
PHYSICAL REVIEW D VOLUME 35, NUMBER 1
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We show how integrodifferential equations typical of jet calculus can be combined with an

averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs.
Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x
and lower at large x than with the conventional "incoherent" jet calculus. These results resemble

those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics.

I. INTRODUCTION

Over the past few years, a great deal of attention has
been paid to the predictions of perturbative quantum
chromodynamics, especially in the production of jets of
hadrons in hard processes. ' Our present understanding
of how a quark (gluon) decays in QCD is based on the
semiclassical picture developed by Altarelli and Parisi.
This was generalized by Konishi, Ukawa, and Veneziano
(KUV) into a "jet calculus" —a set of rules for calculating
inclusive distributions in x, the longitudinal-momentum
fraction. In this calculus, all dominant collinear loga-
rithms come from skeleton tree diagrams with no interfer-
ence, and thus a probabilistic picture becomes possible.
The jet calculus, however, has the defect that the (two or
more) partons whose momenta are described may be from
widely separated regions in rapidity. To circumvent this
problem, Amati and Veneziano introduced the concept of
preconfinement, whereby colorless clusters of finite mass
can be detected already in the perturbative evolution of
partons. Bassetto, Ciafaloni, and Marchesini (BCM)
used this idea to define color-connected propagators and
the distributions for the quark and the antiquark in a
colorless cluster (CC) emitted by a jet.

Improvement in a different direction was made by
Crespi and Jones (CJ) who incorporated the momentum
of the gluons into the x distribution of the cluster. These
equations along with the BCM equations were solved by
Jones and Migneron (JM), who implemented the
prescription given by Amati et al. ' for improved in-
frared behavior.

In addition, Mueller" has shown that in the leading-
logarithm approximation (LLA) the angles at which
gluons are emitted in a cascade are ordered. This has sub-
stantial consequences for the computation of multiplici-
ties and other quantities which depend in an essential way
on the behavior of distributions at low x (Refs. 12 and
13). However, the only actual calculation of detailed
consequences which has appeared so far is a Monte Carlo
approach developed by Marchesini and Webber' ' (MW).
As will be clear from the discussion below, this is because
it is difficult to rewrite the jet calculus using the angular

ordering condition. " ' In this paper we discuss the ef-
fect of Mueller's observation on the CJ equations and its
physical consequences.

Our calculation has the new feature that we use the jet-
calculus equations, rather than the Monte Carlo approach

(a)

(c)

(e)

FICs. l. (a) KUV symbol for Da(Q', Qo', x), the probability
of finding parton P with momentum fraction x at Qo if one
starts with parton a at Q . (b) CJ symbol for Hs(Q, QO, x). (c)
CJ symbol for HJ(Q, Qo, x). (d) crs(Q', Qo ), the probability
that gluons only produce gluons. (e) Probability that a quark de-

cpys in any way ( =1). (f) Probability that a gluon decays in any
way (=1). (g) Representation of virtual potential for a gluon,
see text Eq. (2.2a). (h) Representation of virtual potential for a
quark, see Eq. (2.2b).
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of MW. We rewrite the jet calculus using a kinematic
variable appropriate to angular ordering, similar to the
procedure used by MW to rewrite the Monte Carlo ap-
proach. We then solve the new equations, obtaining re-
sults in this new variable. In order to compare with the
results in the older variable, an averaging process is intro-
duced which relates the new variable to the old one. Re-
sults in longitudinal-momentum fraction x for physical
quantities are higher at intermediate x and lower at large
x than with the conventional jet calculus.

The outline of the paper is as follows. In Sec. II we re-
view the CJ formalism. In Sec. III we discuss the soft-
gluon effects, and the changes that they necessitate in the

CJ equations. The interpretation of the revised equations
is considered in Sec. IV. Section V contains a discussion
of the results, and comparison with previous work. In
Sec. VI we present the summary and conclusion.

II. CRESPI-JONES FORMALISM (Ref. 8)

In this approach, one defines new propagators Hg and
H~ which measure the momentum of the first quark plus
that of the gluons emitted on the "open" side of the lines
in Figs. 1(b) and 1(c). These propagators obey the follow-
ing equations:

2' dz a(z(1 z)q ) -gg( —
)H, ~( )

2 x
X 4~ Z

Pg ( ) (A.( ) Q )Hg A, (1—z)q;
0 1 z 4m. 1 —z

(2.1a)

q Hz(q;x) = Vq(q )HJ'(q;x)+ P ~qg(z)Hg (A(z)q;x/z)
' dz a(z(1 —z)q ) gq

dq'

+ q P", (z)a, (~(z)q', Q, ')H,' V 1 —.)q',
Z 277 q g q o J q (2.1b)

and

a z(1 —z
Qo )=ag(q Qo )Vg(q )+, f dz Pg (z)tTg(k(z)q, Qp )erg(A(1 —z)q, Qp ),

dq 2'
where Vg(q ) and Vg(q ) are virtual potentials given by

az 1—
V (q') = —f dz q

[ ,
' P gg(z)+P gg(z—)],

2

V (q')= —f dz
' ' q [ 'P(z)+ 'P(z)] .

(2.1c)

(2.2a)

(2.2b)

o.
g is the probability that gluons do not produce qq pairs.
The CJ equations have the convenient graphical representation shown in Figs. 2(a) and 2(b). Equation (2.1c) for o.

g
can be rewritten as [see Fig. 2(c)]

d~ Ca ~ dw' 11C~ Nf= —0 [1—o.(r')] — a(r)(1 —o. ) + a(r)
d~ bm. ~o z' 12~ 6' (2.3)

with

11NC —2Nfr= ln(q /A ), rp ——ln(Qp /A ), a(r) =
b~ ' 12~

This is the same as JM and Amati et al. ' The color-singlet distribution is given by (see Fig. 3)

dx, dx2 cs g ' k "i+"2 x
' ' "i~" z(1 —z)

a(z(1 —z)k ) rs
)

gI
&( )kz

2~ ~ ' ' ' 'xz

XHs A(1 —z)k;' x(1—z)
(2.4)
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(a)

FIG. 4. (a) Ladder diagram of order a, '. (b) A crossed dia-
gram of the same order.

&n.

'n
Q ln"( 1/x)
Qo~ (n —1)!

(3.2)

We see from above that crossed rungs can contribute sub-
stantially in the low-x region.

For example, in order a, , the ladder diagram of Fig.
4(a) contributes

FIG. 2. Graphical depiction of Eqs. (2.1)—(2.3).
ln-

2
ln ——3 ln

2
ln —+21n-Q 1 Q pl pl

Qo' x Qo' x
(3.3)

while the crossed diagram [Fig. 4(b)] gives

where x =x &+x2 is the momentum carried away by the
entire cluster including the gluons and a refers to quark
or gluon. Equations (2.1)—(2.4) are integrated from Qo
to Q . The solution of these equations is discussed by
JM.

III. MODIFICATION OF JET CALCULUS
TO ACCOMMODATE ANGULAR ORDERING

—1n
2

ln —+2 ln—Q 21 31
Qo~ x x

Their sum is

A~
ln x ln-

Qo~ x

(3.4)

(3.5)

A. Coherence effects in gluon emission

Recently, it has been found" ' that, in addition to col-
linear mass singularities, there are soft perturbative singu-
larities associated with the emission of low-energy gluons.
These effects have been carefully studied by a number of
workers. To describe these effects, we follow the treat-
ment of Mueller. " (See also Ref. 12.)

We recall that in the LLA only ladder diagrams are re-
quired [see Fig. 4(a)]. Their contribution has the generic
form3' "

Thus the addition of the crossed diagram changes the
ln (Q /Qo ) of LLA to ln (x Q /Qo ). Mueller" has
shown that this form can still be interpreted in terms of
the semiclassical, probabilistic language of ladder dia-
grams, provided we order the emission angles in subse-
quent branchings.

Let us consider the branching indicated in Fig. 5. We
define the angular variable

Pf

1 Cw &s „Q ln" '(1/x)
1n"

, n! rr go2 (n —1)!

while the diagrams with crossed rungs contribute

(3.1)

=1—cos8)2 (if q; =0) .

The effect of interference of soft gluons is taken into ac-
count to leading order by requiring

I
g (xg)

I a

FIG. 3. Graphical representation of Eq. (2.4).

FIG. 5. (a) The basic branching process: gluon~gluon +
gluon. (b) Ordering angular variables in subsequent branchings
according to Eq. (3.'7).
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ki k&k&k "&1 (3.7)

where g& and gz are the angular variables of the eventual
branchings of gluons 1 and 2, while g,„ is the angular
variable of the vertex at which the incoming gluon was
produced. Its virtuality is given by

1

Q 2/Q2 Z

of Refs. 9 and 10 by (see Appendix A)

(3.12)

is represented by a(z (1—z) p ). Thus we are led to re-
place integrals such as

q =q1 +q2 +2ql q2
2 2 2

=qi +qz +2~i~zk.2 2 (3.8)
A Z21 —Z2p2

0 Z
(3.13)

When all the energies are of the same order, we see that
ordering of g is equivalent to ordering of virtuality.

When we write the jet-calculus equations, we keep the
convention that what appears at each vertex is a(p, ).
This is based on the physics of the situation, and is the
same convention implemented by MW in their Monte
Carlo calculations. The effect of Mueller's discovery is to
change the independent variable in the equations. Let us
examine the kinematics of a typical decay vertex to see
how this is to be implemented.

Consider a parton with virtuality q and energy co

which decays into partons of virtuality q& and energy zen,

and qz, (1—z)co. Because of the basic relation

2 2
qi +pt q2 +p~+ '

1 —z
(3.9)

=q, +qz +2z(1 —z)co g, (3.10)

where g'= I —cos(8&2) is strongly ordered. We use p as
the variable for the integrodifferential equations, where

we expect that p, =z(1—z)q for z near the ends of the
allowed range.

However, near these points q is no longer the ap-
propriate variable for the differential equations, because
the strong ordering is not in q . Rather, we need to write

+q2 +2q2 2 2

(See also Kiselev. '
) In addition, we use this replacement

inside the propagators in the CJ equations to translate
them into the variable p .

We thereby obtain equations in the variable p which
are similar to our previous equations and can be solved in
a similar way. However, before we compare with the pre-
vious results, we must translate our results back into q .
As is clear from Eqs. (3.10) and (3.11) above, to obtain a
given q we must consider a range of p, and these p
values are (much) higher than q . We will achieve the
comparison by averaging over appropriate p, as ex-
plained in Sec. IU below.

Our averaging procedure plays a role similar to a par-
ticular step in MW's Monte Carlo model —the step in
which the q for the two-jet event is reconstructed and the
event is discarded if this mass falls outside the given
range. In both calculations the use of strong ordering in a
parameter which is not the virtuality requires ultimately a
reconciliation with the physical necessity of using the in-
variant mass as a specification for the system. This intro-
duces some inefficiency into both procedures.

Note that the energy fraction z could also be interpreted
as a light-cone parameter without changing much. This
fraction is then invariant under Lorentz boosts along the
jet axis. We thus see that the scheme is basically Lorentz
invariant (under longitudinal boosts) in spite of its use of
the angular variable g. Hence we expect the results to be
Lorentz invariant, as MW have shown empirically.

2ci3 g=p (3.1 1)
B. Modified CJ equations

This is strongly ordered also and has the same dimensions
asq.

This means that the vertex in the differential equation
In the CJ equations we make the above replacements to

obtain

~ qq'dza(z(1 —z)p) Pg()-~ 2 z xp', Hg(p';x)= &g(p')Hg(p';x)+ f g Hl A(z )p;—
dp Z jT f

'dza(z(1 —z)p) gg
-i

~ 2 zx
Z 4m Z

2
1

2 2

+ ( ( ) p ) p &&(z)
—(g(zz) 2 g 2)H g((1 z)2) 2. x

o1—z 4~ 1 —z
(3.14a)

dp

2 1 2 2

Pgg(z)o (A, (z ) Q )H'. A, ((I—z) )
Z Z 2' 1 —z

(3.14b)
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p og(p, QO )=os(p2, QO ) Vg(p )+ —,
' fdz Psg(z)og(A(z )p, QO }og[A((1—z) }p,QO ] . (3.14c)

dp 277

Note that corresponding changes should be made in the virtual potentials as well (Fig. 1). The colorless-cluster [color-
singlet (CS)] distributions take the form

g dx]F2 cs p g Qp & 1 2

dz a(z (1 —z) k }
x, /x z(1 —z 2' XZ

XH s X((1—z) )k;' x(1 —z)
(3.1 5)

As we demonstrated in Refs. 8 and 9, Eqs. (3.14) and
(3.15) may be converted into a set of coupled ordinary dif-
ferential equations in moment space. These have the
feature that the nth moment of H depends on the n —1

and all lower moments, including 0.. The normalization
of the quantities is completely determined by the initial
conditions at P =Qo (see Ref. 9). Obviously from
(3.15), the moments of colorless-cluster distributions de-

pend on special gauge-invariant combinations of H and o..
The new coherent equations differ from those in the ap-

pendixes of Ref. 9 in that the quantities X(k ) and:-(k )

defined there by

k' dk'
X(k )=—f, a(k')[1 og(k' )],—

(3.16)

Qp k

are replaced by —,
'

X(p ) and —,':-(p ), respectively. A stan-
dard differential-equation package such as RKF45 was
used to simultaneously integrate the equations from Qo
to P for o.g, the propagators and the CS distributions.

The results obtained by the solution of these equations
are in moment space. We solve for eight moments. These
are inverted to give propagators and CS distributions in x.
To achieve this, we use the conventional method due to
Yndurain' and also the Legendre expansion as advocated
by Jones and Opsahl. ' The need for the latter arises be-
cause Yndurain's technique cannot be extended to x & 0.2
if one has 8 moments available. Also Yndurain's method
tends to overestimate the functional value for x values
lower than 0.3.

IV. A RECONSTRUCTION SCHEME AND ITS
DEPENDENCE ON KINEMATICAL BOUNDS

The solutions of Eqs. (3.14)—(3.16) are functions of P
and Qo . They cannot, however, be compared to the JM
results directly [see Eqs. (2.1)] because the two formalisms
use different evolution variables as discussed above and in
Appendix A. To establish a comparison between the in-
coherent and coherent approaches, in the absence of a
unique and rigorous analytical procedure, we have devised
a "reconstruction" (or averaging) scheme. Two versions
of this scheme are discussed in Secs. IVA —IVC below.

Their impact on the results is discussed in Secs. IV D and
V.

A. A simple method of reconstruction

This method (A) is based on the (asymptotically
correct) relationship

z-(1 z) P =z—(1 —z)Q (4.1)

where Q and P are the variables in the incoherent and
coherent branching schemes. For a fixed Q, we have

(P');„= =4Q'
[z (1 —z)]

(P2)
Q' Q'

Q 2/Q2 Q
2

(4.2a)

(4.2b)

2
)

1 I (
'

)f~ Q n)= „, ,4(Q, n), (4.3)

g4yg 2

I„(Q,n) = f, f(P, n)dP

Note that the subscript 3 refers to this first technique of
averaging. The approximations used here are similar to
those used in all our differential equations. We expect the
results to be approximately correct at large Q; and since
in that case the region of integration for P covers only
large P, we should not lose much accuracy by neglect of
the nonasymptotic terms.

B. A refined method

Before discussing the evaluation of f„, we first take a
closer look at the kinematics involved. From Eq. (3.10)
we see that the behavior near z=0 or (1 —z) =0 is influ-
enced by the nonasymptotic terms q] and q2 . Consider,
for instance, the original branching of the virtual photon
of mass Q (e.g. , in e+e annihilation) into two partons of

Thus given a function f(P,n), which can be og, a propa-
gator or a CS distribution, we can define the "reconstruct-
ed" or averaged quantity f(Q, n) using the mean-value
theorem for integrals:
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masses Q& and Q2. In the rest frame of the photon their
four-momenta are

n44Q'&P'&—
2 Q

2
(4.10)

Q"= ( Q, O, O, O),

P
~

——(E&,q sinH, O, q cos9),

P2 —(E2, —q sin8, 0, —q cos6I),

(4 4)

This inequality forms the basis of our second reconstruc-
tion technique (hereafter referred to as B) C. omparison of
(4.10) and (4.2) shows that the two methods differ only in
a factor of 2 in the upper limit. In analogy with Eq. (4.3)
we now define

where q =
~ q ~

and 0 is the angle subtended by q and the
z axis (0(6&7r/2). The process takes place in the xz
plane.

The following relationships are obvious:

Ei = (Q'+Qt' —Q2'»
2

fa(Q' n)=

where

4

4 2

Q
2

I~(Q, n ), (4.1 1)

E2 = (O' —Q i'+ Q2'»
2

[Q' —(Qi+Q2)']I Q' —(Qi —Q2)']
4 2

(4.5)
g4/2g 2

Ig(Q, n) = f, f(P, n)dP

We now consider the crucial question of how Iz and Iz
can be most accurately evaluated.

As in MW, we next boost the momenta along the z axis.
This gives

C. Evaluation of I& and I&

Q'~=M(y)Q",
P'", =M(y )P",

P'2 =M(y )P~2,

(4.6)

We have found a trick which enables these averages to
be evaluated at the same time as the o., 0, etc. by enlarg-
ing the system of differential equations. To be specific we
consider the second averaging procedure, i.e., Eq. (4.11).
Defining p =P /A, q = Q /A, we can write

where I(Q, n) =A J(q ) . (4.12)

coshy sinhyMy= sinhy coshy

Then, from P '~ P 2
——0 (when 8&2

——n /2), Eq. (4.6) yields

(E~E2 —q cos H)cosh y+(E2 E, )q cosOsinhy —coshy

Taking the derivative with respect to q and suppressing
the n dependence for simplicity, we get

2 4 4

2 2 2

2dJ q q f q 4 2f(4 2) (413)
Vo eo

If we let
—(E,E2+q sin 9)=0 . (4.7)

For simplicity, we can assume E
&

——E2 ——E, so that
Q =2E, and Eq. (4.7) admits the solution and

u =, U=4q
4

2qo
(4.14)

Q /4+q sin 8
cosh p 2 2 2

Q /4 —q cos0
(4.8)

h, (q')=f(q'/2qp ) h2(q )=f(4q ),
Eq. (4. 1 3) gives

(4.15)

with

q Q
2

Equation (4.8) reaches a maximum and a minimum for
0=0 and ~/2, respectively. We can then obtain the
bounds on the variable P =2' g in Eq. (3.11) as follows:
when 6~2 rr/2, and with co =Q —c—osh y [from Eq. (4.6)],
P becomes

2dJ( )
q 2

——2uh&(q ) —vh2(q ) .
dq

(4.16)

2df(K )
K =g(K )

dK
(4.17)

For the case of the propagators the solution of (4.16) is
fairly straightforward. The propagators in moment space
obey equations of the form

P =2Q cosh y .

Thus using Eq. (4.8), we obtain the inequality

n4
4Q —8Q&2&P

2 Q
2 (4.9)

where the functions g(K ) are written explicitly in JM
(Appendix A). In turn, the functions h~(q ) and h2(q )

satisfy differential equations obtained by differentiating
Eqs. (4.15a) and (4.15b) with respect to q and combining
with Eq. (4.17) to give

When the mass Q, is small, i.e., Q, —Qp, Eq. (4.9) can be
approximated as

dh, (q )

q =2g(u),
dg

(4.18)
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dh2(q )q', =g(v) . (4.19)

Equations (4.18), (4.19), and (4.16) are solved simultane-
ously subject to the initial conditions specified at
Q =8Qo . namely, I(8Qo ) =0 from Eq. (4.12).

The above procedure, as it stands is not directly appli-
cable to the colorless-cluster distributions. Some major
modifications are needed in the differential equations for
f(u) and f(v). From JM Appendix A, Eq. (A3)] we know
that the CC distributions in moment space are given by

equations of the form [see Eq. (3.15)]
p& dk2f (P,n)= g' f, Df(P, k, n)Z&(k, n),

pyg Qo' k

(4.20)

where Z~(k ) is a lengthy expression involving propaga-
tors and Altarelli-Parisi P functions in moment space, and
the subscript o. specifies the type of jet. Taking the
derivative with respect to ln (P ) produces an extra term
owing to the P dependence of D~~:

p' dk2f (P,n) = g'D~(P, P,n)Zp(P, n)+ g' f, D~(P, k, n) Zp(k, n) . (4.21)al~' ' „. .. a.' k'

In the first term, we substitute D~(P, P ) =5, and we simplify the second one through the Altarelli-Parisi equations to
obtain

f (P,n)=Z (P~, n)+ g'g f, A," D~(P, k, n)Z~(k, n) .
BlnP 2~ Qo' k

(4.22)

Equation (4.22) simplifies further by making use of Eq. (4.20):

P2f (P,n)=Z (P,n)+ gA,"+,(P,n) .
2n

(4.23)

This equation implies mixing between quark and gluon jets, since for a given o,', e takes on both quark and gluonic values.
For the specific cases of gluon jets (a =g) and quark jets (a =q), this yields

P2
p2 f (P~, n)= —G(P, n)+ [2N~A&zfq(P, n)+Azzfz(P, n)],

gp2 ' ' '
2m

(P2
P fq(P, n)=Q(P, n)+ [Aqqfq(P, n)+Azqfz(P, n)]

Qp 2n

(4.24)

(4.25)

In Eqs. (4.24) and (4.25) the notation of JM [Appendix A,
Eq. (A3)] for the functions G and Q has been used. Based
on these two equations, results analogous to (4.18) and
(4.19) are easily derived for the colorless clusters. The dif-
ferential equations in reconstruction scheme A can be set
up in exactly the same way.

The solution of these equations for propagators and
colorless clusters is achieved by the routine RKF45, which
provides a very rapid solution for the large number of
coupled differential equations (132 in our case, with eight
moments) needed to obtain all the moments and averages.
The accuracy of the solution is evidenced by the quark
and gluon momentum-conservation sum rules ' obeyed
by the averaged quantities:

Typically, our solution obeys the sum rules to one part in
lO".

It is to be noted that the direct evaluation of Iz and I&
is also possible through the use of standard routines such
as DO1GAF from NAGLIB. This procedure, however, is
lacking in numerical accuracy relative to the above
method (the sum rules are obeyed to 1 part in 10 ), in ad-
dition to being less elegant and much more time consum-
ing. Also the Q dependence of f~ z and I~ s is not at all
transparent. We have used this direct evaluation as a
check of our differential-equation calculations. '

D. Example: o.~, the probability that gluons
only produce gluons

f — x dx = 1 —gH& ( Q, 1 ) for quarks,
'1 do. 1

o dx

(4.26)

f — x dx =1 cr 2+H—s(Q—, 1) for gluons .
'1 do- 2

oo. d~ cs

(4.27)

To make our procedure clear, we describe here the com-
putations for the probability o.

z that gluons do not pro-
duce quark-antiquark pairs. This is a good quantity to
examine in detail because there is an integrodifferential
equation which involves o.

~ and nothing else, so analytic
tools can be applied easily to check the computations.

The equation for o.
z is represented graphically in Fig. 2.

After some manipulation, Eqs. (2.1c) and (3.14c) take the
form
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dc'
dv.

Ca ~ d~' 11Cqd, 1 —o. ~' — a ~ 1 —cr
~b ~o ~' 12'

Nf+ a(r)
6~

(4.28)

where d =1 for the conventional (JM) case, and d = —,
' for

the modified CJ equation. This equation has the asymp-
totic solution

~A (~B (2&g (4.31)

phase-space limitation due to the angular ordering inhibits
gluons going into gluons. (The g~gg probability func-
tion peaks strongly at low z. Thus change of the same
range of integration in z cuts out much more g~gg than
it does of the flatter g~qq. )

Comparison of o.z and o.B shows that the results are
not very different. In fact

%0
rr (r)=

d( C~ /mb))~
QZ

d( C /n. b)

Qo'
(4.29)

To see this, we define the positive difference

Q ~Q
b, gg Ig ——Ig —— — o(P )dP

Q ~2Q
(4.32)

(4.30)

Clearly the old and new ag are asymptotically related by

[og(+)]modified cJ [~g(+)JM]

Then

(4.33)
This is similar to the behavior of the Sudakov form factor
seen by MW (Ref. 13). In Fig. 6 the results for the solu-
tion of Eq. (4.28) are displayed' for both values of d: we
see that the change of exponent in (4.29) has drastic
consequences; the variation in P is much slower than
that in Q . It is important to note that a similar change
occurs in the propagators when we go from the Q to the
P formalisms, although for simplicity these curves are
not plotted here.

Now we average over the appropriate range of P using
methods A and B described earlier. These results are also
shown in Fig. 6, labeled 3 and B. We see that initially
the reconstructed solutions drop a little more rapidly than
the JM solution; at large values of Q, oz differs from
0 JM by about a factor of 4 and o.B by a factor of about 2.
A possible interpretation of the damping is that the

and

IB
~& —

Q4~2Q z

AB

Q4~g2

R—:

~AB 2=2— ~2 as Q ~oo
(Q'~2go')tr~

(4.34)

(4.35)

because cr(P ) drops off fairly rapidly as P ~oo. The re-
sults of our calculations for this ratio as a function of Q
are shown in Table I.

We shall see in Sec. V that, when methods 3 and 8 are
applied to other quantities of interest, which drop more
slowly with P than o.g, the corresponding ratio is even
smaller. For instance, for the propagators the results of
the two schemes differ by less than a factor of 1.6; for all
the physical quantities (colorless cluster distributions)
schemes A and B differ by less than 7%.

Another property of interest is the Qo dependence of
og, shown in Fig. 7. The effect of increasing Qo is to in-

crease o.g, in both the JM and reconstructed schemes: we
only present the results of method A for comparison.

JM TABLE I. Q dependence of the ratio R, defined in Eq.
(4.35).
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FICy. 6. o as a function of Q (at Qo ——0.062 CxeV ) for oJM
and reconstructed o.

& and cr~ functions, and as a function of P
for the intermediate stage cr.
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Since Qo is a measure of the mass of the colorless clus-
ters, we can interpret this as the suppression of the g~qq
channel as Qo increases. Note that, as expected on physi-
cal grounds, crz reaches its highest value (=1) at the
boundary. The Qo variation of the other quantities, i.e.,
propagators and colorless cluster distributions, follows a
similar trend to that exhibited by o.g, and thus will not be
shown.

Returning to Fig. 6, possibly the most remarkable as-
pect of our result is that, after the reconstruction has been
carried out, the probability o.

g changes so little. As we
will see, this is also true of the propagators and colorless-
cluster distributions discussed below. This is, of course
what we expect —the angular ordering condition could not
completely change the results. It is satisfying to discover
that the computed solutions have this property, despite
the very different looking values in the intermediate (P )

step.

V. RESULTS

10

In this section we make a comparison between at least
one version of the reconstructed results (the results of
method B are not shown in all cases) and the conventional
JM results; comparison with the work of Marchesini-
Webber' is made when applicable. We have set A=0. 2
GeV and Qo~=0. 062 GeV unless otherwise stated.

A. Moments

IO
102 IO'

g~ {Gee~)

I

104 105

FIG. 7. Behavior of erg and o.~ at various Qo as a function
of Q'.

As mentioned earlier, the coupled system of Eqs. (3.14)
and (3.15) is solved in moment space. Eight moments are
used. ' The outputs Hz(P, n), etc. , are then averaged to
obtain the reconstructed HJ(Q, n) using the method given
in Sec. IVC.

The results for the quark (favored and unfavored) and
gluon propagator moments are shown in Figs. 8—11
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FIG. 8. Q variation of the favored propagator moments for n =1 and n =8 (scheme A). Q02=0. 062 GeV .
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where they are compared with the JM results. For the
three kinds of propagators, as depicted in Figs. 8—10
where only the results of method A are shown, the differ-
ence between the incoherent and coherent analyses is more
prominent at large Q (the region of physical interest)
where the present results (solid curve) are more damped. '

The n dependence of the propagators is shown in Fig. 11
for a typical high Q =3X10 GeV, where the calcula-
tions based on both methods A and B appear together
with the JM results.

The favored propagator exhibits only a very small vari-
ation with n, for a given Q, which is reasonable since the

I
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FICx. 10. Q variation of the gluon propagator moments for n =1 and n =8 (scheme A). Qo
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n

FIG. 12. Colorless-cluster moments [from Eqs. (2.4) and
(3.15)] for incident quarks and gluons as a function of n at

Q =30000 GeV, Qo =0.062 GeV .

favored propagator moments are dominated by the
5(x —1) term; on the other hand, the unfavored and gluon
prop agators decrease as n increases in the three ap-
proaches. The results in the coherent scheme are more
damped for higher n (by about 25%%uo for the gluon propa-
gator and 32% for the unfavored propagator, for n =8
compared to n = 1). The results in the coherent B
scheme are consistently larger than those in the A scheme
by a factor not exceeding 1.6. (Obviously, this is also true
for Figs. 8—10. ) This is consistent with the observation
made earlier in our discussion in Sec. IV D that the results
of method B can differ from method A by a factor of at
most 2, due to the very slow drop with P of the results of
the integrodifferential equations.

In Fig. 12 we show the results for the quark and gluon
CS distribution moments. These moments are obtained
by first solving for moments of Eq. (3.15) in terms of the
H, and then averaging according to the techniques of Sec.
IV. If one averages using the di fferential equation
method of Sec. IVC, the entire set of differential equa-
tions is solved simultaneously for the H's and the aver-
aged output. The larger n moments are consistently lower
than the JM results, the gap widening as n increases, for
both quark and gluon distributions. There is an even
smaller difference between methods A and B for the
colorless-cluster moments, the ratio being 1.07 and 1.04
for gluon and quark, respectively.

B. Moment inversion

When we invert from moment space (where we know
the calculated moments to reasonably high accuracy) to x

space, we must choose a method for the inversion. This
introduces systematic uncertainties, since we know only a
finite number of moments (eight here); inversion methods
which are guaranteed to work in the limit of infinite num-
ber of moments may not reproduce the function very ac-
curately for small number of input moments. ' In our
past papers we have used the Yndurain inversion method,
so there is some reason for us to present results here using
it. This method has several drawbacks, however: (i) for
eight moments we can only look for x above 0.2, thus the
interesting low-x region is inaccessible; and (ii) Yndurain's
method has been shown to be rather poor in reconstruct-
ing functions of this general shape when only eight mo-
ments are known. Counterbalancing these problems is an
advantage: the Yndurain method is reasonably good at
reproducing 5-function singularities near x =1, such as
the one contained in the "favored" quark propagator; oth-
er methods used based on Legendre polynomials have a
hard time with such singular behavior when only a few
moments are known. (The Legendre approximation ex-
hibits substantial oscillations. )

Most of the results that we present in this paper are ob-
tained using the Yndurain inversion. Before we discuss
these results from a physics point of view, we would like
to give some idea of the systematic uncertainties involved
in the inversion. Another inversion method, which has
been shown to give good results for a small number of mo-
ments, ' is based simply on an expansion in Legendre
polynomials (see Appendix B). In Fig. 13 we show sample
curves for colorless clusters in quark and gluon jets using
our JM and "reconstructed" moments obtained with
scheme A. We show results in x space based on both the
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FIG. 13. Inversion of the moments shown in Fig. 12, show-

ing discrepancy between the Legendre and Yndurain techniques:
(a) quark; (b) gluon (scheme A).

Yndurain and Legendre inversion techniques; a logarith-
mic scale in x is used in order to emphasize the low-x re-
gion (the Legendre method yields a series which can be
evaluated at any desired point).

Casual inspection of the curves shows that the two
techniques do not yield the same x distributions in the re-
gion of overlap. The reader should take this as a warning
about the overall quantitative meaning of the results.
However, we see that both methods yield a "crossover
point, " and that the ordering of the curves (i.e., whether
reconstructed is higher than JM or vice versa) below and
above the crossover is the same for both inversion tech-
niques.

We take this as an indication that certain qualitative
features are correctly predicted even when only eight mo-
ments are known. These are the aspects of our calculation
which should be compared with the Monte Carlo results
of Marchesini and Webber.

C. Propagators in longitudinal momentum

The results for the propagators in x space are shown in
Fig. 14. The favored propagator is much lower than that
of JM, the gap increasing at higher Q . The 5 function
around x =1 is also somewhat damped. There is a ten-
dency in all propagators to blow up at very low x; so we
do not present results for x below 0.2.

In the case of the unfavored and gluon propagators,
again we observe lower values. Notice that the favored
and unfavored propagators are equal to each other except
near x =1, as before. The softening of the 5 function in

the favored propagator causes the gluon propagator to
drop at large x. Again, as expected, the propagators in x
space obtained from method B are higher than those from
method A by a factor of at most 1.6.

D. Colorless clusters

Although we can compute the Legendre series at arbi-
trarily small x, there is not much point here in a detailed
examination of the very-low-x region. The reason for this
is twofold: (i) our Crespi-Jones equations make some ap-
proximations in the kinematics which are not valid for
very-slow (but finite-mass) particles, and (ii) we have not
calculated the zeroth moment. A formula for the zeroth
moment in the coherent branching scheme exists" and is
the basis of various predictions about the multiplicity.
Work including this in our scheme is underway. We have
not included it here because our chief interest lies in the
change between previous results and the new approach,
and the more "old fashioned" jet calculus could not corn-
pute the zeroth moment (due to divergences). However,
for x small but not "tiny, " we do see the distribution go
up as a result of angular ordering, in agreement with Ref.
13. There is also agreement in orders of magnitude.

Looking at the large-x region (Figs. 15 and 16 for
methods 2 and B, respectively), there is a crossover
around x =0.7 for the quark jets. We have calculated our
moments accurately enough to verify that, indeed, this is
really present. The inversion of the difference of the old
and new moments yields a function which unambiguously
changes sign. As discussed in Sec. VB above, we believe
this crossover to be present even though different methods
of moment inversion lead to slightly different values for
the exact crossover point. A similar crossover
phenomenon occurs for the gluon jets (Figs. 17 and 18),
this time at a much lower x, about 0.5.

For both quark and gluon jets, the position of the cross-
over point is insensitive to the choice of reconstruction
schemes (compare Figs. 15 and 16 with Figs. 17 and 18).
This is because the scheme B and A results differ by at
most 7% for gluon jets and 4% for quark jets.

We expect only very small deviations between the two
schemes for these physical quantities because the mo-
ments vary very slowly with Q (like powers of lnQ ).
The fact that the results of the coherent branching lie
above the old results at intermediate x and below them at
high x agrees with the MW results, as does the direction
of motion of the crossover point as Q increases, for both
quark and gluon jets. MW present results for gluon jets
only.

VI. SUMMARY AND CONCLUSIONS

The angular ordering condition discovered by Mueller,
which accounts for cancellations in the low-x region of
phase space, can be reexpressed as a strong ordering in the
variable p =2' (1—cos8&z). This variable is approxi-
mately Lorentz invariant under boosts along the jet axis.
As a result, jet-calculus-like integrodifferential equations
determining the p variation of all interesting quantities
such as og (the probability that gluons do not produce qq
pairs), parton propagators, and colorless-cluster distribu-
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tions can be written. These differ from the standard
equations in q in some crucial factors of —, due to the
different low-z behavior of some important quantities and
the obvious changes in the variable of integration.

We have solved these new equations, obtaining the P
dependence of various quantities. To compare these re-
sults of coherent branching with the older conventional
jet-calculus results, we computed their consequences at
particular values of Q by averaging over the appropriate
range of P . The procedure is effective in the sense that

the small shifts between the "reconstructed" results and
the "old" or "conventional" results are all in directions
which can be interpreted simply in terms of physical dis-
tinctions between the two types of cascades. These results
for the colorless clusters in both quark and gluon jets
move up at intermediate x and down at large x, compared
to "standard" jet-calculus calculations. These results for
the physical quantities are independent of small correc-
tions to the asymptotic kinematics. This is important in
order that the jet calculus be useful. Our results are quite
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FIG. 16. CC distribution in quark jets at Q = 133 and
30000 GeV . Qo =0.062 GeV (reconstruction B)

similar to those obtained by Marchesini and Webber in a
Monte Carlo calculation of gluon jets with the same phys-
ics input.

We thus feel that there is no problem in incorporating
the newly discovered effects of coherence into the jet-
calculus equations. We are currently studying the exten-
sion of this approach to the zeroth moments, which will
allow exploration of the interesting region at ultrasmall x.

2 2 2 2+p q2 +p
q + 'q l ~q2 + 0z 1 —z

Using

p, =z(1 —z)q —(1 —z)q, —zq22= 2 2 2

we get

z(l —z)q ) (1—z)q~ +zqq )Qo

(A 1)

(A2)

(A3)
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APPENDIX A: KINEMATICS

First we consider the branching in the conventional
scheme [Fig. 5(a)]:

and

2
0

Q2

(A4)

Next we consider the coherent branching mechanism:

So, generally speaking,

z(1 —z) &
Qo'

q

Hence, as we know from ordinary kinematics,

. 2= 2. =4Qo .

When integrating over z, we use the large-q approxi-
rnation:

Qo'
z —=

2
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FIG. 18. CC distribution in gluon jets at Q'=133 and
30000 GeV . Qo =0.062 GeV (reconstruction B)

since p, )0, and

q =q, +q~ +q2 +z(1 —z)p

we find

P z (1 —z) &go [z +(1—z) ] .

The function

(A5)

APPENDIX B: THE LEGENDRE METHOD
OF INVERSION (REF. 17)

In this appendix we present a summary of the Legendre
inversion technique discussed in Ref. 17, and used to
prepare Fig. 13.

Let f (x) be the "true, " unknown function and

z (1—z) Qo)z'+ (1—z)' P' (A6)

1

f(n)= f dxx"f(x) (BI)

and

0

P

has a maximum again at —, . Thus (P );„=8go .

At large P this leads to limits

(A7)

its nth moment, where n = 1,2, . . . , N. The Legendre
method allows us to reconstruct the value of the function
at any desired x from a set of f(n), n =I, . . . , N. This
involves an expansion in Legendre polynomials P~. Expli-
citly, if

i=0
z+ ——1—

P then the inversion is achieved by means of the formula

N —1 I i

fi (x) = —g (2l +1)PI(2x —1) gc; g 2 ( —1)' f(m +1),X, O i=O m =0
(B2)
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where fl (x) is the resulting approximation to f(x).
In our solution of the differential equations the mo-

ments were calculated to an accuracy of one part in 10 .
We calculate eight moments for inversion. As discussed

in Ref. 17, these values for the error and the number of
moments are optimally matched, in the sense that they
reproduce test functions more accurately than would a
larger number of moments known to 1 part in 10 .

tB. L. Ioffe in Proceedings of the 22nd International Conference
on High Energy Physics, Leipzig, 1984, edited by A. Meyer
and E. Wieczorek (Akademie der Wissenschaften, Zeuthen,
East Germany, 1984), Vol. 2, p. 176.

~M. Jacob, in Proceedings of the 22nd International Conference
on High Energy Physics (Ref. 1), p. 150.

S. D. Ellis, in Dynamics and Spectroscopy at High Energy,
proceedings of the 11th SLAC Summer Institute on Particle
Physics, Stanford, 1983, edited by P. M. McDonough (SLAC
Report No. 267, 1984).

4G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
5K. Konishi, A. Ukawa, and G. Veneziano, Nucl. Phys. B157,

45 (1979).
D. Amati and G. Veneziano, Phys. Lett. 83B, 87 (1979).

7A. Bassetto, M. Ciafaloni, and G. Marchesini, Nucl. Phys.
B163, 477 (1980).

8B. Crespi and L. M. Jones, Phys. Rev. D 28, 2840 (1983).
L. M. Jones and R. Migneron, Phys. Rev. D 27, 2715 (1983).
D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini, and G.
Veneziano, Nucl. Phys. 8173, 429 (1980).
A. H. Mueller, Phys. Lett. 104B, 161 (1981); Nucl. Phys.
B213, 85 (1983). For a recent rederivation of the angular or-

dering, see R. Kirschner, in Proceedings of the 22nd Interna
tional Conference on High Energy Physics (Ref. 1), p. 98.
A. Bassetto, M. Ciafaloni, G. Marchesini, and A. H. Mueller,
Nucl. Phys. B207, 189 (1982); Yu. L. Dokshitzer, V. S.
Fadin, and V. A. Khoze, Phys. Lett. 115B, 242 (1982); A.
Bassetto, M. Ciafaloni, and G. Marchesini, Phys. Rep. 100,
201 (1983).
G. Marchesini and B. R. Webber, Nucl. Phys. B238, 1 (1984)

(hereafter referred to as MW); G. Marchesini, Acta Phys. Pol.
B15, 277 (1984); B. R. Webber ibid. B15, 617 (1984); M.
Ciafaloni, in Proceedings of HEP83, International Europhy-
sics Conference, Brighton, England, 1983, edited by J. Guy
and C. Costain (Rutherford Laboratory, Chilton, England,
1983), p. 199; B. R. Webber, CERN Report No. CERN-TH-
3713, 1983 (unpublished).

~~After this paper was first submitted for publication, two other
works discussing angle ordering have been circulated, R.
Odorico (unpublished) and T. Gottschalk, Report No.
CALT-68-1333 (unpublished). Neither of these uses a jet-
calculus approach.

~5A. V. Kiselev, IHEP Report No. 83-56, 1983 (unpublished).
~ F. J. Yndurain, Phys. Lett. 74B, 68 (1978).
'~L. M. Jones and L. R. Opsahl, J. Phys. G 12, 591 (1986).
~ We found that the accuracy in the integration was greatly im-

proved by changing the variable of integration from P to
lnP; this is important for the purpose of moment inversion.

' As a check on self-consistency in both the solution procedure
of the system of differential equations and the reconstruction
schemes outlined earlier, the results for o.

g and the various
propagators are shown at very low Q' in Figs. 6—10. The
favored propagator is well behaved down to the boundary at
4QO in both schemes. For both the unfavored and gluon
propagator moments, as Q decreases, a maximum is reached
in both schemes, from which the curves tend to drop off as
the boundary 4QO' is approached. The behavior near the
boundary is consi, stent with the boundary conditions imposed
on the propagators.


