xd Od 8 (2.3)

and the super-Kahler potential is such that

a'sc(4', 0)
g' I ' gy'Age 'j (2.4)

The (anti)chiral Goldstone superfields (P )P have as
components the Goldstone bosons, quasi-Goldstone bo-
sons (from the complexification of 6/H coset), and
quasi-Goldstone fermions —the supersymmetric fermionic
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partners. It is these quasi-Goldstone fermions which are
to be identified with the composite quarks and leptons,
the massless preon bound states. To accommodate the
standard quarks and leptons with appropriate quantum
numbers, one must carefully choose the group structure
G/H. Buchmiiller, Peccei, and Yanagida (BPY) suggest-
ed the coset manifold U(6)/U(4)XSU(2) to account for
eight left-handed fermions of one generation of quarks
and leptons.

We begin with the U(6) algebra which is given in stan-
dard form ( A, B, . . . = 1, . . . , 6) by

—[TB,Q; ]= AB;, —[TB,pp] = AB,
1

(2.10)

are determined as

(2.10a)

identified with the left-handed quarks and leptons at one
family. The ninth fermion, coming from the superfield

Po, was called "novino" by BPY. The Killing vectors de-

fined by

[TB, TD ]=5D TB 5B TD—, (2.5) —[X,', Q. ]=—[XP,(I} I]=5'5, , (2.10b)

where the matrix generators in the fundamental represen-
tation are taken to be (I,J = 1, . . . , 6) —[x,",p ]= —[x,', p ] (2.10c)

A
( TB )IJ 51B5JA

There are 16 + 3 = 19 unbroken
(a,b =1, . . . , 4; i,j=5,6) given by

L fb —L'= Ta
a b= b

iL; =LJ ——T~ 2 5J Tk

and 36—19= 17 broken generators denoted by

Xp ——Xo= —Tk .
2

(2.6)

generators

(2.7a)

(2.7b)

(2.8a)

(2.8b)

(2.8c)

—.[X' 4o] = —.[X' 4o] =0

—,[Xo 0"]= —,[Xo 4.')

1 1—[Xo,go) = —[Xo,go] = 1,

[Lb,p'] =—i5bp',
l

'[Ib, y,
' ]=— i 5,'p', '—,

l

(2.10d)

(2.10e)

(2.10f)

(2.10g)

(2.10h)

The U(6) algebra can then be expressed explicitly in the
form

—.[L' 4k] = 5'k4'I'+ —5I4», —
l

[I i ytk] 5»gati
i 5l ytk

l

(2.10i)

(2.10j)

[LB~LD] 5D TB 5B TD

[Lb,x,'] = 5bX-
[Lb,X )=5 Xb

[LI',Xk ] =5'»XI' ——,
' 5IX»,

[LI',X,")= —5IX,'+ —,
'
5IX,",

[Lb,xo) = [L,' o] =o

[x,',x,']= [X.',x&]=0,

[X,x}i]=5bL &'Lb + 5b5,'xp, —

(2.9)

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.9f)

(2.9g)

—.[L',0o) = —.[L,' gaol

(2.101&)

The totally G-invariant super-Kahler potential satisfy-
ing 6KO ——0 can then be secured via a power-series expan-
sion:

Ko(4' 4') =~&&vi'(4o 0o)—
2

2
(0o 0o)'+vi'0'0'—

[Xo,x ]= —Xv'2
(2.9h)

[x,,x.']= — x.' .
V2

(2.9i)

Corresponding to the broken generators, there are 17
Goldstone bosons. We can include 16 of these as the com-
plex scalar components of the P,' Goldstone superfields.
On the other hand, the superfield Pp must be complexified
to contain one Goldstone boson and one quasi-Goldstone
boson. We can thus realize the SUSY with 17 Goldstone
bosons, 1 quasi-Goldstone boson, and (17 + 1)/2 =9
quasi-Goldstone fermions. Eight of the fermions are to be

+ - vz0'0'(0o 0o)+—
&2

(2.1 1)

where v& and v2 are free parameters. [In general, only
the G invariance of the D measure of the solution K is
demanded to construct the supersym metric action
I = dVK, . The totally 6-invariant solution Eo
differs from general solution K by a chiral superfield and
an antichiral superfield: Ko(P, P) =K(P,P) F(P)—

F'(y').]-
To achieve sensible results we need to expand the poten-

tial around its minimum obtained when

(Po —Pp) =v 2iv& /v2, and then, by shifting the fields,
( Pp —Pp )~(Po —Pp) —W2i v

& /vq, and dropping the con-
stant, we obtain the effective super-Kahler potential
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2

&o"(0' 0)= — (0o —A)'
2

+ - v~'(4o 4o—)0'0'+V2
(2.12)

Lp=P(4)
I F+H.c.

o+m+1%2+ Co+1%1 +H.c.
2

(3.2)

Note that, up to the cubic term, Ko is the degenerate
limit, v1 ~0, of Ko. A shift of field,

l 1
2

Imyo
I
e=o~lmyo

I e=o+ V2 ~2

in Ko can recover the original Eo. This reflects the fact
that the imaginary part of Po I e o is the (only) quasi-
Goldstone boson generated from the complexification of
the superfield Po.

Using the Killing vectors, we can also calculate the
global-internal-symmetry Goldstone current superfields

as&'," „, az',"
JB f; ABa f AB (2.13)

ay. ' ay,

with the charge-conjugation matrices in multiplications
suppressed.

By solving the auxiliary field equations we obtain the
effective bosonic potential (we employ the notation by
Wess and Bagger' ):

V= gF'F

= ~+ —~ i' +
I
m~~+g~o~ i I

'+
I
m~ i I

' .
A

(3.3)

An examination of the minimum of this scalar potential
yields

&A )=&A, )=&A, )=0 and &V)= IA,
I
)0.

as

jb ——cubic and higher terms,

jz ——cubic and higher terms,
2

i' = ~ (4o —4o)W.'+

2- (4'o —4'o)4'+
V2

2 2
~ l ~ k - 2 g 1 2 fk ci o

= —Jk = z (0—o 4o) -— 4"—Wk+ .
V2 v2

(2.138)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

Thus supersymmetry is spontaneously broken while the
U(6) symmetry survives.

To break the U(6) symmetry we complicate the model a
little by introducing the explicit but soft-gauge-breaking
terms b1+1+b2@2 in the superpotential. Here the cou-
plings b1 2 represent the column vectors

b1

b 2
b 2

b 3 b
b1 —— 4, b2 —— 4 (3.4)

b1 '
b2

b5 b

b6 b6

III. U(6) O'RAIFEARTAIGH HIDDEN SECTOR

In this section we will construct the hidden sector re-
sponsible for the supersymmetry breakdown of the theory.
The only constraint we impose on this hidden sector is
that the supersymmetry is spontaneously (or explicitly but
softly) broken and no massless particles appear in the
mass spectrum. Without any guidance from the underly-
ing dynamics, we take the simplest O'Raifeartaigh model
with only three superfields, to limit the number of in-
dependent coupling constants.

We introduce an U(6) singlet and two U(6) fundamental
chiral superfields carrying neutral U(1) charges as

Thus, the interaction Lagrangian is given by

I.~-b = XC'o+me1e 2+ —C'oe'1C
2

+b1%1+b2%2 +H. c. ,
F

(3.5)

where m can be chosen as diagonal. The resultant mini-
ma of the effective potential,

2

Vb = ~+ —~ i' +
I bi +mA2+g4o~ l2

+2

+3
+O ~'1= ~3. +2=

1

g 2c
1

g 1c
1

1

(p2

3

@3c
2

C 2c
2

g 1c
2

(3.1)

+ I
b~+ma,

I

satisfies the equations

b1+mA2+gAoA1 ——0,
z lg I'I ~i I'~i+(Im I'+g~")~i+»™-o.
If we choose

(3.6)

where c indicates charge conjugation. The chiral superpo-
tential gives rise to the Lagrangian ~ I g I

'& ~ i &' « I I
m

I
'+g~'

I
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(~,&=0, (3.8a)

and
I

m
I
» kg I, these equations yield the simple

solution
the O'Raifeartaigh sector, they take the form"

JB ——+4 TB N

which in terms of the shifted fields are

(3.14)

(A, )=
—bz
m'

b[
&a, )=—

—bz

Xgm+ m*

—bz

m
(3.8b)

(3.8c)

eB A A eB
b2 b2 b2 tB b2 A tB A +1~2 .Iml' m m*

(3.15)

which has the property that (31)~0 as b2~0 and
(A2)~0 as b1~0.

To expand the potential around the minimum, we de-
fine the new fields

No —+No,

bz

(3.9a)

(3.9b)

(3.9c)

and rewrite the interaction Lagrangian in terms of the
new fields as

LI' —b

2

g bz
A. +—

2 m
o+, bz

kg
m m

oN&+ m Ni+z+ +o+]41 +H. c.
m 2 F

(3.10)

and the minimum of the scalar potential is
2 2

bz
( vb&= Ix'I'= x+g

m
(3.11)

One difficulty of this model is the appearance of a
massless Goldstone fermion as the result of spontaneous
supersymmetry breakdown. To check this, we calculate
the fermionic mass matrix

bz
MF ——g

m

bz
g 0

m

m

m 0

(3.12)

2L„f,——
2 P+o (3.13)

and choosing p & m. This breaking term does not affect
the auxiliary field equations or tree-level vacuum expecta-
tion values (VEV's) of the model and serves only to give
the Goldstone fermion a nonzero mass.

To couple this O'Raifeartaigh sector to the Goldstone
superfields we need the relevant symmetry currents. For

Clearly, detMF ——0 implies that a massless fermion, the
Goldstone fermion, exists in the spectrum. Since this sec-
tor is supported to be hidden we must give a mass to the
Goldstone fermion. This can be accomplished by adding
a soft-SUSY-breaking term

IV. O'RAIFEARTAIGH-GOLDSTONE
COUPLING

(1) &JB& IDjB lo

&~'o@o+~'2~'2&
I
DIto

I o ~

(111) &C'o+o+@2@2& ID&JB & liB lo

(iv) (@p)
I

F-Kp
I
F+H. c.

(4.2a)

(4.2b)

(4.2c)

(4.2d)

Searching for mass contributions term by term, we find
the following.

(i) To extract the mass terms from (JB ) I DjB I p, we
first secure the VEV from (JB )

I D to be

We are now in the position to construct the interaction
between the O'Raifeartaigh and Goldstone sectors which
can be used to generate tree-level mass terms for the
Goldstone fields. We shall see that obtaining nonzero
masses for the Goldstone fields requires both SUSY
breaking and explicit G symmetry breaking. This is sig-
naled, respectively, by having nontrivial VEV's of the sca-
lar potential (F) and the currents (J) arising in the
O'Raifeartaigh sector.

For completeness, we consider the leading terms of the
most general SUSY and G-invariant vector coupling La-
grangian given by [with 4—:(N )']

L'G=G(@ ~ y y)
I D

= [co+c1(Co+0'o)+c2(@o~'o+@1~'1++2C'2)

+c3(&142+4241)](C4+Kp )(c5+JBJB )
I D (4.1)

which is a generalization of the current-current coupling
of Ref. 11. We normalize the O'Raifeartaigh superfields
and the super-Kahler potential so that czc4c5 ——1 and
coc5 ——1. For simplicity, we shall assume c3/cz «1 so
that the equations of motion in the hidden sector require
no modification.

The general mass matrix from this Lagrangian contains
pure Goldstone terms as well as mixing between the Gold-
stone and O'Raifeartaigh superfields. The pure
Goldstone-field mass terms arise from the combination of
the following two conditions: (1) non-zero VEV of the
superfields or currents from the O'Raifeartaigh sector and
(2) quadratic terms from the Goldstone sector. Condition
(1) is met by the terms JB

I p F F D, Np
I F + H.c.,

(Np&bp+%2%2)D, while condition (2) is satisfied by all bo-
sonic components (except D terms) JB I o, F, F +

I o, F,F.
The preceding arguments lead us to the following com-

binations for pure Goldstone-field mass couplings:
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&JB&ID

&+2 +2
2

~g
blab

eA
2 2 2

m
(4.3)

Jk.
2

2

&I'&IDj' lo= v2iv2 b2b2 a Imap+'
m

(4.4a)

Then we can write down all mass couplings which are
given by

T 2

& J'&
I Dj'l o= ~2iv2 b2b2' a Imao+

m

[refer to Eqs. (3.6) and (3.12)] it follows that

&@o@0+@2@2&
l
DJ 0 I

o= & I'I &l —v2 (™o)1+
v2 Imaplmao+

(iii) Similarly, using

eo'eo+ C 2@2

(4.5)

(4.6)

V
& Jo& IDj0 I

o=
2 2

b2b2" a,"a +
m

(4.4b) and

(4.4c) & Ja & I
o= 1 (b~b+ii+b ~b +ii) (4.7)

where the mass couplings can be easily found as

2

&@o@0+@2@2&
l

D&&t &
l oji I

o= W&iv2 (bi'bi+1~2) a Imao+ .
m

2

&@0@0++2~2& l D & Ja &
l oja l 0 ~2iv2 (bib i + 1~2) a,"'Imap+ .

m

(4.8a)

(4.8b)

& @o@0+ @2@2 &
I D & Jo &

I ojo I
o=

2, 2

k +k(bibi +1~2) a, 'a + .a

2 m
(4.8c)

(iv) In this combination, Kp
l F will give the only fermionic mass terms for the pure Goldstone sector:

2
eff V2

+0
I F&0 I

F+H. c.= —~ gplgp+H. c.
2

(4.9)

Collecting these results we obtain the mass terms in the pure Goldstone sector to be (using the identity b "b' =bTs b
and by= g&~=, bi3)

2
+i a P 2 A.g

diag pure mass 2 a I' Cp+2 b pXpb p+ +2 2 b2Xpb2
m c2 m

+ —,Imap Imap
1 Cl

A, 'v22 +H. c. ,
—2C2 i 2 2 + Tfofo

Cp Cp
(4.10)

C2

2 2 2
a r p 2 ~g a .~ ~ 2 ~ a pL off-diag pure mass i ma p v 2i v2 b2X; b2+ v 2icpv2 —bpXI b +H.c.

m m
(4.11)

As we can see, the only pure mass terms for quasi-Goldstone fermions (QGF's) are

Cp

2
C1

~
V2

yoqo+ H. c.
2

The procedure for finding the mixed mass terms of O'Raifeartaigh and Goldstone sectors is similar to that used for
the pure Goldstone particles, except the second condition for pure Goldstone masses is replaced by the following two
conditions: (1) linear terms from the 0 Raifeartaigh sector, e.g. , @0+@0and
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AJg ———
eB

b2 )~ b2
N1 —1~2,

m m*

k ek
b2

~ 2A1 —1~2 2iv2 Imap+ .
m m* (4.12)& ~ 0@0++2@2&

I DJB
I 0JB I

0-—
2

and (2) linear terms from the Cxoldstone sector, e.g. , j0 i——v2 (p0 p—0)—
Clearly the current-current coupling in the 0 Raifeartaigh-Goldstone Lagrangian is the central ingredient for obtain-

ing the mixed mass couplings. In fact, there are only two possible combinations which can contribute.
Case (i): c0(@0@0+4 2C 2)JBjB. We shall examine various ways to pick the overall D component:A ~ A

T

(@0@0+ +2@2 & I Bfia& JB &
I 0JB I

B+H c.= —~» +0
k

b1
~ 2+1~2 iv2 Q0+H. c. +

m
(4.13)

Case (ii): (c0ci/c2)(40/@0)JgjB. To pick the D measure, repeat the routine in case (i) with &040 replaced by C'0 «
Np so that

beak
&@o&

I
FJB I ej B I B+H c =~' 'pi+1~2 iv2 40+H c + ' ' '

m

beak b+k
&+o&

I
FJB I FjB I

0+H.c = —~'v 2, m*~z —g*, ~o

+bi�

"A i" iv22™0
m m

(4.14a)

b*, b*k
+2v 2g*

m* m*
~g *k

b2 iv2 Imap+H. c.+ - . .
fm f' (4.14b)

beak
N0

I B(JB &
I FjB I B+H. c.= —%t

m

~g *k. 2b 2 i v2/0+ H c +. .
Im

I

(4.14c)

So we have mixed mass terms for not only bosons but also fermions. Since eight of the QGF's are expected to be the
lightest in our spectrum, we need to study the fermionic spectrum more carefully to check whether this is achieved.
First, we collect all fermionic mixed mass terms as

i 2, I bp I' coci xg* bib2
fermion mix mass +0+0 V2 CO~2~

2 + c,
ek

l 2 0 1, 2 k l 2 0 1, 1

+Vi/0 —v2 A,
' „+%2/0 —v2 A,

' +H. c.
2 c2 m 2 c2 m

(4.15)

These fermionic mixing mass couplings are then com-
bined with the fermionic mass coupling in the
O'Raifeartaigh sector and the fermionic mass terms in the
pure Goldstone sector to form the complete fermionic
mass matrix. We can facilitate the diagonalization of this
mass matrix, while maintaining its general feature, if we
assume the G-symmetry-breaking vectors b to be degen-
erate, i.e., b1 —=b2 =b. The resultant fermionic mass ma-k k

trix can then be written as

l 2 CpC1 i
b*

Q= —v2 I,'
2 c2 m

C1
A. V2

Cp

(4.17b)

(4.17c)

with
2

P = i v2 —2W2c0A, +b cpc1 gg* b
(4.17a)

m c2 m m

4'p

'Po +i 'P2 40

p 0 P 0gb

Under the assumption m &p » lgk.
l
» lgb

I

»mR »mP, mQ, we are able to diagonalize this mass
matrix as

MF ——
@

00

gb

0

P

0 m Q 0

m 0 Q 0

Q Q R 0

(4.16)

p 0
0 m

MF"g —— 0 0
0 0

0 0 0
0 0 0

—m 0 0
0 R 0

(4.18)

0 0 0 0 0 0 0 0 0 0
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The lightest modes, P,', which have all zero entries in
the naive mass matrix, are recognized to be the eight left-
handed quarks and leptons.

2=Mg ~
C0

(5.2b)

V. CONCLUSIONS AND DISCUSSIONS

2 2(Mr, ;,„,) v2

(M~„„,}2 combination of other parameters
(5.l)

We have demonstrated how by breaking SUSY in an
O'Raifeartaigh model and then coupling to the Goldstone
sector, nonzero masses could be generated for the com-
ponents of Goldstone supermultiplets. The mechanism
was demonstrated by constructing the resulting mass
spectrum in a U(6)/U(4) X SU(2) model. Summarizing the
results, we found the following.

(I) By adjusting the model parameters, the mass scales
of the bosonic partners and the exotic fermions, including
the novino, could be lifted well above the GeV order.
Moreover the bosonic mass scale can be split from that of
fermions without any difficulty. One way to achieve this
is to assign a smaller value to v relative to the combina-
tions, with the same dimension of v, of other coupling
parameters, since all fermionic mass squares are propor-
tional to v2 while all bosonic mass squares are propor-
tional to v2, and

and the rest particles in the Goldstone sector, particularly
all Goldstone bosons, remain massless.

(3) The eight light fermions turn out massless in the
tree level. These fermions can still acquire masses by ra-
diative corrections from 0 Raifeartaigh-Goldstone in-
teractions. Since the masses of the supermultiplets of the
O'Raifeartaigh sector are split by supersymmetry break-
down, one can no longer expect the cancellation between
bosonic loops and fermionic loops in the radiative correc-
tions of mass renormalizations. These Goldstone-fermion
masses, as a result of radiative corrections, will definitely
be much lower than the tree-level Goldstone-boson
masses.

It is worthwhile to examine the mass sum rule' in a
nonlinear theory such as we proposed. The total Lagrang-
ian can be written as

LT=G(@I~C'I~ki~di)
I
a+[P(@I)

l
F+H.c.], (5.3)

where the upper case Nz indicates the O'Raifeartaigh
superfields while the lower case P; indicates the Goldstone
superfields. G and P can be some arbitrary vector poten-
tial and scalar potential, respectively.

The superfield equations of motion are [use the nota-
tion of (2.4)]

(2) As the explicit gauge breaking terms vanish, b~0,
only the mass terms for the novino and its quasibosonic
partner survive. That is,

D G;=0,
D Gr

(5.4a)

(5.4b)

CO

Mg —— A. 'v2
C)

(5.2a)

and their Hermitian conjugation. We then shift the fields
@~4&+( 4&), P~P+ (P ) and expand the superfield
equations about the physical vacuum:

D ((G,.—.)QI+(G, I)&bI+(GI)Q.I+(G~I)4I+(G, g)pjpk+(GjK)/I@K+(GIg)NIpk+(GIK)C&IC&K

+(G, g
—)+Ipk@I + —,

' (G, —
~ )@Id&KC&I + )=0, (5.5a)

D ((GII. )pi~+ (GII )NI+ (GII )pj+ (GII )NI+ (GIjk )QIpk+ (GIIK )pj@K+ (GIIp )@Ipk+ (GIIK )O'JC'K

+(GII/I. )CJPk@L+ 2 ( |'IKI )~I g~l+ )+( I)+( IJ)~I+7( IJK)@I@K+ (5.5b)

From now on, we will drop the angular brackets on G and P. For convenience, we shall assume G ~-6 ~, with the
greek letters a,P representing either the upper case I,J, . . . or the lower case ij, . . . .

Successively applying D on the superfield equations (5.5) and evaluating at 9=0, we can obtain the component equa-
tions of motion by eliminating the auxiliary fields:

i r)g; G,~KPKQI. G,IKP—K+I+ . =0, — .

l8% I GIIKPKtlij —GIIKPKpJ+PIJ pI+

(5.6a)

(5.6b)

a +G,.L,&PKPLJAJ +G,-LgPL. PzJAJ+G, .~L —.PscPL, a*+G,.+L JPKPL Az + ' ' =0

UA;*+GqLgPgPLJAJ +G~LgPL PsuAJ+G~~L, -.P~PL, a.*+GAL, JP PL. AJ —Pa PL.JAJ —PgJ~P~AJ+ . . =0 .

(5.7a)

(5.7b)
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From Eqs. (5.6) and (5.7) we can read off the fermion and boson mass matrices:

—G;,KPK

—GI,ZPK

iJK

GIJKPKPIJ
(5.8a)

—6 --PKPI.iKLj
GIKZ;PKP

GgLKPKPLJ GgKy JPKPL

GII.K K LJ IKI. J K L+ IL LJ .
(5.8b)

The mass relation is given by the graded trace of the squared mass matrices:

TrM =g( —1) (21+1)MJ ——TrM~ —2TrMFMF

2G ~APL', P~ 2G@zgP~G pLPL -+( GIL~P~Pqg+ H. c.), (5.9)

where PK are exactly the VEV of the auxiliary fields
(F~ ), the signature of spontaneous SUSY breaking.

Thus, the mass sum rule, TrM =0, which holds for re-
normalizable linear theories would not, in general, be sa-
tisfied for nonlinear effective Lagrangians retaining only
some of the degrees of freedom. This allows more free-
dom to split the mass degeneracy of the fermions and bo-
sons in the effective theory. The simplified spectrum
without the gauge-breaking terms [cf. conclusion (2)] can
serve as a quick check. In fact, all the mass couplings in
Sec. IV can be derived alternatively by using Eq. (5.9)
with higher-order terms.

Finally, it has come to our attention that the use of

spontaneous broken SUSY to generate quasi-Goldstone-
fermion masses has also been employed by Goity. ' His
approach differs from ours in the nature of the coupling
of the Goldstone sector to the SUSY-breaking sector. We
agree, however, on the emergence of light quasi-
Goldstone-fermion modes.
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