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Structures of gauge and gravitational anomalies are analyzed assuming arbitrary local, possibly
derivative-type, couplings between spin-% fields and general Bose fields in the theory. In 2n-

dimensional spacetime we show that inclusion of such general local couplings does not lead to any
new spinor loop anomaly, besides the ones already identified keeping only minimal gauge and gravi-
tational couplings to spin-% fields. In addition to the proof based on regularization, a topological

understanding of the results is provided as well. Also discussed are physical implications of our

findings.

I. INTRODUCTION

During the last two decades gauge field theories have
emerged as the natural framework for the description of
elementary-particle dynamics. Indeed, from the standard
SU(3) X SU(2) X U(1) model of strong and electroweak in-
teractions to a majority of attempts which are directed to
go beyond it, the gauge-theory framework has been used.
Besides, gravitational interactions seem to also be based
on the gauge principles of general coordinate invariance
and local Lorentz invariance. In the development of
gauge theories, chiral anomalies' associated with quan-
tized spinor matter fields have played some important
roles ever since their discovery. This is because global or
gauge symmetries of the classical action may not be main-
tained in the full quantum theory when anomalies are
present, and hence their presence can lead to significant
physical consequences.>~* The chiral-anomaly problem is
not restricted to four spacetime dimensions. With a re-
vived interest in the Kaluza-Klein idea recently, people
have analyzed the structure of gauge and gravitational
anomalies also in general 2n-dimensional spacetime.” As
another important development, we should here mention
recent works by Zumino and others;®~!° they have made
it possible to understand the expression for spinor
anomalies using topological arguments and the index
theorems'!!? well known in mathematics.

In the flat four-dimensional spacetime the full general
expression for Abelian or non-Abelian anomalies was first
obtained by Bardeen,'* through a direct Feynman-
diagram analysis of the one-loop fermion effective action
in the presence of arbitrary external gauge, scalar, and
pseudoscalar fields. He found that all apparent anomalies
involving the scalar and pseudoscalar fields could be re-
moved by appropriate local counterterms and therefore
should be regarded just as artifacts of the particular com-
putational (or regularization) method to evaluate the dia-
grams. Recently Bardeen and Deo'* showed, again by
direct Feynman-diagram analysis, that there exists no
genuine anomaly involving tensor fields either. Then
without resorting to any detailed perturbative calculation,
two of us!® have been able to generalize this result further:
of all possible nonderivative couplings of the spinor field
with arbitrary external Bose fields considered in 2n-
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dimensional spacetime, only the pure gauge field
anomalies amount to the true obstruction to gauge invari-
ance and no genuine anomaly involving non-gauge-type
external fields exists.

In the present paper we shall expand and generalize the
work of Ref. 15 in several directions. First, we do away
with the nonderivative coupling restriction—we consider
all possible spinor loop anomalies, assuming arbitrary lo-
cal couplings between the quantized spinor fields and gen-
eral external Bose fields. Couplings may be of a non-
renormalizable type and interaction terms involving (co-
variant) derivatives, which act on the spinor fields, are
also allowed. We establish that none of these additional
interactions bring in new anomalies; viz., the anomaly
determined keeping only minimal gauge couplings (with
the given spinor fields) is all. Also discussed in the
present paper are possible spinor loop anomalies when
such general spinor field theories are considered in curved
spacetime (with or without torsion). We again establish
analogous statements concerning the effects of additional
local couplings on the gauge and gravitational anomaly'®
structure of the theory. To reach these conclusions, a cer-
tain kind of regularization can be used judiciously as in
Ref. 15. After presenting this method, an alternative
proof along the line of Ref. 16 (together with some topo-
logical considerations) will be given in addition.

This paper is organized as follows. In Sec. II we
analyze spinor loop anomalies in the context of a general
local fermion Lagrangian in flat spacetime, and prove our
assertion by employing a suitable regularization. In Sec.
IIT we consider possible spinor loop anomalies in curved
spacetime in the same vein. In Sec. IV we present our al-
ternative proof (for spinor field theories set in flat Eu-
clidean spacetime). Our conclusion is also examined from
the viewpoint that sees the gauge anomaly as the manifes-
tation of a topological obstruction to defining a gauge-
invariant effective action. Finally, we discuss our find-
ings and elaborate on their physical implications in Sec.
V.

II. ON SPINOR ANOMALIES IN FLAT SPACETIME

In flat spacetime, let us consider a theory consisting of
a quantized spin-% field (with arbitrary internal degrees
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of freedom) which has general local couplings to various
external Bose fields and self-couplings. The Lagrangian
density may be assumed to have the form (in D =2n di-
mensions)

L(x)=P)[iy*D, + f(D,, T Y(x)+L'(x), (2.1

where (1,1) are dynamical freedoms of our theory and we
shall take them to be 2P/2-component Dirac spinor fields.
Here, D,=3d,—iB,(x) is the gauge-covariant derivative,
I'(x)={TI*(x)} denotes collectively various possible exter-
nal Bose fields (no restriction on spins) other than B,,, and
f(D,,T(x)) is a differential operator of the general form

f(D,,T(x))= ag(T'(x))+a,(F(x)*D,,
+ay(TCOMD, Dy + - - -

+a ()" %D, D, D, . (2

In Eq. (2.2) coefficients a;(I'(x))’s can have polynomial
dependences on I'(x) and will be matrix valued in the
internal and Dirac spin spaces in general. Any local in-
teraction term which cannot be represented by the first
term in the right-hand side of Eq. (2.1) (e.g., four-Fermi
interactions) will be included in the piece .#’(x). Note
that .Z”'(x) can have dependences on external fields B,(x)
and I'(x) and may involve covariant derivatives too. The
gauge field B, (x) will have the structure

B”(x)= V#(X)X1+A”(x)‘}/o+1

D—1
=B(x)T* |ypa=—i"*'"I[ v*|, 2.3
n=0

where V,(x),4,(x) are some Hermitian matrices purely
in the internal symmetry space (and hence not involving
Dirac-spin indices) and yp . is the D-dimensional coun-
terpart of the usual ys in four spacetime dimensions.
Gauge group generators 7%, defined through Eq. (2.3),
may involve yp 1 (while B}, do not).

We want to study the quantum failure of gauge invari-
ance in the theory given above. Our Lagrangian (2.1), as a
c-number Lagrangian, will here be assumed to possess
“gauge invariance” in the sense that it remains unchanged
if we make infinitesimal field transformations

Sap(x)=iA(x)¥(x) ,
Sat(x)=ih(x)y°Alx)y°

with gauge function A(x)=A%x)T" and simultaneously
consider external field variations [6,B},(x),8,I""(x)] in ac-
cordance with

8B, (x)=08,A(x)+i[A(x),B,(x)]=D,Ax) ,
8ALY ar (T(x))* 1 e
=i[Ax),y%a, (T H ] (k=0,1,2,...,r).

(2.4)

2.5

Fields belonging to I'(x) will transform gauge covariantly
(or gauge invariantly, in special cases) since I'(x) consists
of “non-gauge-type” external Bose fields only. A (gauge-
covariant) field strength constructed out of B, may well
be included in I'(x); it can be regarded just as another

external tensor field in the theory. Also note that we have
written our Lagrangian using Dirac spinors (rather than
Weyl spinors). This is no loss of generality since any
Weyl spinor may be paired without altering the physics
content of the theory with a noninteracting (i.e., free)
opposite-chirality Weyl spinor to form a Dirac spinor.
[Note that Majorana-mass-term-like couplings may be in-
corporated as a part of .#”'(x) in the Lagrangian (2.1).]

With the general form (2.1) as the spinor-field-
dependent part of the full Lagrangian, the theory will be
nonrenormalizable except for very special cases. For re-
normalizable theories involving Dirac spinors in D =4,
for instance, we may set .£’'(x)=0 and assume the struc-
ture

aog(D(x))=my+S(x)+iysP(x),

(2.6)
a(I'(x))=0 fork>1,

with matrices S(x) and P(x) describing scalar and pseu-
doscalar couplings, respectively. But, as emphasized by
various authors® who studied chiral anomalies in higher
spacetime dimensions, renormalizability of a theory is
really a separate issue from the gauge consistency of a
given theory. Even in D =4, it is a perfectly legitimate
question to talk of possible chiral anomalies and gauge
consistency with effective field theories which need not be
renormalizable. In D =4 the simplest possible nonrenor-
malizable interaction will have the form of antisymmetric
tensor couplings,'*i.e.,

Y(x)o,, HY(x)P(x)

with tensor field matrix f*"(x)= —f**(x). (Note that in
D =4 we have the identity yso**=+ie*"*%5,5) Beyond
that, one can imagine derivative couplings [i.e.,
a; (I'(x))+£0 for some k >1 in our notation], four-Fermi-
type interactions, etc. We want to know whether these
nonrenormalizable interactions can lead to new chiral
anomalies. We believe that anomalies and the gauge con-
sistency of a theory are more fundamental issues than
smooth ultraviolet behaviors of the theory.!” It is with
this philosophy that we have kept totally general local
couplings between external Bose fields (of arbitrary in-
teger spin) and spin-7 fields in our Lagrangian (2.1), put-
ting aside the renormalizability issue. We have taken all
Bose fields of the theory to be external here since quan-
tum nature of those variables plays only a secondary role
in studying spinor anomalies.!® (See also the second para-
graph below.)

In the presence of external fields B, (x) and I'(x), we
may define the effective action functional W[B,,I'] for-
mally by the path integral'®

eiW[B“’r]:f [2 Y[ D] exp 2.7)

i [ dP f(x)] .

When expanded as a power series in B, and I', W(B,,I')
will play the role of a generating functional for (unrenor-
malized) connected spinor loop Feynman diagrams with
any given number of external B, and/or I' legs. When
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the Lagrangian includes only terms bilinear in spinor
fields, W[B,,I'] may be identified with the spinor one-
loop effective action (see Fig. 1). But, if we allow interac-
tion vertices involving more than two spinor fields
through the piece .Z'(x), multiloop contributions to
WI[B,,T'] should be also considered and some typical
Feynman diagrams in that case are shown in Fig. 2.
Naively, gauge invariance of our Lagrangian . (x) would
imply

3,WI[B,,T']=0 (2.8
for infinitesimal external field variations
(85B,(x),8,T"(x)) represented by Eq. (2.5). But, for our
general Lagrangian (2.1), the functional W[B,,I'] is ill
defined without being properly regularized and the rela-
tion (2.8), inferred at purely formal level, may not bear the
truth. Representing the properly regularized effective ac-
tion functional by Wg[B,,I'], we may here define the
anomaly o/ g[B,,I;A] simply as
SWg[B,,T']

8B, (x)

dWg([B,,T']

dI(x)

=/ g[B,,T;A], 2.9)

8AWr[B,,T1= [ dPx | (D,A)x)

+8Ar\fx)

viz., the anomaly represents the obstruction to gauge in-
variance of the regularized effective action.

In the full quantum theory where B, and T are also
dynamical degrees of freedom, we will have to integrate
the expression (2.7) further over field configurations of
B,(x) and T'(x). (Note that, as far as integration over
Fermi field variables is concerned, fields B, and I' may
be regarded as “‘external” even in this case.) Here,
without gauge invariance for the spinor effective action
Wr([B,,I'], we cannot secure that only transverse parts of
gauge fields B, (together with T') make physical degrees
of freedom. If Wi[B,,I'] has an anomaly under gauge
transformations, the unitarity of the theory will be thus in
jeopardy; i.e., the theory becomes inconsistent. We may
also use fields B, and T for a different purpose, i.e., to
study possible anomalies in conservation laws? and in
current algebra.* Let us describe this application briefly.
Among the fields represented by B, and I', we may re-

\
)
!

4

Wpr,I‘lL,=o = 2

~q, ()
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a,(rm)

B,  am(m)

FIG. 1. Diagrammatic representation of the effective action
with .#’(x)=0. Solid lines represent usual free-fermion propa-
gators.

FIG. 2. Examples of multiloop contributions to W[B,,T']
with .£"(x)5£0.

gard a part of them as nondynamical external fields (or
spectator fields) in the full quantum theory context and
use them just as external sources for various kind of
“currents” (involving spinor fields). Here, especially im-
portant will be currents directly related to exact (or softly
broken) global symmetries of the dynamical part of the
Lagrangian; for them we would have conservation laws.
Matrix elements involving those currents can be related to
functional derivatives of the effective action with respect
to appropriate spectator fields (e.g., {8Wx[B,,I']/
8B, (x)}) and, as results of global symmetries in the La-
grangian, they are subject to so-called Ward-Takahashi
identities. Here again, naive conservation laws and naive-
ly inferred Ward-Takahashi relations (for correlation
functions involving a multiple number of currents, espe-
cially) may break down due to chiral anomalies. The
correct relations incorporating spinor anomaly effects can
be easily found with the help of the anomaly equation
(2.9) (or its integrated form in the sense of Ref. 4), taking
A(x) to be a local generalization of phase parameters con-
nected to global symmetries in question. Note that con-
servation law anomalies and current-algebra anomalies
can be extracted from the same equation determining the
gauge consistency of a theory, Eq. (2.9); the anomaly
equation has dual applications. In this paper B, will be
referred to as “gauge fields” regardless of its eventual role
in full theory.

Our goal is to identify the full expression for
o/ g[B,,T;A], assuming the general spinor Lagrangian
(2.1). Only the expression in the limit of sending away
regularization is of interest, and any regularization
preserving the locality of the theory and Poincaré symme-
try may be used for calculation. According to our defini-
tion of the anomaly, it will in general depend on the regu-
larization procedure  chosen. However, once
o/ r[B,,T;A] has been identified with the help of any
particular (well-defined) regularization, different choices
of regularization can be accounted for by allowing arbi-
trary local counterterms to the regularized effective action
Wgr[B,,T']. Indeed in Ref. 13 Bardeen first used a partic-
ular symmetric point-splitting method to compute
anomalies in the presence of general renormalizable cou-
plings in four dimensions [i.e., for the case (2.6), with
IN(x)=(S(x),P(x))]. The resulting anomaly expression
involved not only gauge fields B, but also scalar fields
S'(x) and pseudoscalar fields P(x). But Bardeen was able
to eliminate all S(x) and P(x) dependences from his
anomaly expression by exploiting fully this freedom of
adding local counterterms to the effective action; the
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genuine anomaly involves only gauge fields B, and S(x)-
or P(x)-dependent terms in the anomaly were merely ar-
tifacts of the regularization chosen. [By the same strategy
it has recently been established'* that including additional
tensor couplings of the general form ¥(x)o,,,/*"(x)¥(x) to
the analysis of Ref. 13 leads to no new (genuine) anomaly
either] Of course it is only the final reduced
expression—here, involving gauge fields B, only—for the
anomaly which is relevant physically and for topological
considerations in gauge theories with fermions.

For our general spinor Lagrangian it will be impractical
to find anomalies following Bardeen’s procedure. It is not
so much because we are working in general D =2n di-
mensions, but more due to the fact that (by allowing arbi-
trary derivative couplings and also the .’ term) we here
have to deal with an infinite number of ill-defined Feyn-
man diagrams which can be potential sources for
anomalies. In case there exist an infinite number of
“anomalous” Feynman diagrams in a particular regulari-
zation scheme chosen, .« g[B,,I';A] will be given by the
spacetime integral of a certain infinite-order local polyno-
mial in B,(x) and I'(x). Even with such an expression
for &/ g[B,,I';A] at hand, there waits another formidable
task of sorting out genuine anomalies from it by manipu-
lating with general local counterterms. We thus reverse
the game—we ask whether a special (intermediate) regu-
larization procedure exists which makes the anomaly cal-
culation simplest and keeps superfluous regularization-
dependent anomalies to a minimum. By this strategy it is
possible to arrive at the complete solution of the problem
without any detailed Feynman-diagram analysis.

Employing a simple regularization scheme and pertur-
bation theory, we shall here prove that it is possible to set

'MR[Bp’F;A]:'Mmin[By;A] s (2.10)

where o nis[B,,; A] represents the spinor anomaly expres-
sion in the theory with minimal gauge couplings only, i.e.,
based on the Lagrangian

L minX)=0(x)iy*D,Y(x) [D,=0,—iB,(x)]. (2.11)

An immediate corollary of Eq (2.10) is that non-gauge-
type (or gauge-covariantly transforming) fields I'(x) sim-
ply play no role as for genuine anomalies, irrespectively of
the way they interact with spinor fields (as long as cou-
plings are local). If anomalies involving, say, external sca-
lar or tensor fields are found using a particular computa-
tional or regularization scheme, they must be all superflu-
ous; i.e., they can be eliminated by adding suitable local
counterterms to the effective action. With the expression
o min[Bu; A] above, there are still ambiguities related to
the addition of local counterterms to the (regularized) ef-
fective action for the “minimal” theory (2.11). To estab-
lish Eq. (2.10), it suffices to consider the following partial-
ly regularized theory:
)

Y(x)+.L'(x),

g§<x>=a(x)[iyypﬂ 1+ |--Lp?

+£(D,,T(x)) (2.12)

where g is some positive integer, D2=D#D“, and M is a
large parameter with the dimension of mass (which we
may eventually let approach infinity). [This kind of regu-
larization has been used in our earlier work'® and also in
Sec. II of Ref. 16, to deal with theories which may be
recognized as special cases of our general Lagrangian
(2.1).] The corresponding effective action functional
Wx[B,,I'], specified by Eq. (2.7) using the Lagrangian
ZLz(x), will be less ill defined than W{[B,,I"'] with a suit-
able choice of g (but, as we shall see below, not yet com-
pletely well defined).

We may study the effective action Wg[B,,['] using
perturbation theory. In choosing the unperturbed La-
grangian, an important point to consider is whether or not
resulting Feynman diagrams would have a well-defined
meaning, i.e., whether they would correspond to conver-
gent integrals. With that in mind, it should be desirable
to include the highest dimensional term?° of the Lagrang-
ian (2.12) in the unperturbed Lagrangian. We shall here
take the value of g sufficiently large so that the piece
q

P(x)

P(x)iy*o,

1 .,
M0

may be that highest dimensional term, and consider the
expression

q

:Zmliyua,, 1+ —#zﬁ ]1,’)(x) (2.13)

as defining the unperturbed Lagrangian. All other terms
in the Lagrangian (2.12) define interaction vertices.”! Di-
viding the Lagrangian as such, we can obtain the Feyn-
man diagram representation of the effective action in a
straightforward manner; it will be a valid representation
of Wg[B,,I'] when fields (B,,T"), coefficients a;(I')’s
[see Eq. (2.2)], and couplings appearing in the .£”' term
can be viewed relatively “small.” In momentum space the
free-fermion Feynman propagator based on the unper-
turbed Lagrangian (2.13) will read

M2 ivtp,

iSr(p)r = . (2.14)
WFr\PIR (pz)q—i—qu p2+ie
Note that
7
Sr(p)g =0 — l
p

for very large spacelike momentum p; but, for small p
(compared to M), we recover the usual free-fermion prop-
agator.

We may now divide the set of all Feynman diagrams
contributing to the effective action Wxz[B,,I'] into the
following three distinct groups.

Type I. All one-loop spinor diagrams which are deriv-
able entirely from the truncated theory based on the La-
grangian
L trunc(X) =(x)iy*D,, (2.15)

1+ W(x) .

I q
D2
]

Type II. One-loop spinor diagrams which do not be-
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long to type I, in the theory (2.12) with .#'(x) set to zero;
for any type-II Feynman diagram, there will be at least
one vertex which is attached to @;(T")’s.

Type III. All other (in general multiloop) Feynman di-
agrams possible in the theory (2.12); any type-III Feyn-
man diagram will involve at least one .Z”’ vertex.

Based on this grouping, the effective action Wx[B,,I']
can be written as the sum

Wr(B,,T]=Wg[B, i+ Wg[B,,Tlu+Wz[B..Tlu
(2.16)

where Wx[B,]; denotes the contribution due to all type-I
Feynman diagrams, etc. (See Fig. 3 for diagrammatic il-
lustrations.)

It should be noted that if we choose ¢ sufficiently large,
all type-II and type-III Feynman diagrams correspond to
convergent integrals and hence Wgx[B,,I'ly and
Wz[B,,T lix become well defined. The same cannot be
said for type-I diagrams (i.e., for one-loop spinor dia-
grams with external B, legs only)—Wz[B,]; remains ill
defined, regardless of the value of gq. This comes about as
follows. Despite the fact that the fermion propagator in
the theory (2.12) takes the form (2.14), no real gain in con-
vergence results for type-I Feynman diagrams since we
now have extra momentum factors at vertices which ori-
ginate from [ —(1/M?)D?]% In fact one sees that type-I
Feynman diagrams with the total number of attached B,
legs not larger than D =2n are superficially divergent re-
gardless of the value of g. In contrast, vertices attached
to the a;(T") legs and also .£’ vertices are still just those
of the unregularized theory (2.1); for these vertices, our
regularization does not generate extra momentum factors
which might upset the gain in convergence by having the
regularized propagator (2.14). As a result any spinor loop

WL (B, %

B,

(a)

WQ[B#’F] 1= >
Ny N2
(N,#0)

(b)

WgB, Ty =

(c)
FIG. 3. Feynman-diagram representations for Wx[B,],
WE[B,“F]U, and WE[B;UF]HI-

diagram involving at least one a,(I") leg or £’ vertex
(but an arbitrary number of B, legs) can be made well de-
fined in the theory (2.12) by choosing a sufficiently large
q value (for a given spinor Lagrangian and for given D).
Thus if we restrict our attention to that part of the effec-
tive action described by type-1I and type-III diagrams (i.e.,
Wz[B,,Tlu+ Wg[B,,T'lm), regularization we have in-
troduced through the Lagrangian (2.12) is sufficient to
make it well defined.

The Lagrangian of the form (2.12) can be considered
for a general, yp ,;-dependent, gauge field matrix B, (x).
Furthermore, . z(x) possesses manifestly the gauge in-
variance of the original theory, and the separation we
have made in Eq. (2.16) for the effective action is clearly a
gauge-invariant one.”? We may thus immediately con-
clude that under arbitrary, chiral or nonchiral, gauge
transformations (2.5), we have

SA(Wg[B,, T lu+Wz[B,,Tlm)=0;

ie., the functional Wgx[B,,[' ]+ Wg[B,,[ ]y is fully
gauge invariant. Of course, no meaningful statement of
this sort is possible for the ill-defined piece Wx[B,];. As
M — oo, all M-dependent pieces in the effective action
Wz[B,,I'] are nothing more than local counterterms in-
volving fields B, or T (or a pure constant term); viz., the
locality of the theory is preserved in the limit M — .
But our gauge-invariant Lagrangian .# z(x) provides only
a partial regularization of the theory; some additional reg-
ularization, which may not be gauge invariant but at least
does no harm to the locality of the theory and Poincaré
symmetry, should be brought in to make type-I Feynman
diagrams well defined. We may here restrict the use of
such additional regularization solely to the piece
Wg[B,];, and not touch Wg[B,,[']y or Wx[B,,I i
(This implies that this additional regularization is not in-
troduced at the Lagrangian level.) Note that up to local
counterterms, the truncated Lagrangian (2.15) (for
M — ) defines the same theory as the minimal theory
Lagrangian (2.11).

The precise way how Wz[B,]; is regularized is not im-
portant for us. All we are concerned with is that for the
general spinor Lagrangian (2.1), we do have a well-defined
regularized effective action of the form

Wr[B,,T1=Wr[B, 11+ Wz[B,,Tlu+Wg[Bu, Tl »
(2.18)

where Wg[B, ]| represents a suitably regularized effective
action for the minimal theory (2.11). Note that depending
on specific regularizations chosen, the functional
Wgr[R,]; may change by certain local counterterms in-
volving gauge fields B,. Here, even taking fully such
freedom into account, no gauge-invariant (and well-
defined) functional for Wg[B,]; may actually exist, i.e.,
SAWr[B,117<0. If we now set

(2.17)

SAWR[B;L]I:dﬁxin[By;A] (2.19)
and use Egs. (2.18) and (2.17), we obtain
SAWR[B[.UF]=8AWR[By]l=dmin[By;A] . (2.20)

This proves the content of Eq. (2.10). The full spinor
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anomaly in our general fermion field theory (2.1) is thus
provided by the expression . pmis[B,;A]—the spinor
anomaly for the corresponding minimal theory (2.11);

various additional interactions present in the Lagrangian
|

SWrI[B, 11

Dab
¥ 8BL(x)

L inl Bur Al= — [ d*x A%(x)

1
3272

[ d*x e Mtr |ysA(x)o

up to terms which can be expressed as a gauge variation
of a certain local functional of B,. The ambiguities men-
tioned here amount to adding certain local counterterms
to the effective action Wr[B,,];, and indeed that freedom
should be exploited to obtain the usual gauge-invariant
form'? for the abelian [or U 4(1)-type] current anomaly
on the basis of Eq. (2.21). [The situation is slightly dif-
ferent in the case of non-Abelian current anomalies.® !
See Eq. (2.24) and ensuing discussions.] To find the for-
mula for &7 i;[B,,A] in general D =2n dimensions, it is
advantageous to take the differential geometric approach
developed in Ref. 6 (and in the last of Ref. 5). Briefly, the
construction goes as follows. First note that the minimal
theory (2.11), if one wishes, may be always rewritten using
only left-handed Weyl spinors (by considering conjugate
spinors instead for right-handed ones), and hence we may
well restrict our consideration to the case

1—
B, (x)=B&(x)Ai——12+L

here. Then in a space of 2n +2 dimensions (i.e., two di-
mensions higher than the spacetime dimension), we intro-
duce the matrix one-form (gauge connection)
B =—iB;A%x"*, and the field strength two-form
F=dB+B A B. The (n +1)th Chern character will be
proportional to trF"t! (F't!=FA--- AF, n+1
times); it defines a closed (2n +2)-form and is gauge in-
variant. Since trF"*! is closed, it should be possible to
write

trF"+*'=dw3, . (B,F) 2.22)

with a (2n +1)-form 9, ,(B,F) (known as the Chern-
Simons secondary characteristic class). The gauge invari-
ance of tr F” *! in turn allows us to write

803 4+1(B,F)=dw},(A,B,F) (2.23)

with some 2n-form wé,,(A,B,F ). It has been shown that
up to a normalization factor, this 2n-form w%,,(A,B,F )
determines the anomaly .o/ i,[B,;A] in 2n dimensions,
and there also exists a systematic procedure to find
w%,,(A,B,F ) explicitly.® The normalization factor may be
fixed by resorting to the Atiyah-Singer index theorem!! in
a (2n +2)-dimensional space.

The anomaly we have just considered is the so-called
consistent anomaly,!® and it is basically the quantity
— D%J}(x;B,,) with the definition [see Eq. (2.21)]

SWR [Bp]I

(2.24)
8BS(x)

JJ(x;B,)=

— %B"a}‘B‘s-i— %B”B"Bé

(2.1) do not introduce any new obstruction to defining the
gauge-invariant spinor effective action.

The structure of & [ B,;A] is well known. In D =4
a direct Feynman-diagram analysis gives the result!>2

’ (2.21)

T

The consistent anomaly assigns a non-gauge-covariant ex-
pression to —D?J}, and hence the current defined by
(2.24) will not be gauge covariant in general. In the litera-
ture’® a gauge-covariant form for the anomaly has also
been given. It involves a gauge-covariant current J », re-
lated to the above current by

Ji(x;B,)=J)(x;B,)+X}(x;B,) (2.25)
with a suitable covariantizing local counterterm X;. The
“covariant” anomaly is defined through — D®%J}, and it
should be noted that the counterterm X, here is in general
not attributable to local counterterm ambiguities in the ef-
fective action. In Refs. 9 and 10 a detailed account is
given for the nature of this covariant anomaly; the au-
thors proved especially the existence of an appropriate lo-
cal expression X;(x;B,). Here we shall make just one
comment related to the last statement—there is a trivial
way to see the existence of a gauge-covariant current J ,
consistent with the relation (2.25). All that is needed is to
modify the Lagrangian (2.11) to the form

q
fmin(x)za(x){iy“Dﬂ 1+ [—7‘{1—202} l

—iy*B, [(x)
[D,=8,—iB,, B,(x)=B(x)T°] (2.26)
with a large regularization parameter M and to set
~ 8Wx[B,,B,]
Ti(x;B,)=——— 1 , (2.27)

u

where Wﬁ [B#’Eﬂ] is the effective action corresponding to
the theory (2.26). (Note that B ¢ here serves the role of an
external source for the current y*T%).) The right-hand
side of Eq. (2.27) will be well defined for sufficiently large
positive integer g, while defining a gauge-covariant quan-
tity by construction. Also for M — « one should have no
difficulty in proving that this current J ; differs from J;
[defined by Eq. (2.24)] by some local counterterm at most.
We have thus shown that one can use the current defined
by Eq. (2.27) to discuss the covariant anomaly.
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III. ON SPINOR ANOMALIES IN CURVED
SPACETIME

As a straightforward generalization of the fermion field
theory (2.1) to curved space, we can consider the (c-
number) action

S = [ dPx(dete){ P(x)[iE" YD, +f(e™,,D,,T)]
XPy(x)+ L' (x)} (3.1

with the covariant derivative (acting on a Lorentz spinor)

Im

. ] i
Dﬂza#—zB”—Za)lm#U om= E[yl,y'"] , (3.2)

where e™, is the vielbein field (/,m, ... represent local
Lorentz indices) with its inverse matrix denoted by
E,*,y™ are purely numerical 2°/2-dimensional Dirac y
matrices obeying {y’,y™} = —25"I (9": the flat space-
time metric), and P, denotes the chirality projection
operator appropriate to each given spinor field component
[i.e. (1+yp,,/2), or 1 with both chiralities]. Spacetime
dimension D, as long as it is even, will be left open. The
metric tensor is given in terms of the vielbein field by
8uv=e",e" Nmu,, and we shall follow the usual rule in
raising or lowering coordinate or local Lorentz indices at-
tached to tensors. The quantity w, ,, appearing in our
definition of D, above, will be identified with

1
Oim,u=7€ n,u(glmn +E&mnt —Enim)

(& =E,"E,"(3,e',—d,e)1, (3.3)

i.e., in agreement with the expression for the spin connec-
tion when there is no torsion. As in the flat-space case
[see Eq. (2.1)], terms involving f(e™,,D,,T’) and .#"'(x)
in the action (3.1) stand for various ‘“nonminimal” local
couplings which are possible for spin-+ fields in the pres-
ence of general external Bose fields (including gravitation-
al ones). Also note that having introduced the chirality
projection P, explicitly, we may assume without any loss
of generality that the gauge field matrix B, in Eq. (3.2)
includes no part multiplied by yp , [cf. Eq. (2.3)].

Our Egq. (3.3) needs some explanations. Taking w,, ,, as
such should not be interpreted in the same sense that our
discussions will be restricted to the torsion-free space.
For curved space with torsion, one can express the full
spin connection @&, ,, in the form

5Im,y=wlm,p+elvekaVAu ’ (3.4)

where K "*“ is the contortion tensor, K "}‘,,z%(C"}‘#
+Cku"+ C#)“'), constructed from the torsion tensor
C}‘W(=—C)‘m). (Notations here are those of Ref. 24.
These authors investigated the role of torsion field to the
spinor anomaly structure in D =4.) Naturally, with the
spin connection given by the form (3.4), we will have to
include local couplings of spinor fields with the torsion
term in our theory. For the anomaly consideration, we
here find it convenient to regard all such torsion-field-
dependent couplings as parts of nonminimal couplings in
our general action (3.1), while keeping only the Riemanni-
an spin connection part (3.3) in the definition of D, in
Eq. (3.2). [This makes sense because @, , — ®jn,, defines
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a tensor under local Lorentz transformations (while being
a coordinate vector).]

For the sake of clarity, we may add some explanations
on the structure of nonminimal coupling terms in the ac-
tion (3.1). By I' we are representing general external bo-
sonic tensor fields to which spinors can couple; T includes
not only various non-gauge-type Bose fields considered in
the flat-space case but also tensors of purely gravitational
origin, such as Riemann curvature tensor and torsion ten-
sor. Here a tensor refers to a quantity transforming co-
variantly or invariantly under all three of general coordi-
nate transformations, local Lorentz transformations, and
ordinary gauge transformations. Our action S will be, of
course, required to be invariant under the three kinds of
transformations just mentioned. Subject to that condition,
f(e™,,D,,T) can be a general differential operator of the
form
fle™,D,,T)=ag(e™,(x),I'(x))+a,(e™,(x),T(x))D,

+ .« ..

+a,(em (), TN Dy Dy - Dy

(3.5)

where D;=E/"D, (with D, appropriately generalized so
that it may act on a general Lorentz tensor spinor), and
coefficients a;’s will be in general matrix valued in the
internal and Lorentz spin spaces. Note that the first term
ag(e™,(x),['(x)) alone will be sufficient to describe all
possible nonderivative, local, bilinear spinor couplings in
curved space. (This includes for instance general Yukawa
couplings [set aogP+=my+S(x)+iyp,P(x)], Pauli-

type antisymmetric tensor couplings [set
ayP, =0™E}E,, Vfuv(x), with tensor field matrix
Suv(x)=—f,(x)], and the spinor-torsion coupling term

in Riemann-Cartan space.?*) Local interaction terms in-
volving more than two spinor fields are represented (as in
the flat-space case) by the .’ piece in our action (3.1).
We shall not concern ourselves with the nonrenormaliza-
bility of the theory by the reasoning already given in Sec.
II.

In the action (3.1), only the spinor fields (1,7) are
dynamical degrees of freedom. Let us denote the corre-
sponding effective action functional defined as in Eq. (2.7)
by Wle™,,B,,T']. It needs to be suitably regularized, and
we will write the regularized expression by
Wgle™.,B,,T']. The question is whether or not the three
kinds of invariance properties assumed for our c-number
action can be maintained by the regularized effective ac-
tion; if not, we have anomalies. In principle three
separate anomaly equations can be considered here, name-
ly,

8" ' Wrle™,,B, . T1=%%[e™, B, T;E], (3.6a)
8 'Wrle™,,B,,T1=%%'[e™,,B,,T;0], (3.6b)
SaWgrle™,,B,,T1=/gle™,,B,,T;A], (3.60)

where infinitesimal variation 8(§E) is associated with (ac-

tive) general coordinate transformation’® or Einstein
transformation (Ref. 10), 8§’ with local Lorentz transfor-
mation, and 8, with ordinary gauge transformation. In-

finitesimal Einstein transformations operate on tensors as
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Lie derivatives; for instance, we have [in connection with
the infinitesimal general coordinate transformation
xt—x'F=xt—_E'(x)]

8 p(x)=EH(x)d,¢(x) [¢(x): scalar field] ,

(E) _m v, v (3.7)
8¢ e (x)=E(x)d,e™u(x)+e™ (x)3,E¥(x) .

On the other hand, the vielbein field transforms under lo-
cal frame rotations specified by infinitesimal parameter
Opmn(x) = —0,,(x) according to
85 e™ (x)=0m(x)e! (x) (O™ =7""0,) . (3.8)
Below %% ’[e"‘,,,B#,l";é’ ] will be called the Einstein
anomaly (following Ref. 10), 9}“[&"“,13“,1‘;0] the
Lorentz anomaly, and ./ g[e™,,B,,[';A] the gauge anom-
aly. The first two make gravitational anomalies.
We shall now prove that it is possible to set (up to arbi-

trary local counterterms which may be added to the effec-
J

Sg= [ dPx (dete) 14 | ——

P(x) ‘iE,,,“y'”DM

q
FDZ ] 1 +f(€m#,D”,F)

tive action)

G e™By, T3E1= Y mnle™u Bus€l (3.92)
Y¢e™,B,,T;01=9 L[e™,,B,;0], (3.9b)
A rle™u By, ;A= minle™u, By Al (3.9¢)

where the right-hand sides, indicated by the subscript
min, represent the anomaly expressions obtained solely on
the basis of the minimal theory action

Smin=J dPx (dete)}P(x)iE»y™D, P (x)

D,l:a“_iB,‘_im,m,,,a""] . (3.10)

There is a simple intermediate regularization scheme in
which the statement embodied in Eq. (3.9) is realized
manifestly. In a direct analogy to the flat spacetime case
dealt with in Sec. II, we may here consider a partial regu-
larization of the theory (3.1) by the action

(3.11)

Pi¢(x)+f'(x)] ,

where ¢ is some positive integer, M a large regularization mass parameter, and

D?=y'"D,D,, (acting on a Lorentz spinor)

— 1 wv
= (dete)D"[(dete)g D, ]

Im

. i
D,=du—iB,— Zwlm,#cr

(3.12)

We also define the truncated theory by the action [cf. Eq. (2.15)]

| e}
=P

Stunc=J dPx (dete) [J(x)iEm#y'"D,,

Now let us denote the effective action functional corre-
sponding to the theory (3.11) as Wg[e™,,B,,I']. It may
be studied using standard perturbation theory. We shall
here choose g to be sufficiently large. Then, as will be ex-
plained below, we can secure a well-defined integral for
any Feynman diagram contributing to Wgx[e™,,B,,I']
which cannot be reckoned with entirely within the trun-
cated theory (3.13).

For a perturbation-theoretic analysis of the theory
(3.11), we had better write the vielbein field as
e™,(x)=8",4+h",(x); small A", will correspond to a
weak gravitational field. Then one can easily obtain the
Feynman-diagrammatic representation of the effective ac-
tion Wpgl[e™,,B,,I'], assuming that (i) external fields
(h™y(x),B,(x),T'(x)) are small, i.e., may be considered
perturbatively and also (ii) all nonminimal couplings—
represented by (dete)yf (e™,,B,,T)P+¢ and (dete).£'—
enter the theory with small coupling constants. Some typ-
ical Feynman diagrams are shown in Fig. 4. Note that
aside from appropriate chirality projection factors, the un-
dressed spinor propagator will be precisely that given in
Eq. (2.14). Despite the complexity (in connection with
gravitational couplings especially), it is not difficult to
sort out all ill-defined Feynman diagrams in the theory
(3.11) by means of power counting. First consider (one-

Pilll(X) ‘ .

(3.13)

|
loop) Feynman diagrams which do not involve any non-
minimal vertices, i.e., those associated with the truncated
theory (3.13) entirely. For those diagrams the degree of
superficial divergence is given by the formula (indepen-

dently of the value of gq)
r=D—Np—N,, (3.14)

where Np denotes the total number of external B, legs

(a) (b)

FIG. 4. Some typical Feynman diagrams contributing to
Wxle™,,B,,I']. Multiloop contributions exist only when
ZL'(x)0.
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and N, the number of spin connection legs attached to
the diagram. [With the action (3.13), A™,’s enter the in-
teraction Lagrangian specifically through the spin connec-
tion @, , or through other vielbein field dependences.
For power counting we find it convenient to distinguish
the two cases; and spin-connection legs should be under-
stood in that sense.] If r >0, the Feynman diagram is su-
perficially divergent and hence ill defined yet. In view of
the fact that the number of external A™, legs—excluding
those counted as the spin-connection legs—do not enter
the formula (3.14) at all, we have clearly an infinite num-
ber of superficially divergent Feynman diagrams in the
theory (3.13) (see Fig. 5). The situation does not change
as we increase the value of gq.

How about Feynman diagrams which involve at least
one nonminimal vertices? Any one-loop or higher-loop
Feynman diagram belonging to this latter class will actu-
ally become well defined in the theory (3.11) (i.e., » <0) if
we choose the integer g sufficiently large. (As in the flat-
space discussion, we are here assuming that there is an
upper bound in dimensions of all nonminimal coupling
terms present.’’) The same reasoning which we have used
in Sec. II applies here. All vertex factors associated with
nonminimal couplings remain unchanged by modifying
the original theory to the form (3.11). At every vertex
part associated with nonminimal couplings, we thus have
the situation that vertex factors are unaffected but at-
tached spinor propagators are regularized ones. This
means that, given any one-particle-irreducible Feynman
diagram including nonminimal vertices, we can always
reduce the degree of superficial divergence (for all sub-
graphs and for the whole graph) to some negative value by
choosing g to be sufficiently large.

The relations (3.9a)—(3.9c) now follow immediately.
Evidently, our partially regularized action (3.11) does pos-
sess manifestly the general covariance, local Lorentz in-
variance, and ordinary gauge invariance of the original ac-
tion. Together with what we have shown above, this
means that the part of the effective action which is
represented by all Feynman diagrams involving at least
one nonminimal vertex can be properly regularized (i.e.,
made well defined) without jeopardizing any of the three
invariance properties mentioned. Therefore, there cannot
be any genuine gravitational or gauge anomaly involving,
partly, or wholly, nonminimal local couplings in the
theory (such as general Yukawa-type couplings, antisym-
metric tensor couplings, couplings involving the torsion
field, various higher derivative couplings, and even four-
Fermi-type couplings). This is true for general D =2n di-
mensions. From Wﬁ[e"’”,B#,F], only the part which can

|

q

— 1
Smin(i)zfdbx(dete)w(x) {I'Em"y'"V# 1+ [———M—ZVZ

—iB,

i
v,=0 —-—a)l,,,,,,al’”, v?

JOOHA MINN, JEWAN KIM, AND CHOONKYU LEE 35

B,,\N\JB

(O=<Nz+N, <D)

FIG. 5. Superficially divergent Feynman diagrams in the
truncated theory (3.13).

be entirely related to the truncated theory (3.13) may gen-
erate anomalies with regards to some of the three invari-
ances; for that part of the effective action, ill-defined con-
tributions still remain and there may not exist any accept-
able regularization procedure for them which does no
harm to the three invariances. Up to local counterterms
our truncated theory (3.13) (with M — « ), of course, de-
fines the same theory as the minimal theory (3.10). The
full content of Egs. (3.92a)—(3.9c) has been now estab-
lished. It asserts that if one finds gravitational or gauge
anomalies depending on any kind of nonminimal local
couplings by a calculational procedure using some partic-
ular regularization scheme, they are merely artifacts of
the regularization chosen and can be eliminated by suit-
able local counterterms to the effective action.

The structure of gravitational and gauge anomalies in
the minimal theory (3.10) has been analyzed in the
pioneering work by Alvarez-Gaumé and Witten.!® Now,
with some additional inputs by others (especially Refs. 9
and 10), we have a more or less complete understanding
on the subject. In what follows brief discussions on some
of this development shall be given. First of all, with both
gravitational and (real or spectator) gauge fields present
together, there exist much arbitrariness—connected with
adding some local counterterms to the effective action—in
the forms of the three anomaly functionals. Here the
choice we find particularly convenient is the one with the
gravitational anomalies, i.e., &’Lﬁ;[emﬂ,BP;ﬂ and
9(,,1,}:,[e'",,,BM;0], made completely independent of B, (at
the expense of making the expression for
o/ min[e™,, B,; A] complicated). How does one know that
such choice is possible? There is a simple way to realize
that.

Consider (partially) regularizing the minimal theory
(3.10) by

Poti(x)

1

= —— 13
= dete) V.[(dete)g**V, ]

p=%"7 (3.15)
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with some positive integer gq. This regularization explicit-
ly harms ordinary gauge invariance, but still preserves
general covariance and local Lorentz symmetry manifest-
ly. With the regularized action (3.15), any one-loop spinor
diagram which involves at least one external B, leg be-
comes well defined if one chooses g to be sufficiently
large. This can be shown by power-counting analysis
[similar to what we have done with the theory (3.11)].%°
Besides the regularization introduced through the action
(3.15), a separate (in general not symmetry-preserving)
regularization may be employed exclusively for those still
ill-defined spinor loop diagrams involving purely gravita-
tional legs. If we denote the effective action thus con-
structed as W piqr)[€™y, B ], we will then have the gravi-
tational anomaly equations of the form

8(§E)Wmin(R)[emp’Bu]:8(§E)Wmin(R)[emy7Bp =0]
=9 Plem,€],
(L) m (L) m (3.16)
88 Wmin(R)[e ;uBy]=60 Wmin(R)[e /.nBuSO]
Ey(L)[em”;gl ,
since the piece
Wmin(R)[em;qu]— Wmin(R)[em,u’By =0]

is invariant (by construction) under general coordinate
transformations and local Lorentz transformations.
While the gravitational anomaly expressions get simpli-
fied, the corresponding gauge anomaly

A min(ml €7y Bs A1=8AW minr) (€™, B 1= — [ dPx (dete)A%x)D®J3[x;e™,,B,]

will acquire a complicated functional dependence on
gauge and gravitational fields. [Here the covariant deriva-
tive D (in D%J}) includes the usual Christoffel connec-
tion term together with the gauge connection.] In the
language of Ref. 16, we have constructed the effective ac-
tion Wyinr)[e™,, B, ] such that all mixed anomalies—i.e.,
anomalies from spinor loop diagrams with external legs
consisting partly of gauge fields and partly of gravitation-
al fields—may contribute to ordinary gauge transforma-
tion anomalies,?® but not to gravitational anomalies.

There are also ambiguities concerning the expressions
9(E)[e’"p;§] and g(L)[e”‘“;O], which represent pure grav-
itational anomalies. We may best characterize them by
defining the energy-momentum “tensor” (really its expec-
tation value)

1 SWmin(R)[em;vBy =0]

Thalxseul= (dete) de" (x)

(3.18)

(It may be the case that 7%,[x;e™,] is not a true tensor.
See the last paragraph of this section.) Then, using the
transformation laws (3.7) and (3.8), one can show that

G Plem,;6]1= [ dPx (dete)e¥(x)
X{ VT x5e™,]

+w1,,,v(x)Tl"[x;e'"#]] , (3.19a)
g(L)[e’"#;O]:fde(dete)e,,,(x)T‘“[x;e'"u] . (3.19b)
Since 6, = —0),, nonvanishing Lorentz anomaly clearly

implies that T/"—T"-£0. On the other hand, from Eq.
(3.19a), we see that nonvanishing Einstein anomaly (with
a manifestly symmetric energy-momentum tensor) can be
related to the nonconservation of the energy-momentum
tensor V,T,#540. In Ref. 16 it has been shown (by a sim-
ple group theory argument) that we may have nonvanish-
ing gravitational anomalies only in D=4k 42
(k=0,1,2,...) dimensions. With Weyl spinors in

1 5mein(R)[em;uBy,]
dete) 8B(x)

Jolx;e™ B, 1= ( ,  (3.17)

D =4k +2 dimensions, we do have gravitational
anomalies, either in the form of the Lorentz anomaly (i.e.,
T —T"_£0) or in the form of the Einstein anomaly (i.e.,
V,T,#+0). Authors of Refs. 9 and 10 have clarified the
situation by showing that with the help of suitable local
counterterms to the effective action, one can shift entirely
the Einstein anomaly to the Lorentz anomaly and vice
versa.

For the explicit form of the gravitational anomaly, it is
again convenient to use the language of differential
geometry. Actually, up to overall normalization, they can
be expressed in terms of the 2n-form w3, (here
D =2n =4k +2), defined through relations analogous to
Egs. (2.22) and (2.23) with the arguments appropriately
changed. For instance, the Lorentz anomaly is deter-
mined by a)i,,( 0,0,R), with the spin connection one-form
o' =co’,,,_ pdx* and the curvature two-form
R =dow+o A . (For the Einstein anomaly, the Chris-
toffel connection I'*,=T*, dx* may be used instead.)
Here co%,,(B,w,R) satisfies the relations

Pip12(R)=dw3,  (w,R)

and

85”08 11(0,R)=dw},(6,0,R) ,
with P, >(R) denoting the (2n +2)-form piece of the
so-called Dirac genus. For further details, readers are re-
ferred to Ref. 9. Also the full structure of mixed
anomalies (all contained in & ple™u,By; Al above) be-
ing rather complicated, shall not be discussed here and the
interested reader is referred to the literature.'®® For a
consistent gauge theory with spinors in curved spacetime,
one must make sure that all these anomalies—

gravitational and gauge—be absent.
The things discussed so far are consistent anomalies;
when anomalies are present, J. [x;e™,,B,] and
T%,[x;e™,] defined above do not really define true ten-
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sors (with respect to the three kinds of transformations
being considered). It has been demonstrated™!® that by
adding suitable covariantizing local counterterms to
(Jg,T",), it is possible to construct related true tensors
(J Z,T",,). (Note that these covariant quantities can no
longer be written as appropriate functional derivatives of
the effective action.) If the anomalies are defined using
the currents (J :,T"",, ), the results will be the covariant
(guage or gravitational) anomalies. Actually, the existence
of the covariant currents (J2,T)) can be seen most
directly by the method described at the end of Sec. II. We

shall briefly explain how the covariant energy-momentum
|

§min:deX(dete){‘Z(x)iEm“r’"Vy 1+ “#VZ

where A "(x) serves the role of an external source for the
quantity 7,. If Wg[e™,,h™,] denotes the correspond-
ing effective action, we may now set

1 SWgle™,h™,]

(dete) 8h " (x) im —o
I

T, [x;e™,]= (3.22)

For sufficiently large integer g, this quantity T ¥,[x eyl
will be well defined and defines a true tensor by construc-
tion. Moreover, in the limit M — o, T",,[x;e”‘”] will
not differ from the quantity 7%,[x;e™,] [defined by Eq.
(3.18)] more than some local counterterm. Hence, in
TY,[x ;e™,] we have the energy-momentum “tensor”
which is a true tensor in any case, and one may use it to
discuss the covariant gravitational anomalies.

IV. AN ALTERNATIVE PROOF AND SOME
TOPOLOGICAL CONSIDERATIONS

By studying the spinor effective action in Euclidean
spacetime, one can gain a better understanding on
anomalies. Concentrating on theories with minimal gauge
interactions only, Alvarez-Gaumé and Witten'® made an
important observation that anomalies can arise only from
the imaginary part of the Euclidean effective action, i.e.,
only the phase of the fermion integral matters for
anomalies. Based on that, a topological understanding of
gauge anomalies has been achieved in Ref. 8. In this sec-
tion we shall extend these considerations by including
various nonminimal spinor couplings to the theory.
Indeed, these methods provide another way of under-
standing the fact that genuine spinor anomalies receive no
contribution from various possible nonminimal couplings
in the spinor Lagrangian. To obviate technical complica-
tions surrounding Euclidean curved space field theories
and the topological study of gravitational anomalies,?” we
shall here only deal with gauge anomalies in general flat-
space local field theories (considered in Sec. II).

Consider a general spinor Lagrangian of the form (2.1)
in 2n-dimensional Euclidean spacetime. The anomaly
represents the failure of gauge invariance in the effective
action of the theory. First, we wish to make it clear that
if the gauge field matrix B,(x) in our theory (2.1) is re-
stricted to be purely vectorlike [i.e., in Eq. (2.3), the axial-

q9
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tensor T %, can be secured using _that method. First we
define the quantity 77, (x;e™,,¥,9) by

1 )

.om D)= YT
T n(xe” )= dete 8e” (x)

X { J dPx (dete)P(E,Fy™V, )P | .

(3.20)

We then modify our minimal theory action (with B, set
to zero) to the form

Path(x)+h " (x).T7, (x;e™,,0,9) ] , (3.21)

f . . . .
vector piece A,(x) vanishes], there will be no anomaly ir-

respectively of the structure of various nonminimal cou-
plings possible. [Nonminimal couplings—terms involving
f(D,,T') and .7’ in the action (2.1)—may involve y,, ,,
freely only if they make a gauge-invariant interaction La-
grangian.] The reason is simple: in that case, gauge-
invariant Dirac mass terms of arbitrary magnitudes will
be possible for all spinor fields and then one can have a
well-defined and gauge-invariant spinor effective action
by means of the usual Pauli-Villars regularization.?®

When the gauge field B, (x) has a nonvanishing axial-
vector part, the Pauli-Villars method cannot be used as a
means to secure a gauge-invariant effective action and the
theory can have anomalies. Even for this case, there will
be in general no problem in preserving gauge invariance
for the real part of the effective action.'® We want a
stronger result than that. When the gauge field takes a
general form (2.3), let Wg[B,,I'] denote the (Euclidean)
effective action for the theory (2.1) and We min[By] the
effective action for the corresponding minimal theory
(2.11). Then Wg[B,,I"] may be divided as

WE[B;ur] =ilm WE,min[B,u]
+Re WE,min[B,u]

+(WE[B,u,yF]_‘WE,min[B;L]) . 4.1
Our assertion is that there should not be any problem with
maintaining gauge invariance for the quantity
Re Wi min[ B, ] or for the quantity

( WE[B;UF] - WE,min[B,u,]) >

viz., anomalies for our theory (2.1) may arise only from
the failure of gauge invariance in the imaginary part of
the effective action of the corresponding minimal theory.
As will be explained below, this follows from a simple
modification of the argument given in Ref. 16.

Note that if one wishes, the general spinor Lagrangian
(2.1) can always be rewritten using left-handed Weyl spi-
nors only, viz.,

LX) =X (X)iy*D . (X) + L nonmin(X302,X.) ,  (4.2)

where
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1—
D, =03,—iB,A°% —gﬂ“l’L:lﬁL ,
- 1+ _

and
-Z nonmin{X ;¥ rYL )
|

e BTl [ (29, (X, Jexp

represents various nonminimal coupling of the theory
(2.1). Following Ref. 16, we have used the notation X L
(instead of writing 1, ) to emphasize the fact that in Eu-
clidean space X; and i, are not related by complex con-

jugation but correspond to independent variables. Using

the Lagrangian (4.2), we may express the effective action
Wg[B,,,I'] formally by

_fdzan[YL(x)i'y#(ay'—iBZ.)\-a)d}L(x)+jnonmin(x;¢L1YL)] . (4.3)

If we set -Z ponmin(X;%.,X.)=0 in the right-hand side of this equation, the resulting fermion integral will represent

~WE minl B,
e Emint®Ppu

. We shall also need a simple path-integral expression for the quantity e WE'"““[B“], with WE,m-m[B#] being

the complex conjugate of the minimal theory effective action Wg in[B,.]. As noted already in Ref. 16, we can represent

it via the fermion integral of the form

e VEmnPW_ [ 12X, 1297 Jexp

where (X7 ,%7) are dummy fermion integration variables
obeying the conditions

l—¥Ypy1, ,
) X=Xt
and
-, I+Ypy1 -,
Y > =9 .

Note that, under the gauge group, (X7, ;) assume the
complex-conjugate representations of those relevant for
(P, Xp).

We may now combine the two theories defined through
Eq. (4.3) and Eq. (4.4), respectively, into a single theory.
Evidently, it should be possible to write

e —(Wg(B,, I+ WEmm[B#])

= [ 29 NPXNDX 23]

X exp —fdz"ngs(x) (4.5)

with the Lagrangian
L5(x)=Xp(x)iy*(d, —iBgA W (x)
+ ¥ L (X)iy*"(d, —iBL(—A* )X (x)
+ -Z nonmin(X ;YL X - (4.6)

The point is that the Lagrangian .#((x), while being a
special case of the general form (4.2), really has a vector-
like gauge interaction. In fact the second piece in the
right-hand side of Eq. (4.6) may be rewritten using right-
handed Weyl spinor variables (¢g,Xg), instead of the
left-handed ones (7,X;). That will give us the form
XRiv*(d,—iBgiA%)Yg, which can be combined with the
first piece in the right-hand side of Eq. (4.6),
)_(-Liy“(aﬂ—_iBZAa)d/L, to yield the purely vectorial in-
teraction Xiy*(3,—iB,A*)Y involving Dirac spinors
(X,¢). Then the observation made at the beginning of this
section will guarantee that there exists a well-defined and

— [ d¥xg (P (x)iy (3, —iBL(—A* O} |, (4.4)

f

gauge-invariant definition for the corresponding effective
action

WE,S[ByrF]:WE[Bny]+WE,min[B;L] . 4.7

In the special case of % ponmin(X;¥,X.)=0 (.e.,
WglB,,T]l=Wg milB,1), Wgs reduces to
2ReWg min[B,] and hence the existence of a gauge-
invariant definition for Re W nin[ B, ] also follows from
this consideration. This in turn leads to the conclusion
that the quantity ( Wg[B,,I'] — Wg min[B,]), being equal
to

(WE,S[B;“F] -2 ReWE,min[Bp.]) ’

should also admit a well-defined and gauge-invariant defi-
nition. Our assertion is now established.

According to what has been established above, we may
set

WE[B;gqu]— WE[B;UF]
=i (Im WE,min[Bﬁ]— Im WE,min[B/l«]) ) (48)

where (Bﬁ,l‘g) are related to (B,,I') by gauge transfor-
mation g:

Bﬁ(x)zg‘l(x)B,,(x)g(x)—(~ %g“(x)ayg (x), (4.9a)

([i(x)8=[Dy(T)];(x)T(x) . (4.9b)

In Eq. (4.8) we have a simple understanding of the rela-
tion (2.10), aside from that the Euclidean space language
is being wused here. Equation (4.8) has another
implication—for the quantity e £~ # ° [i.e., for the fer-
mion integral shown in Eq. (4.3)], the failure of gauge in-
variance can be only in its phase. Working with the
minimal theory (2.11), Alvarez-Gaumé and Ginsparg?® (see
also Ref. 7) have been able to relate the gauge anomaly to
nontrivial topological properties of this U(1) phase when g
is varied around a closed loop in the space of gauge
transformations. In this light, the gauge anomaly be-
comes a manifestation of a topological obstruction to de-
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fining a gauge-invariant effective action. Then our Eq.
(4.8) immediately suggests that various nonminimal cou-
plings and non-gauge-type external fields in the theory
have nothing to do with this topological obstruction
(which forces the anomaly). Can one understand the fact
through an argument of purely topological nature? The
answer is in the affirmative, and we shall describe it
below.

For a general theory (2.1) we shall take it for granted
(in agreement with the above observation) that on the
functional e~ % B“’r], gauge transformations can be real-
izedup to a l-cocycle,29 ie.,

— W,.[B8,I'¢ iw(g;B,,[') —W¢[B,,T
¢ WELBLTH _ w8y —WlBy,T] (4.10)

with some phase factor &Pl [w(g;B,,T) is real]
which can a priori depend on every detail of the given
theory. Then, for a given semisimple gauge group G (and
taking the Euclidean spacetime manifold to be the com-
pactified S?"), we consider a one-parameter family of
gauge transformations®

g(x)%6€[0,27]):S' xS G

(4.11)

6=0: 0=21r_____1

g(x) g(x)

It will be assumed that the map g% defines a nontrivial
element of 7(¥), where & denotes the space of gauge
transformations. [Note that when w7 (G)=m,,(G)=0,
m (&) is isomorphic to m,, ,1(G).] Then, for some fixed
reference configurations (B,,I'), the phase e BT s
a function of the parameter 0 will define a map S'—S.

The corresponding winding number can be expressed as
2w dw(g%B,,T)
oL (740858, )

27 Yo dé

with m restricted to integers. Here, because of Eq. (4.10),

the integrand [dw (ge;B#,I‘)/dG] can be related to the
anomaly functional:

(4.12)

dw(g%B,,T) dwg[BY %)

do do

Ei.ME[Bg",rg";A]]A=(g9)_ (4.13)

laogB .
The winding number m is none other than the integrated
anomaly along the one-parameter family of gauge
transformations (4.11). If one finds circumstances in
which the winding number m should be nonzero (by some
other topological considerations), the effective action must
change under a gauge transformation, thus demonstrating
the existence of an anomaly as a consequence of a topo-
logical obstruction. With the minimal theory (2.11),
Alvarez-Gaumé and Ginsparg® have implemented this
program in an explicit manner by relating m to the index
of an appropriate (2n +2)-dimensional Dirac operator; if
the index is nonzero, we must have an anomaly. Before
we discuss our general theory case, we shall first recapitu-
late the basic idea used in Ref. 8 below.

The authors of Ref. 8 extended Bﬁo to a two-parameter
family:

B (x)=1B8"(x) (1€[0,1]) . (4.14)

The parameter 6 and ¢ can be viewed as polar coordinates
of a disk D, and along its boundary we have
BLQ"=])=BﬁB, ie., B:f"” reduces to the original one-
parameter family of gauge fields. Then, for a fixed refer-
ence gauge field B, with zero Pontryagin number, one
can easily relate the above winding number m to the
(signed) sum of t}(lee”number of points in the interior of D,
~eEminl 24" ) G anishes. It is further shown in ref.
- WE,min[B;(l.o’” I

where e

8 that these zeros of e can be put in one-to-
one correspondence with zero modes of a specific
(2n +2)-dimensional Dirac operator involving the back-
ground gauge field Bj>". [Here the (21 +2)-dimensional
space may be identified with $2xS?", with S? being an
extension of the disk D (with D making the upper patch
of the two-sphere) and S2" the original spacetime.] Based
on that it is possible to identify the winding number m
with the index of the (2n +2)-dimensional Dirac opera-
tor, which can in turn be expressed in terms of the
(n +1)th Chern character by the Atiyah-Singer index
theorem.!! The full anomaly functional can be extracted
by using this (n + 1)th Chern character representation of
m together with the formulas (4.12) and (4.13). Note that
these arguments provide a rationale for the mathematical
manipulations used in Eqgs. (2.22) and (2.23) to find the
non-Abelian anomaly expression.

Turning to the case of the general theory (2.1), we shall
now show that various nonminimal couplings give rise to
no additional topological obstruction beyond that found
with the corresponding minimal theory. For the purpose
it would be sufficient to prove that

1 2 dw(@g®B,T) | g

1 _ 0 dwiin(2%B,,)
27 J0 deo

do ’
(4.15)

T 7 Jo

viz., the winding number m for the theory (2.1) cannot be
different from the quantity defined for the corresponding
minimal theory. [Note that wmm(go;B“) is defined by Eq.
(4.10) restricted to the minimal theory (2.11).] The proof
is quite simple. When % |, min Tepresents all nonminimal
coupling terms in a given general local spinor Lagrangian
(i.e., -Z=.Z nin+ <L nonmin), W€ can here imagine a one-
parameter family of theories described by the Lagrangian

f[llzfmin+}"fnonmin (}\E[Oyl]) . (4.16)

[Gauge invariance of .%,oumin is necessary for the
behavior (4.10) (Ref. 30).] With this one-parameter family
of theories, we then ask how the quantity

1 edw(gg;Bﬂ,I‘)
27 Jo do

will change as A is varied. The answer is that it is in-
dependent of A. The quantity in question is the winding
number which can take only integer values, and hence its
value cannot change under a continuous variation of A.
Also, during a continuous variation of A in the interval
[0,1], we do not expect the effective action functional to
develop a singular behavior under gauge transformations.



35 SPINOR LOOP ANOMALIES WITH VERY GENERAL LOCAL ... 1885

Equation (4.15) has now been established with the left-
hand side corresponding to the A=1 expression and the
right-hand side to the A=0 expression of one A-
independent quantity.*!

There is a comment to add. One might suggest turning
off even the gauge field B,(x) (but not gauge symmetry)
from the theory by considering the expression (4.12) for a
one-parameter family of gauge fields B (x)
=A'B,(x)(A’€[0,1]) and then by applying the same ar-
gument as above. The winding number m will not depend
on the continuous parameter A’, and then it should be al-
lowed to set B,(x)=0 in Egs. (4.12) and (4.13) without
losing information on the topological obstruction respon-
sible for non-Abelian anomalies. That is true: Eq. (4.13)
in fact provides nontrivial information even with B, set
to zero. The point is in contrast with non-gauge-type
external fields {I'} which transform covariantly under
gauge transformations [see Eq. (4.9b)], the connection
field B,(x) acquires an inhomogeneous piece under gauge
transformations [see Eq. (4.9a)]. Therefore, even when

B, (x) is taken to vanish, we still have a nontrivial func-

. 6 e a1 .
tion B (x) and it is this function that enters the anomaly

functional in Eq. (4.13).

V. DISCUSSIONS

In this paper we have carried out the analysis of gauge
and gravitational anomalies associated with quantized
spin-5 matter fields in the context of a general D =2n lo-
cal field theory, renormalizable or not. It is established
that genuine gauge or gravitational anomalies are only
from usual minimal gauge and gravitational interactions
of spin-—;— fields; viz., in the genuine anomalies, we have
no piece involving various possible nonminimal couplings
or non-gauge-type external Bose fields in the theory. We
have given our proof first by resorting to a suitable regu-
larization scheme combined with a direct perturbation
theoretic analysis (Secs. II and III). The finding has been
supported by the argument based on certain general prop-
erties of the Euclidean space effective action and also by a
topological consideration (Sec. IV). Our finding is con-
sistent with the view that what matters for spinor
anomalies under gauge symmetry (general covariance, lo-
cal Lorentz symmetry) is not the details of the spinor La-
grangian but only the given spinor field contents under the
gauge group. Although not dealt with explicitly in this
paper, we expect some of our discussions to be also
relevant for anomalies involving quantized spin-3 fields.
That applies to so-called discrete anomalies®? as well; in
fact, we expect that the presence of additional non-
minimal local couplings and non-gauge-type external
fields will have no role on discrete anomalies, either. For
supersymmetric field theories we do not know how our
analysis will be affected by taking also supersymmetry
transformation behaviors of the effective action into con-
sideration.

What is the implication of our findings for low-energy
effective theories? Note that, even for a low-energy
phenomenological description of some theories, we may
borrow the framework of a local Lagrangian quantum

field theory and a gauge field theory in particular with ef-
fective dynamical degrees of freedom. [The standard
model, a gauge theory based on the gauge group
SU(3) X SU(2) X U(1), may be regarded as a low-energy ef-
fective field theory from a certain unified model at more
fundamental level.] An effective local Lagrangian will
typically include renormalizable couplings®® which play a
dominant dynamical role, and nonrenormalizable cou-
plings** (involving operators of dimension larger than
four in the case of four spacetime dimensions) which may
be less important dynamically but still crucial for some
processes. There is a question which arises naturally in an
effective low-energy (chiral or nonchiral) gauge theory
with spinor fields. Will there not be certain restrictions to
the structure of allowed higher dimensional local spinor
couplings (besides naive gauge invariance of the forms)
because of possible gauge anomaly problems? We can
now give a definite answer to that—as long as the spinor
field contents are such that the usual gauge anomaly can-
cellation condition? is satisfied, the effective gauge theory
Lagrangian may include any gauge-invariant, renormaliz-
able or nonrenormalizable, local spinor couplings without
encountering gauge inconsistency by spinor loop effects.
The findings of this paper have also some relevance
when the *t Hooft-type consistency conditions®> are used
to study the possible composite particle spectrum in a
confining field theory. The ’t Hooft consistency condition
asserts that the anomaly produced by the fundamental
fermions be identical to that of the composite massless
fermions. The anomaly here refers to that in the vacuum
expectation value of the three flavor (axial-)vector
currents (or the anomalous piece in the effective action in-
volving three spectator gauge fields). The flavor currents
in question may be expressed either in terms of fundamen-
tal spinor fields of the preon theory, or in terms of spinor
fields describing composite fermion degrees of freedom in
the effective field theory; ’t Hooft argued that the
anomalies computed by both schemes should be equal,
thus obtaining his consistency condition. (The Adler-
Bardeen theorem'® may be invoked to justify the use of
the one-loop anomaly expression here.) In the original
formulation ’t Hooft modeled the effective field theory for
composite particles also by a usual renormalizable field
theory—a point with which many would not be satisfied.
Our work shows the validity of the 't Hooft consistency
condition even when the effective field theory is allowed
to have various kinds of nonrenormalizable couplings (as
might be more appropriate for an effective field theory
which is not necessarily weakly coupled). This observa-
tion nicely complements the S-matrix-theoretic deriva-
tion®® of the ’t Hooft consistency condition. Our work
also answers the following question: Can we obtain new
kinds of ’t Hooft-type consistency conditions by consider-
ing the anomalies in the spinor loop amplitudes involving
(partly or wholly) local currents which are not vectors but
tensors or something else? The answer is no. As far as
internal-symmetry transformations are concerned, only
the Ward-Takahashi relations involving certain numbers
of usual (axial-)vector-type fermion bilinear currents may
include genuine anomalous pieces. [This is a simple
corollary of the fact that for genuine anomalies of our
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general theory (2.1), the corresponding minimal theory
(2.11) is entirely responsible.]
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