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Bifurcation of the quark self-energy: Infrared and ultraviolet cutoffs
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The quark self-energy in massless QCD is studied in the approximation that both the quark-gluon
vertex and the gluon propagator remain bare. It is shown that chiral invariance is not spontaneously
broken at a critical coupling A,, & 0, unless both infrared and ultraviolet cutoffs are introduced.

I. INTRODUCTION II. NO CUTOFF

The possibility that quarks obtain their effective ("con-
stituent") masses by dynamical breaking of chiral symme-
try is appealing. The Dyson-Schwinger equation for the
quark mass operator in chirally symmetric QCD (vanish-
ing quark bare mass) always has the trivial vanishing solu-
tion: the question arises as to whether it can also have a
nontrivial solution that violates chiral symmetry.

In this paper we consider the simple approximation in
which the full vertex function and the full gluon propaga-
tor are replaced by their bare values. We show in Sec. II
that, in the absence of cutoffs, there is no critical coupling
A,, &0 such that, for k & A,„there is only the trivial solu-
tion, while a nontrivial solution bifurcates away from it at

In fact, there are nontrivial solutions for all posi-
tive values of A, , as was shown earlier' by numerical
means. In Sec. III we impose an infrared cutoff by intro-
ducing an effective gluon mass: although this reduces the
dimension of the manifold of the solutions, there still is
no critical coupling A,, &0. Finally, in Sec. IV we employ
both an infrared cutoff and a Pauli-Villars ultraviolet cut-
off A. The situation is dramatically different, for now the
linearized form of the equation (the functional differential
evaluated at the trivial solution) is a homogeneous
Fredholm equation. The spectrum is discrete and the
smallest value of A. for which the linearized equation has a
nontrivial solution is the first bifurcation point, A,„ofthe
full nonlinear equation away from the trivial solution.
The theory of Fredholm equations guarantees that A., & 0.

The basic lesson of this analysis, which reproduces in a
simpler way certain earlier results, is that both an in-
frared and an ultraviolet cutoff are necessary, if a bifurca-
tion point, A., & 0, is to exist. The gluon mass is supposed
to be caused by gluon self-interactions, and is intuitively
appealing. The Pauli-Villars ultraviolet cutoff is not so
well motivated, although we show, also in Sec. III, that
the equation remains well behaved in the limit A~oo.
Moreover, in this limit, k, does not tend to zero, as one
would naively expect, but to a definite positive value.
Nevertheless, a better-motivated ultraviolet regularization
would be preferable; and this can be provided by the loga-
rithmic decrease of the running coupling constant in QCD
(Refs. 3 and 4). The present model has the character of a
didactic example in which certain basic issues are clari-
fied.

In the Landau gauge, viz. ,

—g"'+k"k /k
k +is

one finds

S'F '(p) =a( —p')+P,

(2.2)

(2.3)

where a is a solution of the integral equation

a(x) = 3A, " dy ya(y)
16sr o x „y+a (y)

(2.4)

with the notation x,„=max(x,y).
Equation (2.4) always has the trivial solution a(x) =0.

A bifurcation of this solution into a nontrivial solution
occurs at the smallest value of the coupling parameter A,

for which the linearized equation (f =5a)

(2.5)

has a nontrivial solution.
This integral equation can be converted into the dif-

ferential equation

[x f'( )]x'+ f (x)=0,
16m

which has the general solution

f (x) =Ax ++Bx

with

(2.6)

(2.7)

1 1r+= ——+
2 4

1/2
3A,

16m
(2.8)

The function (2.7) does indeed solve the integral equation
(2.5), with arbitrary constants A and B,for any real A, & 0.

With the vertex function and the gluon propagator re-
placed by bare values, the inverse quark propagator satis-
fies the approximate Dyson-Schwinger equation

S'F '(p)=p — f d p'y„S~(p')y~P (p' p) . —
(2m. )

(2.1)
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Thus we expect a nontrivial solution of the nonlinear
equation (2.4) for any positive A, ; and this has been con-
firmed by numerical methods. There is no critical point,
A,, & 0, such that only the trivial solution exists for
0&A, &X, .

III. INFRARED CUTOFF

a(x) = 3k ~ dy ya(y)
16vr o x,„+m y+a (y)

Its functional derivative with respect to a at a:—0 is

(3.1)

A simple way to introduce an infrared cutoff is to posit
the existence of an effective gluon mass, m, presumably
induced by gluon self-interaction. Inserting a massive
gluon propagator in (2.1) results in a relatively complicat-
ed integration over the direction of the loop momentum
p'. It is sufficient for our purposes simply to replace the
factor x,„ in Eq. (2.4) by x,„+m . Such a replace-
ment is accurate unless p' and p are comparable in
magnitude, and even then the relative error in the kernel is
uniformly less than one. As shown in Ref. 2 the character
of solutions is not affected by this simplification. In our
approximation, Eq. (2.4) is modified to

dent. The general solution to (3.2), apart from a normali-
zation constant, is

2 r+x+m
y+

2 r-x+m
m

(3.6)

A standard way to introduce an ultraviolet cutoff is
through the method of Pauli and Villars. The nonlinear
equation (3.1) is replaced by

T

3A. 1a(x) = dy
16~ o x +m

ya(y)
x,„+A y+a (y)

the bifurcation equation by

(4.1)

f(x)=, f dy, —,f(y)+~' x +~'

It is interesting that the two-parameter solution of Sec.
II has been reduced to a solution with one normalization
parameter by the introduction of the infrared cutoff.
Nevertheless, there is still a solution for arbitrary k & 0, so
again there is no bifurcation point, k, & 0.

IV. ULTRAVIOLET CUTOFF

2 o x +~2 (3.2)
(4.2)

The differential equation is modified to

[(x+m )f'(x)]'+ f(x)=0,3k
16m

the general solution of which is

(3.3)

f(x)=A(x+m ) ++B(x+m ) (3.4)

f'(0) =0, (3.5)

so that the integration constants A and B are not indepen-

with y + as in (2.8).
However, the solution to the integral equation (3.2)

must also satisfy the boundary condition

Here A ~~m is the Pauli-Villars cutoff.
Thanks to the ultraviolet cutoff (and the infrared cut-

off), the kernel is L, and so (4.2) can be treated as a clas-
sic Fredholm equation of the homogeneous kind. We
know then that if we limit the solutions, f, to L, there is
only a point set of A, values for which (4.2) has nontrivial
solutions, and that there is a smallest value, k, &0, for
which (4.2) has a nontrivial L solution; and this corre-
sponds to the first bifurcation of the trivial solution of
(4.1) to a nontrivial solution.

However, we can do much more. There is no reason to
limit ourselves to L, in the search for solutions of (4.2)
and (4.1). Suppose that a solution, f, of (4.2) is merely re-
quired to be bounded on (0, oo ). Then we have

lf(x)l ( (A —m ) sup
I
f(y)l f16~ o&y & (x,„+m )(x,„+A ) (x+m~)

where the constant C depends on A, m, and f.
Consider now the Banach space of bounded, continuous functions f (x) with norm

sup I: Ig(x)
I
(x+m')~],

0&X & oo

(4.3)

(4.4)

for a fixed pe(0. 1) We know from (4 3) that any bounded, continuous solution of (4.2) belongs to this space. Further
more,

16m' 0 (y +m') p x,„+m ' x,„+A'

' (x+m')(y+m')~ " (y+m')'+&llfl I

3k (x+m )

p(, p)
(4.5)
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Thus eigenvalue of the linear integral equation (4.2).
Equation (4.2) is equivalent to the differential equation

,6, I lf I I
»(1—)ll }

I lf I I

and so, if f (x) is not identically equal to zero, then

(4.6)
[p(x)f'(x)]'+ f (x) =0,3i,

16~
(Al)

3A,
& P(1 —P)

16m
(4.7)

for any P in (O, l). The maximum of the right-hand side
of the inequality (4.7) is attained at P= —, , so that

with

1

p(x)
1 1

(x+m ) (x+A )

Along with boundary conditions

(A2)

3A. 1

2 —4
(4.8)

f'(0) =0,
f(oo)=0.

(A3)

& fa(y)f
y +a'(y)

(4.9)

In other words, Eq. (4.1) has no nontrivial bounded solu-
tions unless inequality (4.8) is satisfied. Furthermore, we
show in the Appendix that the nonlinear differential equa-
tion (4.1) has no solutions for A. less than the bifurcation
point I,

It is interesting to compare this result with that of Sec.
III, in which the Pauli-Villars cutoff was absent. In the
latter case we had the unique solution (3.6) (aside from a
trivial normalization). This solution is never in L; but it
is in our Banach space, with P=Re[y+]. Clearly, when
(4.8) is saturated, P= —, [see (2.8)]. For the cutoff equa-
tion (4.2), the solution lies in the Banach space with P & l.
Although the constant, C, of inequality (4.3) explodes as
A~ oo, the inequality (4.7), which is optimized by (4.8), is
independent of A. There is then an essential difference
between the limit A~co of the solution of the equation
with cutoff, and that of the equation without an ultravio-
let cutoff.

The important point is that this lower bound on A, , or
equivalently on the bifurcation point A., is independent of
the Pauli-Villars cutoff A. The bounds (4.3), (4.6), and
(4.8) also apply to solutions of the nonlinear equation
(4.1), as a result of application of the relation

3A, a (x)rx=
16' x+a (x)

(A6)

The solutions of (4.1) also satisfy the boundary conditions

a'(0) =0,
a(a) )=0 .

(A7)

(A8)

For a given A, &k„ let us integrate the differential equa-
tions (Al) and (A5) from common starting values at
x =0. That is, we determine f (A, ,x) and a(A, ,x) for x &0,
from initial values

f (A, , O) =a(A, ,O) )0, (A9)

Equations (A 1 )—(A4) constitute a Sturm-Liouville
eigenvalue problem for the function f(x). It follows from
standard arguments that, for the smallest eigenvalue A,„
the eigenfunction f, (x), defined with f, (0) & 0, is mono-
tonically decreasing and positive on [0,oo ].

Equation (4.1) corresponds to a nonlinear differential
equation, which can be cast into the form

[p(x)a'(x)]'+ a(x)=r(x)3i,
16m

with

V. DISCUSSION (A, ,O) = (A, , O) =0 .
dx dx

(Alo)

In our truncated Dyson-Schwinger equation with the
quark-gluon vertex and gluon propagator both free, chiral
symmetry is broken spontaneously at some critical cou-
pling A., &0 if, and only if, both infrared and ultraviolet
cutoffs are introduced. We have been able to reproduce
and extend the results obtained by Maskawa and Nakaji-
ma, using simple arguments. Their analysis is, at best,
very involved, relatively unenlightening, and difficult to
follow. We have found that Eq. (4.1) and those of a simi-
lar type are quite naturally treated as fixed points of map-
pings in a Banach space of continuous functions that are
O(x '~

) at large x. Our approach is applicable to the
general system of coupled equations studied in Ref. 2.

APPENDIX

We shall demonstrate that the nonlinear integral equa-
tion (4.1) has no solutions for A. less than X„ the smallest

dyr y A. ,y &0. A12
p(x)

By doing another integration, we obtain

a(A, ,x))f (A, ,x) (A13}

for x =&~. Using a similar argument, one can show that

Define the domain &~ over which both functions remain
positive; viz. ,

&q ——Ix
~

x & 0;f (X,y) & 0 and a(A. ,y) &0 for y = [0,x] I.
(A 1 1)

The function r (x) is positive on domain &q. Multiplying
Eq. (Al) by f (x) and (A5) by a(x}, subtracting, and in-

tegrating, we obtain

f (A.,x)a'(A. ,x) —a(A, ,x)f '(A, ,x)
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f(A, ,x))f(A,„x) (A 14) ACKNOWLEDGMENTS

for x )0 and A, & k, . Therefore, &~ consists of all posi-
tive x for A, &A,„and then a(oo ))0. The integral equa-
tion (4.1) thus has no nontrivial solutions for
There is a continuous branch of positive solutions a(k, x)
of (4.1), where the eigenvalue k(A. ) A,, ) increases mono-
tonically with the value of a at x =0.
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