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Quantum-mechanical structures of the SU(2) Skyrme model are examined in the framework of
the collective-coordinate quantization. This nonlinear model gives us a simple example of quantum
mechanics on a curved space. According to the procedure adopted by Sugano, Kimura, and others,
we treat the Lagrangian quantum mechanically from the beginning. Some remarks are given on re-
lations between Hamilton and Lagrange formalisms. To the classical mass term, a new one is add-
ed, which may play a role to stabilize the rotating chiral soliton.

I. INTRODUCTION

Some authors' have investigated the quantization of
nonlinear theories in quantum mechanics. The obtained
results can be applied to the Skyrme model so as to treat
it quantum mechanically from the beginning. The aim of
the present paper is to investigate the quantum structures
of the SU(2) Skyrme Lagrangian in the framework of the
collective-coordinate formalism proposed by Adkins
et al.

The usual way of treating the Skyrme model quantum
mechanically, which is essentially the same as that adopt-
ed by Adkins et al. , is as follows.

(i) Start with the Lagrangian

o (x)q,q ——exp[iF (r }v.x], x =xlr, r = x
~

(1.2a)

exists, and the collective coordinate A (t) is introduced by

U(x, t) =A (t)o(x)A(t)

(ii) After some "classical" calculations, one derives

(1.2b)

Lp'(ULp)= f L(ULp, x, t)d x

='[ ] y w'~' M, [F],—
2 8=1

where

(1.3a)

where UL, ~ (t3~U)U——and (f ),„~,=93 MeV. It is as-
sumed that the soliton solution o(x) of the hedgehog type

L (ULp, x, t) =
2

4
Tr( UL p UL p)

Tr([UL&, UL ] )
32es

m
Tr(U+ U —2),

4

w rg
8=1 2

a [F]—:3mf f dr r s 1—+ +F'

with s =sinF(r) and F'=dF/dr;

(1.3b)

(1.3c)

M, [F]:2rrf 2 f dr r2 +F—'2+ +2F' +2m (1—c), c =cosF .
7"

(1.3cl)

The function of F(r) is determined by making use of the
minimization condition of M, [F] with respect to F(r).

(iii) Define the momentum pb conjugate to qb [q 's

(b =1,2,3) are real parameters which are necessary to de-
fine an SU(2) matrix A (t), e.g. , three Euler angles]:

c)I.o
5'b= . b

Bq
(1.4)

(iv) Finally, require the canonical commutation relation
between [q ] and [pb ), or replace the classical Poisson-
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brackets relation with the quantum one. '

In the procedure described above there are some uncer-
tainties which have some connection with phenomenology
such as values of soliton masses and f . When we consid-
er some current by introducing an interaction to (1.1), it is
not so clear what form of the current is correct quantum
mechanically. As far as currents with the first order of
A (

—=dA /dt) or w are concerned, appropriate symmetri-
zation of "classical" expressions might lead to the correct
quantum-mechanical ones. As for the current of (w )

order, there is no definite procedure to get to the
quantum-mechanical form from the classical one. In or-
der to remove such uncertainties, we take the viewpoint
that the problem should be treated quantum mechanically
from the beginning. The quantization problem has an in-
timate connection with investigations" of phenomenologi-
cal adequacy of the semiclassical approximation. There
is a possibility that the first- and second-order A correc-
tions to this approximation have effects so large in some
kinds of matrix elements that phenomenologically favor-
able results ' obtained in this approximation are drasti-
cally changed. "' So, for the sake of getting more reliable
results, it seems also necessary to examine the quantiza-
tion problem. The present work is confined to considera-
tions of quantum mechanics of the "free" Skyrmion
model, and the structures of the electromagnetic and weak
currents will be explained in a subsequent paper.

Before going into detail, it is worth noticing the follow-
ing two points. (a) The hedgehog form of o(x), (1.2a), is
consistent with the Euler-Lagrange equation for the semi-
classical Skyrme Lagrangian, the solution of which mini-
mizes the classical mass M, [F], (1.3d) (Ref. 8). It is not
appropriate to take the hedgehog form of o(x) before
solving equations of motion derived from the quantum-
mechanical Lagrangian. Thus in the following considera-
tion we do not use any concrete expression of o(x), but as-
sume only the existence of a soliton solution and utilize its
general properties. (b) The second remark is concerned
with the form of A A, (1.3b). By using (ao, a) variables
introduced by Adkins et al. , where A =ao+ia ~, A A is
expressed as

II. FUNDAMENTAL ASSUMPTIONS
AND QUANTUM FORM OF SU(2)

SKYRME LAGRANGIAN

A. Fundamental assumptions

We start with the Lagrangian L (Utz, x, t), (1.1), of the
SU(2) Skyrme model. As already noted, A (t)[&SU(2)] is
specified by a set of real parameters [q;b=1,2,3], and
since At(BA/Bq') belongs to the Lie algebra of SU(2), we
can write

A = rg C(q), —
B (2.1)

Hereafter 8/Bq' is written simply as 8, when there is no
fear of confusion. We introduce the inverse of [ C, ] as

C ECb ——5E, C ECd ——5d (2.2)

From (2.1), it is easy to derive the useful relation

c' a,c,-c',a,c', = —~ „c, (2.3)

with the totally antisymmetric tensor EEgF.
The basic assumption is that the commutation relation

between q and dq /dt =q is given by

canonical commutation relations between them. In Sec.
III various relations are given which are useful for consid-
ering the quantization problem on a curved space. By em-
ploying these relations, in Sec. IV a remark on the relation
of the present consideration with that done by Kimura is
given, and the Hamiltonian form is discussed. In Sec. V
the Hamiltonian obtained in Sec. IV is proved anew to
lead really to Hamilton equations of motion for variables
(q,pb), and their connection with the Lagrange equation
is disussed. In Sec. VI, discussions and problems to be ex-
plored are given. Especially the physical effect of a new
mass term coming from the quantum-mechanical treat-
ment is remarked. In the Appendixes mathematical de-
tails are given.

A A =i (aoa~ a~ao)r~+—i(aXa) r+(aoao+a~a~) .
[q d, q ]=—iP' (q); (2.4)

(Here and hereafter we omit g~, and adopt the summa-
tion convention. ) The last term (aoao+a~az) is equal to
zero "classically" because of the constraint

f (q) is a function of only q's, which is to be determined
after the quantization condition is imposed. f' is sym-
metric under the exchange a~b owing to [q', q ]=0.

Here we newly define w as

A A =I=aoao+agag, w~—= —,
' fq', C, (2.5)

but not equal to zero quantum mechanically. This means
that the expansion of A A in terms of only ~z such as
(1.3b) is not correct quantum mechanically.

The remaining part of the present paper is organized as
follows. In Sec. II the fundamental assumptions and use-
ful relations for exploring the quantum-mechanical struc-
ture of Skyrme Lagrangian are given. Using the quantum
form of A A, we give explicitly the quantum-mechanical
Lagrangian in terms of q variables. After defining the
momentum operator p, conjugate to q', we require the

B. Quantum form of A A

First we define the quantum form of A =dA /dt as

A(q) = —,
'

f q ', B,A (q)] .

Then we have, from (2.1),

(2.6)

. a
instead of its classical form w =q C, . Equation (2.5) is
the suitable quantum form of m, which will be seen from
the consideration in the following subsection.
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i.e.,

, [—q',Ata, A] =AtA+ , [—q',At]a, A; Employing this relation and

[W f ]=—lc f Q f
we can directly confirm the following to hold:

(2. 12)

A A= —rEW + f—
2 8

where

(2.7a) a(o",x)ED
L(UL&, x, t)= w w +[(w ) - order term],

(2.13a)

f (q) =—c(q), c(q)b f(q)'" . (2 7b) where

Here we have used a(o",x)EE =f X(x)EDX(x)ED

[ q ', A ]= if' db—A . (2.7c) g(x)k g(x)k X(x)ED
4e,

It is easy to prove that A defined by (2.6) has the desired
properties:

XX( x )EG EFDJEHGJ (2.13b)

A A+A ~A =AA~+AA =0. (2.8)

Bo(x) t i
o (x)—:—rE((x)k B

Qx 2
(2.13c)

As remarked in Sec. I point (b), A "A is not expressed as
(1.3b), but has an additional term of SU(2) singlet. We
can use, however, effectively

eff
(2.9)

2 '
when the time derivative of U(x, t) is included only in
special combinations

U„( )=[a,U( )]U( )'

[Because of cro =I, (Bo/Bx")o. is expanded in terms of
only rE's.] Nonappearance of (w )'-order term in the
right-hand side (RHS) of (2.13a) is explicitly demonstrat-
ed in Appendix A. Similarly, the RHS of (2.13a) can be
written

L ( UE~, x, t) = —,q 'g(o;x),bq
. + [(q ') - order term],

(2.14a)

where

and

UEF(x) = U(x) BFU(x) .

The reason is easily seen from the following relations:

UL4 ———A (A A AOtA—ot)A
I

g(o;x) b= a(o.;x)ED—C, Cb

The proof is explicitly given in Appendix A.
Define

a(o')6EE =—f d x a(o",x)EE

Then we have

(2.14b)

(2.15)

=XBDAv.Dw AB

UEg ———A(o A Ao —A A)A
l

= —XBDA~Dm A )
B

(2.10a) L p ( UL &
):—f d X L ( UE &1x i t )

a(o. )

2
w w + [(w ) -order term],

and further

(2.16a)

+B ~+B0 = 2XBD &D

7 B —0 7"BCT=2XBD7D

(2.10c)

(2.10d)

Properties of XBD and XBD are summarized in Appendix
C.

where we have utilized the fact that ~B —o.~Bo and
7 B —c7 'TBo. can be expanded in terms of ~B's:

2
w w = —,

'
q 'g, b (q)q —U (q) .

Here, g,b(q) and v(q) are functions of only q's:

g,b(q) = f d xg(o.;x),b

=a(o)C, Cb

U(q) = ' f'"a (c„'f"a c ')
4

(2.16b)

(2.16c)

C. Canonical momentum p, fab(g C B)fed' C 8 (2.16d)

[w A]=f A
2

(2.1 1)

For the purpose of defining the canonical momentum
p, conjugate to q', we express Lagrangian (1.1) in terms
of q' and q

' variables. First note

As already mentioned in Sec. I we do not utilize any expli-
cit form of o(x) such as the hedgehog one, (1.2a), but only
assume existence of the soliton solution.

From (2.16a) and (2.16b), we can define the canonical
momentum p, which is conjugate to q' as
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c)Lp(UL )
pa — . 2 I'q ~gab }

Bq

D. Quantization conditions and a new mass term

(2.17)
bM(crh. g):—bM [F] written as

hM[F] = f dr r2s2
a [F]

We impose the canonical commutation relation

[p. ,q ]= —i&.

Note that for the time being we do not require

(2.18a)

2

X f.'+, 2F'+
2e l

(2.25)

[pa~pb]=0 ~ (2.18b)

and we derive, in this subsection, the Lagrangian Lp( UL&)
expressed in terms of q variables; that is, the (w ) -order
term in (2.16a) is explicitly given.

In order to do this, first we get a condition imposed onf' appearing in the starting assumption (2.4). From (2.4)
and (2.17), one obtains L (ULp, x, t) =L (Ugp, x, t) . (2.26)

with a [F]= a(crb, z), (1.3c).
It is worthy to remark on the choice of the starting La-

grangian. Although L(UL~, x, t)=L(U&~, x, t) is evident
in the classical theory, it is necessary to confirm whether
or not this equality holds quantum mechanically. We can
easily prove by direct calculations

[p. q'] = if"'(q)g—~.(q);
therefore,

fdbg g b

(2.19a)

(2.19b)

Needless to say, the form of EM(o ) is unique irrespective
of the starting SU(2) Lagrangians which are "classically"
equal to (1.1). Details are explained in Appendix D.

[q ',q'] = —ig",
db b

gda =&a

respectively. Furthermore we have

g = CaC~,ab 1 a b

a (cr)

IPb g

(2.20a)

(2.20b)

(2.20c)

(2.20cl)

Hereafter we write f' (q) as g' (q); then (2.4) and (2.19b)
are written as

III. PROPERTIES OF I C, }

In this section we summarize properties of C, 's and
O'E's for later use. In order to do this, it is convenient to
consider the relation of C, 's with the q-coordinate
transformation which induces some right SU(2) transfor-
mation of SU(2) group element A (q). Because the func-
tional form of 3 is invariant under such q transforma-
tions, we obtain the isometry condition' on the "metric"
g,b(q), from which useful relations are derived.

A. Relation between I C, } and q-coordinate transformation

From (2.7a) and (2.11), one easily obtains

A 3=—7.gw +l g 3l
2 8a(o )

(2.21)

Let us consider an infinitesimal SU(2) right transforma-
tion of A (q):

[w, A]= A
a(o) 2

(2.22)
A (q)+5~A (q) =A (q) 1+—

rsvp2 ' (3.1a)

By making use of these relations, one can obtain

Lp(UL&)= w w —[M, (cr)+AM(o)] . (2.23a)

with an infinitesimal parameter g . This transformation
is assumed to be induced by some q-coordinate transfor-
mation:

Here M, (o ) is the "classical" mass term given by

M, (cr)= —f d'x L(ULk,.x, t); (2.23b)
i.e.,

q' q"=q'+ 0'p(q)'s

A (q)+5gA (q) =A(q'+g p(q)' )s.

(3.1b)

(3.1c)
L(ULk, x, t) is defined by (Bl) in Appendix B. M, (o)
reduces to M [F], (1.3d), when the hedgehog form o(x)h,~
is substituted for o. AM(cr) as well as a(o)w w /2 in
(2.23a) come from

f 2

L ( UL4', x, t) —= Tr( UL4UL4)4

We have

Tg
p(q)'~c), A (q) =iA(q)

2

which leads to

p( q)'ri C(q), =6s

(3.2a)

(3.2b)
1+ Tr([ULk, UL4][ULk, UL4])

16e,
(2.24) therefore,

when (2.22) is employed. With the help of the expression
for bM(o ) given in Appendix B, we have

p(q)'z ——C(q)'ri . (3.2c)

The invariance of functional form A under the relevant
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q-coordinate transformations means the form invariance
of the "metric" (2.16c)

1
& "ab =g—

' &'fab = (&a'&b' &a "&b'»
4a (o.)

(3.10b)

g,b(q)=a((T)C(q), C(q)b

leading to the isometry'
d e

gab ('q ) gab (q ~,a ~,b gde
()q ()q

Bq" Bq'

The following relations are derived from (3.3):

g„.o,c', +g„.a„c,+c',a.g„=o,
b a + a b

(2.16c)

(3.3)

(3.4a)

(3.4b)

(3.10c)
3

R =R db=-
2a(o)

That R'd, b is not identically zero means that SU(2)
Skyrme model belongs to the so-called "irreducible case"
as first stressed by Kimura. Then we have to attach a lo-
cal Euclidean frame at each point in the q coordinate
space. We introduce the local coordinates [Q l for the
relevant Euclidean frame, and also the vielbeins Ih'B l

(Ref. 14), which satisfy

h (q)'Bh (q)'B = g "(q),
where

v, c.'=—a, c.'—r',.c,',
r ba = z g (~bgda +~agdb (ldgba )

(3.4c)

(3.4d)

h (q), h(q)b ——g,b(q) .

Here we introduce P~

PB= 2 [pa h Bl .

(3.11)

(3.12)

a,c.'-a.c,'=~,c, c.'.
From (3.5) and (3.4b), one obtains

1 D EVbC, = 2E'gDEcb C~

(3.5)

(3.6a)

or

VbC' =abc' +I 'bdc"g

[Needless to say, (3.4a) and (3.4b) can be directly derived
from (2.16c).] From Cb —— i Tr—(A ()b ArB), one obtains

Similarly, from

dQ = —,
' Idq', h,

we have

(3.13a)

Q'=
2 [q" hb'l . (3.13b)

All these quantities behave as three-vectors under the ro-
tations

h(q), ~h'(q)b =A Eh(q), (3.14)

1 D a= 2egDECb C E (3.6b)
with q-independent A E. Note that, using (2.20d), we can
obtain

We define in accordance with Kimura the spin connec-
tion A&Db as

QB PB (3.15)

Vbc'g ———AgEbc E,
therefore, in our case we have

1 D
AZE b = —,e&DECb

(3.7a)

(3.7b)

As a special case, it is allowable to choose

h (q)'B —— C(q)'B,
a(o)

h (q), =&a (o.)C(q),
(3.16)

B. Local Euclidean frame in q space

R'dabge+VaVbgd VbVagd ———0

with C Bgb, substituted for g„or directly from

(3.9a)

The Riemann-Christoffel curvature tensor R'd, b is de-
fined by

R'd, b
=().r'db —()b r'd. + r'.fr „,—r'bf r d, . (3.8)

From the integrability condition'

In the next section we explain the difference between this
choice and Kimura's, and investigate the quantization
condition and also what the "correct" form of the Hamil-
tonian is.

IV. REMARK ON COMMUTATOR [p, ,pb]

As mentioned at the end of the last section, we will ex-
amine, the commutator [p„pb] and the form of the Ham-
iltonian under the choice (3.16), and make a comment on
the difference between our and Kimura's procedures of
quantization in the "irreducible" case.

From (3.12), we have

a.a, C' =a,a.C',
one obtains

(3.9b)
[[PB,h, ],hb ]=0
[[PB,h. ],[PE,hb ]]=0

(4.1a)

(4.1b)

+~BE,b~DE, a ) D d

4 (gda ~b gdb ~
4a o. (3.10a)

which are obtained without recourse to [p„pb]. By mak-
ing use only of them, we obtain

[Pa,Pb]= 2 IPB, [PD&hb ]ha [PD, ha ]hb—
+ —,( I [PB,PD],ha hb l +h, [PB,PD]hb

which leads to + "b [PB~PD]"a (4.2)
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From (3.6a), for h, substituted for C, , the first part in
the RHS of (4.2) becomes

After using (4.7), we have

[Rii,Rp] = i—egnERg, (4.10b)

[PB~ABD,ohb ABD, bha

Kimura's assertion concerning [p„pb] is based on

0= [[p.,pb],f(q) l

=(A&E, hb Azz—bh, )h "zadf(q)

(4.3)

(4.4)

which is clearly different from (4.5). It is simply con-
firmed that the RHS of (4.2) with —Rii/&a(o. ) and
&a(o')Cb substituted for P~ and hb is equal to zero
when (4.10b) is utilized. Thus we can take (4.7) con-
sistently.

V. HAMILTONIAN AND EQUATIONS OF MOTION

[P&,Pd]=0 for any (B,D) . (4.5)

for an arbitrary function satisfying a, abf=aba, f. The
first equality is obtained from the Jacobi identity. Kimu-
ra derived the second equality by using (4.3) under the ta-
cit assumption

A. Form of Hamiltonian

From (4.9b), the Lagrangian (2.23a) is written as

Lo ———,Q Q —[M, (o )+bM(o )], (5.1)

h (q)b ~h'b &(q)+Eh (q——)b

and the corresponding transformation

A (q)BD, b A(q)BEA(q)EFbA(q)DF

ab&(q)as —&(q)DE

so that

(4.6a)

(4.6b)

On the basis of (4.4), Kimura asserted that, in order to be
safe to take [p„pb]=0, one has to perform a suitable lo-
cal rotation of h (q)b around a point P[q],

aLO
Pg ——

aQ'
'

because the formal derivative with respect to Q leads to

(5.2a)

Pa=Q' (5.2b)

which has the form just like the "standard" one. In the
0

present "irreducible" case, Q and Q are not commut-
able when B&D. The momentum P~, which is conjugate
to Q introduced formally, may be defined by

A (q)iiD b 0 (4.6c)
which is in accordance with (3.15). Thus, the Hamiltoni-
an of the present model is possibly given by

is realized in the very vicinity of the point P[q]; only in
this sense is one allowed to take [p„pb]=0. Note that the
derivatives of A (q)iiD b do not necessarily vanish, because
R'd, ~ does not always vanish in the "irreducible" case.

It is clear that Kimura's assertion is based on the tacit
assumption of (4.5), while (4.5) is no longer correct when
we choose (3.16). We can take, however,

A =P~Q —Lo

RiiRg+ [M, (o.)+KM(o )] .1

2a (o.)

Define H(q, p) as

H(q, p) =A—
(5.3)

(5.4)

(4.7)

with no contradiction, as will be seen from the following
remark.

Here we use for convenience Rz instead of Pz.
aH(q, p)

~Pa

aH(q, p)
q

=Pa
q

(5.5a)

Then H(q, p) can be regarded as a Hamiltonian in the
sense that we can prove Hamilton equations of motion

Ra —= —
2 [p.,C'a] (4.8a) under the condition

or Rg ——0. (5.5b)

p, = ——,
'

[ C, ,Rii j .

We have

(4.8b) Needless to say, this condition is consistent with H(q, p)
to be a Hamiltonian, because we have

Rz ———V a (o )Pz (4.9a) [R~,H (q,p)] =0 (5.6)

and also

a &
. a

LO Q = Rii .v'a (cr) a(o )

With the help of (2.3), one obtains

[Rii,RD ]= i &iiDERE—

(4.9b)

from the commutation relation (4.10b). Explicit deriva-
tions of (5.5a) will be given in the next subsection.

In the rest of this subsection, we mention the factor Z
introduced by Lin, Lin, and Sugano. For the sake of
avoiding confusion arising from various forms of Z, we
introduce V(q) defined by

+ ~ ([[p.,pb], C'aC'D l

+ c a[pa~pblc D+c D[p„pb]c ii) . thus

V(q) =——, [p„q '] — RiiR~;a(o)
(5.7a)

(4.10a) H (q,p) =IC —V(q), (5.7b)
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where

Ic= —,
'

[p. ,q') I,—. (5.7c)

In the following derivation we are allowed to use the com-
mutation relations

One can easily obtain
[p„q ]= i—5, , others=0, (5.16)

V(q)= (a, C s)(abC' s) .
4a (o)

(5.8)
and other equalities derived from (5.16). We will explain
step by step as follows.

(i) We adopt the notation
Utilizing (3.6b), we have

V( q) =Zo(q) ——,R

with

—I bZo(q) = f'".d I'b.g"''
4

(5.9a)

(5.9b)

while the first form of Z introduced by Lin, Lin, and
Sugano is given by

Z(q)= —
,', g"g"—g'(a.g,d)(abg f)

(5.17)

aH(q, p)
Bp

aP~=—-P
2 Qp

q

=
4 [ [pb, h EI,h'~I

(5.18)

aa
Bp

which means the differentiation of H with respect to p,
by keeping [q I to be constant. Then, one obtains

——,'a, (g' g' a g, ) ——,a, a g'

Employing

adg. b —r'd. g.b rbd. g"
one can show Z(q) =ZD(q) —R/4, i.e.,

V(q)=Z(q) .

Therefore, we see

H(q, p) =
2 [p„q 'I Lo —Z(q) —.

(5.10)

(S.1 la)

(S.1 lb)

(5.12)

[P&,F(q) ]= ih '~ a,—F(q),

[q,abh, I=[Q,h Dabh,

because

LHs= —, [[Q,h DI, abh,

(5.19a)

(5.19b)

=[QD hb a h, ]+—,'[[hb, Q ],a h, ],

which is the first equation of (5.5a).
(ii) It is convenient to utilize the following five formu-

las derived from (S.16):

It may be worthwhile to point out the following two
points about Z.

(1) With the help of (5.11a), Zo(q) is easily rewritten as

where the second term vanishes due to Q "=PD and
(5.19a);

Zo(q) = ——,'. g "(a.g"')(abgd, )

+-,'g "(a.g"')(a,g„,), (5.13)

l
l. PB ~ PD ] ~BDEPE ~a(o)

(5.19c)

which is equal to the second expression of Z given by
Sugano.

(2) By direct calculations we see the following identity
to hold:

= —,
'

[p, ,q 'I —Z = RARE, (5.14)
a(o)

where g =det[g, b]. Thus our Hamiltonian is written as

h a„h —h a„h = e hd b d b b

a(o)

p. = ,' [P„[PD,h 'D-abh. '] I,
because

p, =— [P~,h,
2 di

= —,
' [Ps,h, I [due to (5.5b)]

= —,
'

[PE, [q,abh,

= —,
'

[PE, [PD, h "Dabh, I I [due to (5. 19b)] .

(5.19d)

(5.19e)

+M, (o.)+AM(o) .

B. Hamilton and Lagrange equations

(5.15)
(iii) Next we examine aH /aq'

~
~:

aH(q p) l'

[ [ p ]
Bg

In the "irreducible" case, A (5.3) is the Hamiltonian
and we can derive (5.5a) from the Hamilton equations for
(Q,PD), as was done by Lin, Lin, and Sugano. As men-
tioned in Sec. VA we derive in the following the Hamil-
ton equations of motion (5.5a) under the condition (5.5b).
Instead of R.z, m, C, , and C'z, we use for convenience

Pz, Q, h's, and h, given by (3.12), (3.13b), and (3.16).

,' [Pa, [[PD,PE],h.—II

+ —[P~, [PD, [h, ,P~]] j .

Because of (5.19c),

(5.20a)
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first term of (5.20a)= eDJ3zIPs, IPb, h, I I = EDBE[[ B PE] h ]4 a(o) 8 a

[PD,h, ]4a

h DBbh, [due to (5.19a)]; (5.20b)

second term of (5.20a)= ——, {Pz,IPD, h "sBbh, ] I [due to (5. 19a)]

= ——,IP, IP, h B h, sI I
—,' [[P—,P ],hb B„h,D]

—p, — EsDF[PF, h "&Bbh, ] [due to (5. 19e) and (5.19c)]
4 a

—p, — esDEh "bBd(h Bbh, ) [due to (5.19a)]
4 a

—p, — e Bh, —,(h" Bh —h" Bh )4va

—p, + h DBbh, [due to (5.19d)] .
4a

(5.20c)

Thus we obtain the second equation of (5.5a).
In the end of this section, we add a remark on the

Lagrange equation, according to the procedure given by
Lin et al. The Lagrangian (5.1) is written as

BH(q,p)

Lo= 2 q g bq u(q) [M (o)+AM(o')]

with u(q) given by (2.16d). From

(5.21)

we have

[ —,
'

Ipb, q ] —(Lo+Z)]
Bq'

P

(5.22a)

+a . , „a
2 Bq

= —[ —,g (B,gbd)q +B,( —u+Z)] ——,(B,g )By(g"'Bdgb, )

B(L +Z)
Bq

——,(B,gy )By(g 'B g, ), (5.22b)

which leads to

B(LO+Z)

Bq'
B(LO+Z) = —,(B,gy )By(g 'B g, ),

Bq'

(5.22c)

or

d ~ID
dt gq~

BI 0

Bq' , + —,
' (B,g )By(g"'Bdgb, ) . (5.22d)

VI. DISCUSSIONS AND FURTHER OUTLOOK

We have examined, on the basis of the collective-
coordinate formalism, the SU(2) Skyrme Lagrangian,

which gives one of the simple examples of quantum-
mechanical systems on a curves space. We have treated
quantum mechanically the collective coordinate from the
beginning. The SU(2) Skyrme model amounts to one of
the "irreducible" cases as remarked by Kimura. It was
pointed out that in our case the standard form of the La-
grangian L 0 ——Q Q /2 —W ( Q) and Pz ——Q are ob-
tained already at early stages, and that we can impose
consistently the commutation relation [p„pb)=0. We
have shown that the last point is different from Kimura's
assertion, since his tacit assumption [P&,PD]=0 for any
(B,D) is not valid in our case.

As noted at the end of Sec. II, the "classical" mass term
M, (o) is modified due to the appearance of AM(o') as a
quantum effect. For the hedgehog configuration
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o(x) =o(x)z,d, bM(cr„,d) =—hM[F] given by (2.25) is
rewritten as

b, M[F]= + f dr s
4a [F] a [F] e,

(6.1)

The eigenvalue of Hamiltonian (5.4) for I =J =1(1+1)
state is

Ht[F] =M, [F]+b,M [F]+ l(l + 1 ) (6.2)

We require the variational condition so as to minimize H~
with respect to F, and obtain

2~+ dr S
5F a[F]~ 4 a[F] e, ~

1(1+1) 5a [F] 1 4~+ 2 2S C=O,
a[F] e,

(6.3a)

where

5M, BM, d BM,

aF(r) dr aF(r)' (6.3b)

r F~'+2rF~' —2F~ —p~ r F~ ——0,
where

(6.4a)

a[F] 3e a[F(]

21 (l +1)
3

(6.4b)

Since

pt o(m ~=0)= 8~ oo

drr s
a [Fo]'

As in Ref. 15, we can linearize (6.3a) due to the boundary
condition F(r~ oo )~0, obtaining the following differen-
tial equation which determines the asymptotic behavior of
Fwith I:

the rotating chiral soliton. For a reasonable trial form of
F&&z(r), one can confirm that J [F&&2] is positive.

We have shown that H(q, IJ), (5.4), can be regarded as
Hamiltonian in the sense that it leads to Hamilton equa-
tions. While, even when the starting Lagrangian is the
same classically, different Hamiltonians including a term
proportional to the curvature are proposed. ' This prob-
lem will be discussed elsewhere.

In order to examine the static properties of the nucleon,
we have to introduce the electromagnetic and the weak
current as well as the baryon-number current, and to ex-
press them in terms of RB's and D' (A)BD's, where
D (A)BD is defined by

D' (A)BD ——Tr(A rBArp)/2 . (6.6)

There exist some problems: e.g. , ambiguity of current
forms, the conservation law of the electromagnetic
current, and the existence of the hedgehog configuration
o (x)h,d.

The extension of the present formalism to other cases,
especially to the SU(3) case, is worthy of examination.
Some trouble may arise due to the Wess-Zumino term. '

In separate papers, we will investigate these problems.
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APPENDIX A: NONAPPEARANCE OF (w )'-
AND (q ')'-ORDER TERMS IN L ( UI ~.,I, t)

Employing XBE and gk defined by (2.10c) and (2.13c),
we rewrite L ( UL4, x, t), (2.24), as

L(Ut 4, x, t)=(YB'EKJ+YBEKJ)Tr(Aw w rKTJA ),(&) (2) B E

(A1)
where

X f +,Fo2 1,2

e,
2

fm
~BE,KJ =

4 +BK+EJ (A2)

(6.5a)

we see that, even for m =0, the solution exists which
behaves asymptotically like Fo(r)-exp( —IMor)/r. Fur-
ther we have

(2) 1 F H
YBE KJ =

2 gk gk XBDXEGEFDKEHGJ
16e,

(A3)

Substituting w A f Arp/2 and A w— f rpA /2—
for Aw and w A t in (A2), we obtain

1 4m
p, t ~ J2 (m —+0)= J[FiJ2]a [Fl/21' 3f e, '

with

J[F]—:f dz z s ( 1+F ' —s /z ),

(6.5b) Tr(Aw rKrJw A )

2w Bw E$ ) (fBMw E+w Bf™)e
+ 2f' f (&MK6JN nMJ't'JKN+fMN~KJ) i

(A4)
z =f e, r, F(z) =F(r), s =sinF . (6.5c)

Therefore, as already pointed out in another paper, ' the
new mass term may play an important role in stabilizing

from which we easily see that the (w ) -order term in
L ( Ut 4, x, t ) is given by (2.13a) with (2.13b).

The (w )'-order term in L ( Ut 4 ,x, t) is'
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2

( YBEKJ+ YBEKJ)( i—)(f w +w f )EbtKJ ———g YBEKJ I[w,f ]—[w,f ]IehtKJ
l i=1

2

YBE,KJ f ( Cb ddf Cb ddf )&MKJ ~

i=1
(A5)

Here we have utilized the symmetry property

YBEKJ(x)= YEB JK(x), i =1,2 (A6)

and (2.12). Thus, we see that no (w )'-order terms appear in L (UL&, x, t). As will be seen in Appendix 8, (A5) vanishes
after that quantization condition is imposed.

Similarly, we can prove (2.16b) by utilizing the symmetry property

a(o-, x)BE=a(o;x)EB

We have

,'a(cr;—x)BEw w = ,'a(o-, x)—BE q Cb Cd q "+ ,'f 'f (d,—Cb )((3sCd )+—[ —q Cb f 'd, Cd +f '(d, Cb )Cd q ]2

(q )'-order terms

a(o;x)BE[q' Cb'f"d, Cd ],
reducing to a (q ") -order term.

(A8)

sin(2F) sin(2F)x k Bk+ +2F XBXkr r

2$+ EkEB XEr (84)

APPENDIX B: FORMS OF MASS TERMS
IN LO(UL )

First we give the "classical" mass M, (o ) coming from

g(h)(x) Bg(h)(x) B 4
$2

r 2

2

+F X~ Xk
r

L( ULk&x, t) —=
2

4
Tr(ULkUL )

Tr([UL. , ULk] )
1

32es

+ 4m f Tr(U+Ut —2) .

It is easy to confirm

M, (ob,d)=M, [F] [Eq. (1.3d)]

to hold.
Next we consider the new contribution Mlf(o) from

L ( UL 4', x, t), (2.24), to the mass term. As shown in Sec. II,
we can take

It is easy to derive f'"=g' = C'BC B [Eq.(2.20c)]
a((r)

(87)

2

L (ULk, x, t) = —
8 gk gk

f~

64e,

M, (o):——I d xL(ULk, x, t) .

(82)

(83)

after imposing the quantization condition (2.18a). Then,
from (2.7b) one gets

BEf = &BE .
a(o) (88)

We see, therefore, that (A5) vanishes and that the last
term on the RHS of (A4) is equal to

If we define g'")(x)k as g'k for the hedgehog configu-
ration o(x)h,d, we have

1

2 (8BK~EJ 8BJ8EK +8BE~KJ )
2a(o)

which leads to

(89)

b, M(o)=
2 J d x[(YBEBE—YBEEB+YBB'EE)+(Y ~Y ' )] .

2a (a) (810)
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As already given in Ref. 16, hM[E] for the hedgehog
configuration becomes equal to (2.25).

APPENDIX C: PROPERTIES OF XgD, XgD,

kk kk XBDXED kk kk XDBXDE

kk kk XBDXED
B E

gk XBDEFBD = —gk XBDEFBD

(C13)

(C14)

XBD = Tr[(rB —a rBG )rD ]=XDB (Cl)

We can prove

(i) From the definitions (2.10c) and (2.10d), we obtain
The last formula is easily proved when (C8) is utilized.

APPEND IX D PROOF OF L ( UL 4j I f) L ( Ug 4~ x t)

We define

XBDXED XBDXED XDBXDE

by making use of (Cl) and

1

XBD = — XBETr(N rE~rD )

(C2)

(C3)

f 2

L ( UR 4 x t ) = Tr[ UR 4 UR 4]4

+ 2 Tr[[ URk, UR4] ] .
1 2

16e,
(Dl)

We can also derive

1 (s)
XBDXED 7 (XBE+XBE) XBE (C4)

Then a(cr, x)BE, which is the coefficient of w tc /2 in
L( UR4 ,x, t), 'is written, corresponding to (2.13b), as

where XB'D is the symmetric part of XBD,
XBD ——(XBD+XDB)/2. From (C3) we have

XBD XBETr[rE(rD 2XDFrF)]

( ~ x )BE f XBDXED + kk kk XBDXEGEFDKEHGK
4e 2

(D2)

= —XBD +2XBEXDE, (C5) Because the last term is rewritten as

leadinp to (C4). Of course, the above equality is satisfied
by XBD (=XBD for the hedgehog o.h,d); 4e,

( gk (k XBDXED —g k XBDgk XEF )

( Jg)
XBD s (cTBD XBXD ) +scxEEEBD (C6) F F D F

4e 2 (gk gk XBDXED —gk XBD)k XEF)

(ii) Next we consider properties of gk defined by
(2.13c) and gk, defined by we easily derive

Cr (X) k
———7.Bg'(X)k

Ocr(x) i

Bx

We may employ, if necessary,

0 =&0+ E &BVB

with

(rip) +mB~B ——1 .

It is easy to confirm

Furthermore, we have

4 XBE= 2(4 —4)

(C7)

(C9)

a(o"x)BE =a(o-;x)BE . (D3)

X [(YBE,BE BE,EB + BB,EE )
3 ( ] )' ( ] )' ( ] )'

2a(o )

+( Y ) YI2) )]

(D4)

where

2
(])' J K

YBE,KL =
4 XBKXEL (D5)

Similarly, the contribution to the mass term from
L(UR4, x, t), b,M(cr)', is proved to be equal to XM(o)
bM(o )' is written as

ki XEB . —

This is because

(2)' 1 iF iH
BE,KL 2 kk kk XBDXEGEFDK eHGL,

16e,
(D6)

Tr(orEorB )gk
—= 2X'EBg'k +g'k—(Cl 1)

It is needless to mention that the hedgehog g'k'"', (B4),
satisfies the above equations.

We add some formulas for a later convenience:

Because of (Cl) and (C2), the Y"' contribution is equal to
Y"' contribution to b,M(o). The same situation holds
also for the Y' ' contribution, because

( YBE,BE YBE,EB + YBB,EE ) 1«(2)' (2)' (2)' 2

kk kk XBDXEG ( EFDB EHGE EFDE EHGB )

+ (kk gk XBDXBD kk XBD(k XBF )

kk fk XBD kk kk XBD kk kk XDB (C12)
all terms are equal to the corresponding ones without
primes.
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