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We evaluate in closed form the parity-violating one-loop six-point function with external gauge
bosons in type-I superstring theory. The amplitude is proven finite for arbitrary internal symmetry.
The axial-vector anomaly is obtained for general internal symmetry and is shown to vanish in the

case of SO(32).

I. INTRODUCTION

The current revival of interest in string theories as can-
didates for the fundamental description of the nature of
matter and its interactions is based on the many desirable
characteristics which string theories apparently possess.
The revival was initiated by the discovery of Green and
Schwarz! that string theories with certain internal sym-
metries have four-point functions which are finite at the
one-loop level. Another desirable feature of strings is that
they can be made to be supersymmetric. A third virtue
apparently associated with string theories is that they con-
tain modes which can be identified as gravitons; i.e., these
theories potentially contain a description of the quantum
theory of gravity.

Because these theories offer the promise of a
comprehensive description of all of the known interac-
tions? while at the same time avoiding the defects that are
inherent in pointlike gauge field theories, they must be
tested in every possible way. String theories have not yet
been developed to the point where their predictions can be
easily tested by experiment. Therefore, tests of these
theories must consist of searches for anomalies, incon-
sistencies, infinities, and other undesirable features of can-
didates for a fundamental theory of interactions. Some
work of this type has already been carried out. For exam-
ple, the parity-conserving parts of certain five- and higher
N-point functions have been shown to be finite at the
one-loop level.>*

Apart from the vanishing of the axial-vector anomaly
proven by Green and Schwarz,’ little, if anything, has
been published concerning the behavior of parity-violating
loop graphs in superstring theories. Indeed, the light-cone
gauge, in which most of the recent string calculations
have been made, seems at present to be inherently ambigu-
ous with respect to parity-violating effects. For this
reason, the calculation of Ref. 5 was made using the older
Lorentz-covariant formulation. In Ref. 5 although the
six-point function itself was not calculated, its gauge pro-
jection was shown to vanish in the case of an SO(32) inter-

35

nal symmetry. The proof was given using two different
regulator schemes which, although leading to a consistent
null result for SO(32), gave differing results for the value
of the chiral anomaly in the case of a general internal
symmetry. We obtain unambiguous results for arbitrary
internal symmetry.

In this paper we use a Lorentz-covariant formulation to
investigate the parity-violating part of the one-loop six-
point function with external bosons and internal fermions
described by a type-I string theory. We use the technique
developed in Ref. 6 for the general dual model. In Sec. II
we discuss the general case of parity-violating loops with
N external particles. In Sec. III we specialize to the six-
point function and obtain an expression for this function
in terms of Jacobi 6 functions. Finiteness is shown for ar-
bitrary internal symmetry, but SO(32) is required for
anomaly cancellation.

In the final section we discuss how our work affects the
status of type-I strings with an SO(32) internal symmetry
in particular and string theories in general as fundamental
descriptions of the nature of matter.

II. TRACE CALCULATIONS IN
PARITY-VIOLATING LOOPS

The calculation of the parity-violating loop amplitudes
in superstring theory differs in some respects from that of
the parity-conserving amplitudes. The planar amplitude
with N external gauge bosons with momenta k; and po-
larizations §; is defined in the F, formulation by

N
1
T [T — Ve (k;, 1)
iI=IlF0 P

p,0>

st[Ei;k,.] . .1

All= —d"p%(p,o

This is multiplied by the Chan-Paton internal-symmetry
factor for the planar loop
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N
Tr [ Aq,

i=1

Fp=

‘( TrA%) . (2.2)

The second factor in Fp, the trace of the unit matrix A9,
comes from the string end point to which no external
gauge bosons are attached. The amplitude contains a D-
dimensional loop momentum integration (D =10 in super-
string theory) and a trace over the higher modes of string
excitation.

The vertex VF2 and the inverse propagator F, are de-

fined in terms of the string coordinate
Qy(p,aya *)=(I0y —iPOp lnp

+3 —(a wpmanpT, 2.3)
n=1
the conjugate momentum

ty_. d t
P,(p,a,a )=1p$Qu(p,a,a ), (2.4)

and the Ramond I",‘

Cp,b,bN =y, +V2iy" 3 (b1 p"+blp=™) . (2.5
n=1
Namely,
k- -T(p)
174 k, —olk Q(p)_L& .
Fz( p) e \/il' (2.6)
and
1 dz
=— r . i
Fo="757 Gz Tul@Pul2) 2.7
The ten-dimensional Dirac matrices satisfy
(V¥ =—28uv » (2.8)
{?’pﬁ’“} =0. (2.9)

The T''! is constructed in analogy with Dirac’s ¥s to an-
ticommute with all T',:

(L', T,(p)}=0. (2.10
The explicit form of T'!! is
I''=yYexp |im i b"Tb"J . (2.11)
n=1
The operator F, satisfies
Fo=Lo=Py2/2+ 3 nla"t-a"+b""-b") 2.12)
A=l
and
{ Fo, Vi, k,p)} =V (k,p) (2.13)

where the vertex for gauge-boson emission from a fermion
line in the F; formulation is

Vi (k,p)=e*@P[L-P(p)—k-T(p)§-T(p)/2] . (2.14)

Using (2.12) and (2.13), the Fy’s in Eq. (2.1) can be pulled
to the right leaving one in the Ath position and discarding

terms which are negligible according to the canceled prop-
agator argument. Possible residual effects due to these
terms are discussed briefly in the conclusions. To
preserve manifest cyclic symmetry, we write the ampli-
tude as an average over the NV possible final positions of
the F, 0:
"2
Al _gp, U7 J 1

N p 2 N

Trr! ﬂV (kp,1)
LO Fy\Rh>

N
X 3 <p,0
h=1

<1

i=1

i#h

In (2.15) the first term in large parentheses is understood

to be inserted into the vacant hth position in the follow-
ing product. We write therefore

Vpl k;,1) > (2.15)

A== ay(h). (2.16)

In the following, we deal explicitly with the A =1 term,
resymmetrizing at the end. We make the usual substitu-

tion
1 Ly—1
==f0 dxx % .

Then, pulling the x,~L° (i >2) to the right, one obtains

(2.17)

apy=—LLarps? b3
><<p,0 TeT W O Fo Vg, (ky, 1)
N
X H Vpl(k,‘,[)i) p,0> , (2.18)
i=2
where
N
w
— 2.1
” 1;[ (2.19)
pi=Xy X, i>2, (2.20)
pi=1, 2.21)
W=X1X3" """ XN . (2.22)

As in the case of parity-conserving amplitudes, the loop
momentum integration in Eq. (2.18) is equivalent to a
trace over a zeroth mode with vanishing frequency. That
is, we write (2.3) as

0

Q.pa,ah=3 vl p"tetalp=") (2.23)
n=0
with
Cn+2¢) |
Vo= | (2.24)
then
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OFOVF kla HVF npx

(2.25)

After taking the trace in Eq. (2.25) including that over ex-
citations in the zeroth mode, one takes the limit €—0, re-
covering in the process the D-dimensional momentum-

conserving & function.

For the F, in Eq. (2.25), we will substitute the form

J

Trr M 'w™0(a",a

nT,bn’bnT)zzDﬁ(O ’ e

‘ngn penpn L nt
a'tat b’ T OO(a",a"T,b”,b”T)e“ a

(2.7), with P, given by Egs. (2.4) and (2.23). We write L,
in the form

(m+eartan + 2‘, mbripm (2.26)

The trace in Eq. (2.25) can be written as a vacuum expec-
tation value (VEV)

nt pntpent
eb b

|0) . (2.27)

The primed oscillators, which do not appear in the operator whose trace is desired, have the function of providing the
correct sum over normalized Fock-space states in the unprimed oscillators. The VEV in Eq. (2.27) is defined to include a
normalized trace over the Dirac matrices, i.e.,

(2.28)

Pulling some of the operators in Eq. (2.27) to the left, we have, for any operator O constructed from the elementary os-

(0] f(y)|0)=27P"Trf(y,) .

cillators,

Tr[«nwLoO(an’an’r’bn,bnT =2P/2(( | yllea "ame" <o —b" "
H (1—wn+ey—D> H (1
n=0 n=1

where

A= ‘;"HE ot (2.30)

P:a"u%:: , (2.31)

B"— lf;n +b'm" (2.32)

ﬁ:b"*—% (2.33)

We see that, unlike the case of the parity-conserving
loop, the fermionic oscillators as well as the bosonic oscil-
lators are singular at w=1. Note, however, that the
canonical commutation and anticommutation relations
are preserved. Without affecting the loop amplitude, one
can also write the more symmetric expressions

AN ()=

—dQ 2P~ (—elnw) Dg52 27_12—<o
i’ ]

In the vertices of Eq. (2.38), we have written 4,4 to
represent collectively fermionic or bosonic oscillators.
That is, the a ,'j and a ,'f of the original vertices have been
replaced by the 4, and A4, of Egs. (2.30) and (2.31) or
Egs. (2.34) and (2. 35 while the b, and b"T have been re-
placed by Bj, and B" of Egs. (2. 32) and (2.33) or (2.36)

— — — N —
v'"Pu(2,4,A)T,(2,B,B)Vf, (k1,1,4,4) [12 Ve, (kipi, A, 4)
i=

n ’lT "l* fl+ '71+
eaa eb b

Oa"+a' " a" bm b b7ty |0)

—w"P(0|y''0(4", 4", B"B") |0) , (2.29)
I
A"—W(a"+a'”w("+e’/z) , (2.34)
—w
P:(l—im(aﬂ_,_a:nw(nﬂ)/z) , (2.35)
—w
B":W(b”+b’"*w"/2) , (2.36)
—w
= 1
B”:W(b”—b'"w"/z) : (2.37)
—w

In this representation, the 4 and A are Hermitian conju-
gates.

In Eq. (2.29) bosonic and fermionic contributions to the
partition function are seen to cancel leaving only the
zeroth-mode (loop integration) factor. The effects of the
projection operator onto states of positive norm therefore
also cancel. Thus

o).

(2.38)

|
and (2.37).

The VEV of Eq. (2.38) is evaluated by pulling the
agy.ay',b,,b, to the right where they annihilate the vacu-
um. In the first step of this process, the generalized

plane-wave factors are separated out yielding
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U(1)=d 2272249 2‘:_ ( YUIP,(2)+ B, ()T (2)E, T(py) [[J<p, > . (2.39)
Here
N o oo 47
Ag:<_elnw)—0<o | ) o> , (2.40)
i=1
N — —_—
B,(2)= 21 ik; (0| P,(z,4,4)Q,(p;,4,4)|0) , (2.41)
i=
and
— k;-T(p;,B,B);-T(p;,B,B)
J(p;)=§;-Pp;,A,A)+§;-Blp;)+ p (_é’z) P . (2.42)
The VEV’s of Egs. (2.40) and (2.41) are expressible in terms of Jacobi 8 functions:
Af=(—elnw) P expl — (0| k;-Q(p;)k;-Q(p;) | 0) ]
i<j
1 Inw
=(—elnw) P exp | —k; k; — — InY(p; /p;,w)
I(I] P i | Zime 12 ¥les /P
—Ds2
T D ki-k-
= |% 5 [2 ki | TT ¢p; /pisw)™™ (2.43)
i<j
I
where with
. 0 ( ) . =7 N—1
Do) = — 2 i '1 vt 2.48) Ci(z)=iG(z/p;)—iG(z /py) . (2.52)
61(0]7) The evaluation of the amplitudes of Eq. (2.39) depends
and also on the correlations of two P, and of two I',,:
y=1nx 045y (O1Pulpid, AP (pj,d,4) | 0) =g, X (p; /pi,w) ,
27i (2.53)
= Inw 2.46
= (2.46)  (0|T,(p;,B,B)T,(p;,B,B)|0)=—2g, X (p; /pi,w) .
The correlation of a P witha Q is (2.54)
(0| P,(p;,4,4)Q,(p;,4,4)|0)=g,,Glp;/pjw) , The relation (2.4) implies
(2.47) XP(pj/Pi, w)=ip;—— a G(p, /pj,w) . (2.55)
where
For x| <1,
Gp;/pj,w)= —tp, lmlf(p /pi,w) . (2.48) @ n n
J 7o XP(x,w)z———l——}- 2 ,,x_":iw_/x_), (2.56)
1nw n=1 l_w"

Partial derivatives with respect to p; are to be taken at
constant w and vice versa. The properties of the Jacobi 6
function are such that

Gix Lw)=—Gx,w) . (2.49)
For | x | <1, we have the series expansion
1 Inx & x"—(w/x)"
Glx,w)=i | > —+ G :
(x,w)=i >~ Tmw nél - (2.50)
Using momentum conservation, we may write
N
Bu(z)_—_jg’2 k,-“Cj(z) (2.51)

The fermionic correlation in the parity-violating loop sat-
isfies

X8, w0) = —iG (x,w)+ 2% (2.57)
Inw

In D=10 dimensions, each nonvanishing term in Eq.
(2.39) is proportional to a vacuum expectation value of at
least 10I',. These are in turn each proportional to the to-
tally antisymmetric, Lorentz-covariant, ten-dimensional €
tensor



1912

L. CLAVELLI, P. H. COX, AND B. HARMS 35

oM
< P LT, (2 > S —0ey b o <o Il r.c )o> (2.58)
ji=1 [ FTY PN ip=1 ij<iz< - <ip o2 10 J=1i,,
The parity P, is given by
10
Pi= 3 (ij—j)=—55+ 21 (2.59)
j=1 ji=1
The vacuum expectation value without the y!!
M
(o Il TG O)= 3 (=1 I le, u, X8 /2, _pw)] (2.60)
J=1i0,, perms I=1, j,#i, A4 A

The summation is over all permutations of the 2M —10
indices p;—p; such that jy_, <jy. P is the parity of
the permutation.

It is convenient to introduce a shorthand notation for
the ten-dimensional € tensor partially or fully contracted
with Lorentz vectors:

10
I~

I=1

=€uyiy - mioF 1 Pouy Py - Prowy s

(2.61)

10
€ | [T P
1=3

EE”I#Z}‘J”‘/HOPB/‘L; cee PlO“lO .

An important property (we thank Professor S. Jones for
providing a simple proof of this identity) of the € tensor
for any vectors k and p; is

10 . 10
ke sz S (=)""pue |k IT p (2.62)
=1 i=1 I=1xi
J
II(I)ZLdﬂA ¢ dz 2[§m P:/z +B §,
—%B#(z)<0 "I, (z)¢, T

For B, (z), we may substitute Eq. (2.51).

(p1) H [k;-T(pp)&;- T

In the evaluation of Eq. (2.39), one encounters some easily
performed contour integrals around the origin in z.

dz Inp;
(z)=— —L 2.63
27riz ¢jl2) Inw ’ (2.63)
(Inp; )(Inp; — 2 Inp; — Inw)
$ L cyemiip /)= LR F
2 In“w
+w————a ln—wlp(pj/phw) .
w  Ylp/pi,w)
(2.64)

III. THE ONE-LOOP PARITY-VIOLATING
SIX-POINT FUNCTION

In the remainder of this paper, we will confine our at-
tention to the parity-violating six-point function. Further
investigation of the general N-point function will be left
for a future publication. With N =6, Eq. (2.39) becomes

(pi)le
=20

6
wé T1 k1§l|

(p)] (3.1)

)

In each term of the remaining VEV, a momentum vector k; appears twice.

Since the € tensor is totally antisymmetric, the nonzero terms from Egs. (2.58) and (2.60) are sharply reduced in number.

Upon evaluation, one finds

Al =1do 4P zdz,

6

6
-3G@ 3 (

i=2+#]

kj'gikiu

j=2
6
+ 2k

j=2

The identity (2.62) implies that

6
I1 %4
1=2

6 6
2 (kj'kigip_kj'gikiy)e

P=25j

kj-§16

6
;2 [é‘,-#XP(p,-/z)—Fk,-#C,-(z );,B(P, )]6

61CH(2) X6 (p1/2) = X0 (p1 /pj) e

Swe I

I=25i

6
ué I1 k1§1]

1 =210

6
—kjki&i )Xo (i /2) = X0 (pi /pp]e &y T kil
=250
6
I1%é J ] . (3.2)
1=2
k& |, (3.3)
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reducing the last two terms of (3.2) to a parallel double summation. The term in the first square brackets in Eq. (3.2)
may be similarly reduced using (2.63) and the fact [deducible from (2.40), (2.41), (2.43), (2.47), and (2.48)] that

d
Agkawnzm;&;Ag, (3.4)
—-dQ §
A= ; (A%1np;)e k
6 ( I i§ é'yP: np #?111—21# 161
_dz_ d.(l 6
2 4D 405 [Giuki-Blo) ki BoIC2)e |ty TT ki
2miz 2 = 1=25i
dz dQ 6
—$ AL 0SS Lk kigne w6 TT ki
2miz 27T 50y 1=24i
X [Xo'(pi /2)—X5 pi /pj) —Xo" (p1 /2)+ X5 p1 /pj)] (3.5)
|
As a perfect derivative, the first term in (3.5) gives a xO— dz iG(p: /0:)—iG(0: /o)
negligible contribution since the amplitudes 43 are de- Y 2miz { Z)[l pi/pj)=iGlpi/py)]
fined as analytic continuations from the region of space- [Xo pi/z)— Xé’(p,- /pj)
like Mandelstam invariants. This prescription is the basis Y (or /2) 4+ XM )
of the “canceled propagator” argument. Then, substitut- —Xo (p1/2)+Xo (p1/p;)]} -
ing into (3.5) the definition of the B(p;), we have (3.7)
AV =920 3 TxPpw) (3.6 : : :
6 =) 46 2 Ay ij \PW) . The required contour integrals are given by Egs. (2.63)
Lj=2 i#] and (2.64). Thus, also making use of Egs. (2.48) and
where (2.57), one finds
i) 5. Inp; 3 Y(p;/p;)
T;i(h)=k; ke, +k;-Ci€; (3.6a) XV = lw— X — J
y=lykiem +Ky-bie A L D S P R TR TP
6
en=€|&én I ki&i|, €=0, (3.6b) (3.8)
I=14ih
* The tensor T;;(1) satisfies
6 6 6 6
II «¢&i |, (3.60) > T,=3T,=3 T;=0. (3.9
=10 i,j=2, i#j i=1 j=1
and We may, therefore, write
|
dQ & Inp, 3
A ==—=43 T;(1) lw=— /pi) - )
° xj=§i#j R R 2 nw ' 3p; e, 7ps) (.10

The amplitude of Eq. (3.10) is nonsingular at w =0 behav-
ing as

dw 5

A ~=(Inw)~ (3.11)

To investigate its behavior at w=1, we make use of the
Jacobi transformation

R (Inp; )2ri /Inw
—=e np;

Pi= ’

42 /Inw

(3.12)

w'=e (3.13)

As w—1, w' goes rapidly to zero. The volume elements
are related by

dQ=dQ'r’ (3.14)

where d()’ has the same form in primed variables as dQ}
has in the unprimed variables [Eq. (2.19)].
The ¢ function of Eq. (2.44) satisfies

w(pj/pi,w)zrib\(p}/p},w') , (3.15)
where 7= (lnw)/27i and
Inx | Inw
~ 2mi | 2mi
Y(x,w)=—2mi (3.16)
Inw
0,10 —
! 2

A~
¥ has a power-series expression about the origin in w.
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Thus using momentum conservation, we have, for the 4 9

of Eq. (2.43),
—-D/2 ok
A%=|Z [ I 9 /piw) ™ . (3.17)
i oy
Equations (3.13) and (2.48) imply
(p,/p],w)——% (pi/pjw') , (3.18)

where

G(x,w)=_ixi1n$(x,w) ) (3.19)

dx

The behavior of X;; under the Jacobi transformation may
then be determined using

d 1 , 0 Inp’ , @

—_—=— P - 2
Yaw T2 Y e TP dp’ (320

and
|

6 6

E €|ud, H k (kj'gikip—kj'kigiy)zkl'gle
ij=2, i#j 1=25i

6
I1~é
1=2

Inp; Inp;
o 1 i (3.21)
Inw 7 lnw

Note that partial derivatives with respect to w are at con-
stant p and partials with respect to w’ are at constant p’.
Therefore,

1ls .,
Xij(pi,pj,w)=;Xij(p,-,pj,w ), (3.22)
where
o D' /piw’)
Xij(p;’p;’w’):w’_a;—ln" ’ “/},P] fj\ ’ ’ :
ow'  Yipy/p;,w (p;/pi,w’)
(3.23)

X is obtained from the X of Eq. (3.8) by replacing ¢ by @

and by discarding the G terms.
In deriving Eq. (3.23), we have also discarded terms in-
dependent of both p; and p; since
(3.24)

The vanishing of Eq. (3.24) holds for (unphysical) longitudinal polarizations &;, as well as for (physical) transverse polari-

zations. This equation follows from Eq. (2.62).

Collecting factors from Egs. (3.14), (3.17), and (3.22) and restoring the symmetrization of Eq. (2.16), the one-loop, pla-

nar, parity-violating, six-point function is

.dQ)
Ay =ITSD [2 k; ] IT ¥(p; /piw’

i<j

The integrand is seen to be finite and analytic at w’'=0,
since X vanishes at that end point. The planar parity-
violating amplitude is, therefore, finite by itself as is the
Moébius strip loop discussed below.

We turn now to the evaluation of the one-loop parity-
violating six-point function where the world sheet of the
circulating string forms a Mobius strip instead of an an-
nulus. With a single twist between emission of the sixth
and first gauge boson, the amphtude is obtained from
(3.6) by replacing w by —w in A and X, ;j except in loga-
rithms, all of which arise from zeroth- mode terms. In ad-
dition, the Chan-Paton factor of Eq. (2.2) is modified to
read

N
— (|Tr [T Aq,

i=1

In the Mobius loop, there is only one string boundary.
The extra minus sign here is characteristic of an orthogo-
nal group internal symmetry.2

The modular group transformation relating the
behavior of the Mdbius loop near w=1 to that near w=0
is

pi=exp |im oo | (3.26a)

6 6 R
kiki 1 PS> T, (hw' = 1n@(p} /p},w') .
=1 ij=1, i%) w

(3.25)
—
=Inp" /2mi , (3.26b)
W' =e™/ W (3.26¢)
'=1lnw" /2mi . (3.26d)
In terms of the double primed variables, we have
dQ=dQ"(2r), (3.27)
Yip;/pis —w)=(27')1//1\(p}'/p;-',—w") , (3.28)
Glp;/pi,—w)=(27)"1G(p} /p}, —w") , (3.29)
-D/2
Afipi,—w)= | T &° [zk,-]
k.- k.
XH¢PJ/P:,— )l J’ (330)
l<}
) 2 5} v d
_— " AN . 1
waw (27) w"= + P % | (3.31)
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Inp; np;’ In comparing Egs. (3.27)—(3.33) with their analogs from
=—(27)! : 3:32)  the planar I f f 2 i

Inw Inw” planar loop, we see an extra factor of 2 accompanying
each 7 multiplier except in Eq. (3.30). Thus when factors

. are collected to form the Mobius strip analog of Eq.

X.i(05,07, — )= R0t 0 —w') . (3.33)  (3.25), the 7’s cancel as before, leaving, however, an extra

y(pispyy —W 272"V PisPj factor of 2P/2. That is
J
A K 6 6 Il
ALy =2"""11dQ"s" (S k; | H¢(p;'/p;',—w")k'kf s % P Ty 5o ) /pf, —w'") (3.34)
h=1

i<j j=1
If we add all the one-loop graphs with an odd number of twists, the amplitude retains the form of Eq. (3.34) except that
the p;' variables undergo an ordered integration around the full unit circle. The integration ranges of the primed and
double primed variables are then identical so that, in adding the planar loop of Eq. (3.25) to the Mdbius loop of (3.34), we
assume we may suppress the distinction. (See, however, Ref. 7.)

The full six-point function in one-loop order with zero or an odd number of twists is, including Chan-Paton factors,

’ 6 6 A .
4y =12 1y e A, |57 [zk,-]% S S T (T [T $on /ehw) piw’)
i=1 B=1i,j=1, istj I<m
D/2 < TI ’ ' kl'km ’ a T ’ ’
222 IT Wi /i — w02 15/, — )

Jw

l<m
(3.35)

Using the expression in Eq. (3.35), we can now derive an expression for the anomaly for arbitrary internal-symmetry
groups. The anomalies associated with the parity-violating amplitudes cancel for an SO(32) internal symmetry. To see

this replace the nth polarization vector by its corresponding momentum

j=2 j i=l1 I<m

;nll_l;l’}cn T,'j(h)———enkj'k,ﬁh,, .
Then
4l S e, ‘m Trnk 8"[21(,.]
Sn—kn i=1
g, ’ ’ kl'k a S & ’ ’ 0
Pm/P1,W L — ik In¥ip;/pp,w LT
I1 Yo/, Nt mMw! > kik;InW(p;/ "ATrA”)
I<m dw ij=1, ij
A, , , kl‘km , aJ & ) ’ D /2
— 11 Yo /p1, —w’) w'o > kikiInW(p;/p;, —w')2 (3.36)
I<m i,j=1, i%j
And thus under the gauge projection §, —k,
Al e, "m Ter 0 [zk }w —aaw Trx")ln (i /03,011 m 2272 YT i /1, — )"""’"‘ (3.37)
i=1 <m l<m
dpj 0 D Vi /ot Y Km (T2 0__ oD/
L Tr [ A, |5 [zk,.] I %o}, /p},0) " “m(Tra0—2272) | (3.38)

The contribution from the w’=1 end point vanishes.
Equation (3.38) shows that the anomaly cancels for an
SO(32) internal symmetry in the critical dimension
D =10. The form of Eq. (3.38) is in agreement with that
of Green and Schwarz.

IV. CONCLUSION

In Eq. (3.35) we have a closed-form expression for the
one-loop parity-violating six-point function which is man-

ifestly finite for the arbitrary internal-symmetry group
due to the form of Eq. (3.23). This is the first proof of
finiteness for the parity-violating amplitudes.

In Eq. (3.35) there is no logarithmic dependence on w’,
as is probably required for factorization of the parity-
violating contributions to graviton exchange. In a future
publication, we will explore the questions of finiteness and
anomaly cancellation for the parity-violating N-point
function.

We have also shown, without need of diverse regulari-
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zation schemes>® (since the amplitude is finite), that the
anomalies associated with the annulus and Mobius strip
diagrams cancel for an SO(32) internal symmetry. This is
reassuring since for a general internal-symmetry group
different regularization schemes appeared previously to
result in different values for the anomaly.

Our results do not include possible effects from surface
terms such as canceled propagator terms which have been
discarded in accordance with usual practice in calculating
string amplitudes. Such effects, if nonzero, would not
modify our demonstration of finiteness for the parity-odd
six-point function but could affect anomaly cancellation.

We expect that unitarity requires the absence of such con-
tributions from the symmetrized amplitude.
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