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Supercurrents and superconformal symmetry
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A superspace variational formulation of supercurrents and their associated anomalies is presented,
with emphasis on showing its foundation on superconformal symmetry. Parameters of superconfor-
mal transformations are embedded in a spinor superfield, in terms of which local-superconformal
variations of superfields are defined. The one-loop supercurrent anomalies are calculated for the
Wess-Zumino model and supersymmetric QED by the path-integral method.

I. INTRODUCTION

Superconformal symmetry' plays an important role
in characterizing the space-time symmetry contents and
short-distance structures of supersymmetric theories. All
the superconformal currents are embedded in a single
superfield, called the supercurrent. The supercurrent
possesses a quantum anomaly, which arranges the
anomalies of the R symmetry, special supersymmetry,
and dilation symmetry in a supermultiplet.

The original derivation of the supercurrent, by Ferrara
and Zumino, made use of Noether's variational pro-
cedure for component fields. The direct superspace ver-
sion of the Noether procedure, however, seems to be miss-
ing yet. As an alternative, super-Weyl field variations
have been used to define supercurrents via the supergravi-
ty versions of flat-superspace theories. Standard (and
nonvariational) constructions ' of supercurrents employ
symmetry arguments based on the superconformal alge-
bra 2'3

Fujikawa's path-integral method' '" is a useful means
of formulating anomalies in field theory; known
anomalies (chiral, conformal, and gravitational ones) are
identified with Jacobian factors in a systematic manner.
The knowledge of a superspace Noether theorem is needed
for its extension to supercurrent anomalies.

The purpose of this paper is to present a superspace
Noether theorem for supercurrents and to develop, by
means of it, the path-integral formulation of supercurrent
anomalies. Complementary to the super-Weyl approach
is our flat-superspace approach, where the foundation of
supercurrents and superfield variations on superconformal
symmetry is made manifest.

We shall extract the necessary superfield variations out
of known supercurrents of some specific models and inter-
pret them in terms of superconformal symmetry. Param-
eters of superconformal transformations turn out to be
embedded in a spinor superfield, in terms of which (local)
superconformal field variations are defined. In gauge
models, these field variations are combined with gauge
transformations to form gauge-covariant superfield varia-
tions.

A superspace variational formulation of supercurrents
and their anomalies is developed in Sec. II. Local super-
conformal variations of chiral superfields and vector

superfields are derived. Their interpretation in terms of
superconformal symmetry is studied in Sec. III. The
path-integral calculation of supercurrent anomalies is
given for the Wess-Zumino model and supersymmetric
quantum electrodynamics (SQED) in Sec. IV. Section V
is devoted to concluding remarks; in particular, a connec-
tion of R symmetry and chiral symmetry in supersym-
metric gauge models is discussed.

II. VARIATIONAL CHARACTERIZATION
OF SUPERCURRENTS

In this section, we look for Noether's procedure for su-
percurrents. Let us first consider the Wess-Zumino
model, describing self-coupled chiral (and antichiral)
superfields iIi(z) and &b(z), with the action

5[4,4]=f d z+++ f d z( —,'m4 ——,'g@ )+H.c.

M(z)= —,'D'[0 D + —,'(D A )—]N(z),

64(z) = ——,D [Q2.D + , (D II )]4(z), —.(2.2)

where II (z) is an arbitrary spinor superfield and 0 (z) its
Hermitian conjugate. The derivation of these formulas
will soon become clear. Here we simply remark that, with
fl set equal to iO 0 P (/3 is a real parameter), Eq. (2.2)
gives the correct R transformation laws of + and N.

In response to the field variations (2.2), the interaction
terms in the Wess-Zumino action change by total super-
space divergences 5%3= —

4 D D (II @ ) and 5@

(2.1)

where d z=d x d Od 0, d z=d x d 0, etc. ' Only the
mass term breaks invariance under the (global) R
transformation, N(x, g, g)~e '"~@(x,e'~9, e '~8) with a
real parameter P, if we assign R weight n = —,

' to N(z).
The supercurrent contains the R-symmetry current as

its lowest component. Its variational formulation should
therefore make use of a suitable superfield generalization
of the local-R transformation. For the chiral superfield
C&(z) (of R weight —,) and its antichiral partner iIi(z), such
field variations turn out to take the form
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= —
4 D D (Q. 4 ). At the same time, the action under-

goes the change

5S= f d z[ —,(D Q D—Q )R,

aX= —,D—[QV X+ —,(DQ)X],

where DA =D 0 and DQ =D .Q . Here

Ta=—e Dae =Da+ Ya

(2.10)

+ —,'m(QD @+QD 4 )], (2.3)

where R . is the supercurrent

R . =(D~N)(D. N) ——,[D,D. ](@@). (2.4)

V.=e ~D .e-'=D. —Y.

are gauge-covariant spinor derivatives:

On the other hand, the variation 6S is represented as Y=—e (De ), Y.=—(Y)=(De )ea a a

5S=f d z(5@)5S/54+ f d z(5C)5S/54, (2.5)

which we rearrange in the form

5S=f d z[Q (5S/5Q )+Q.(5S/5Q. )], (2.6)

(V ) = —V

The b4 is given by the Hermitian conjugate of Eq. (2.9):

so that, e.g. , b, C&= ——,'D'[Q. (V eC )+ —,(DQ)4], (2.11)

D R . ——,mD (4 )= —25S/5Q

D R ——,mD .(4 ) =25S/5Q
(2.7)

The right-hand side of Eqs. (2.7) may appear to vanish by
virtue of the equations of motion (5S/54=0, etc.). This
is not always the case. In the path-integral treatment' of
anomalies, it is these equation-of-motion terms that are
regularized to turn into (supercurrent) anomalies at the
quantum level.

Note that Eqs. (2.3) and (2.7) are (operator) identities.
Accordingly, if R . is known, they serve to determine

5S/5Q and 5S/5Q, which in turn fix the field varia-
tions 5+ and 54. This is in fact the way we have ob-
tained the superfield variations in Eq. (2.2).

We adopt the same strategy to derive the transforma-
tion law of the vector superfield. Let us consider super-
symmetric quantum chromodynamics (SQCD), with the
gauge-invariant action'

S=f d z(4e ++Xe X)+(8g ) 'tr f d z IV W

(2.8)

where C&(z) and X(z) are a pair of SU(N)-fundamental
matter chiral superfields of opposite color charge and
V(z) is the (color) vector superfield;
W—:——,

' D (e D e ). For simplicity, matter fields
are treated as massless. (Rescale V~2gV and IV~2gIV
to recover the coupling constant g.) The massless SQCD
action is invariant under global R transformations. Here,
we do not take explicit account of the gauge-fixing term
and the ghost sector, which are not needed in our present
analysis.

The SQCD supercurrent is a gauge-invariant object
(apart from the gauge-fixing complication). Correspond-
ingly, we replace the matter-field variations in Eq. (2.2) by
the gauge-covariant version:

5S/5Q =(5/5Q ) f d z(5@)5S/5@ .

Then, varying Eq. (2.3) with respect to Q and Q yields
the local conservation laws of the supercurrent:

where V' e4—:D 4'+NY; similarly 7' eP=—D P
—XY for AX.

For the vector superfield V(z), we try the simplest
gauge-covariant field variation

ev ev~aW ~ Waev
a (2.12)

where Wa= —4D Ya and W. = —4D Y.. With Qa
set equal to i 0 8 /3, Eq. (2.12) is seen to give the correct
R-transformation laws of the component fields in the
Wess-Zumino gauge M.~= iPA, —and M=iPk. . for, .

the gluino field and 5U„=O for the gluon field.
Applying these field varations to the SQCD action, one

obtains the gauge-invariant supercurrent

R o = —(V,+4&)e (V N)+(V eX)e (VQ)

——,
' [D.,D, ](ee 'e+Xe —~y)

—(2g ) 'tr(W e IV.e ), (2.13)

The AN and 5@ differ by the gauge variation

5G4&= —, (D Q Y )N . — (2.14)

Accordingly, we may subtract from Ae the correspond-
ing gauge variation

5Ge v=e v (D Qa Y )+ (D Q ya)e v

to define the new variation

6e =he —6Ge

=f De +f D e —e , (D Q)D Y—
(2.15)

——,(D Q )(D Y. )e (2.16)

and the conservation laws in Eqs. (2.3) and (2.7) with m
set equal to zero. From this supercurrent R ~, known

in Ref. 8, one can derive the field transformation laws
(2.9)—(2.12) in the reversed line of argument as given ear-
lier. In the SQCD case, Eq. (2.5) reads

5S=tr f d z(he )5S/5e + f d z(be)5S/5m+ .

b4 = —, D'[Q V @+—,(DQ)@], — (2.9) where f = —, D Q and f = —,—DQ. —
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It is instructive to look into the Abelian (SQED) case,
where Eqs. (2.12) and (2.16) are simplified to

(2.17)

5V=f D V+f D V ——,(D 0 )D DV

It is a simple exercise to show that Eqs. ('3.3)—(3.7) (the
superconformal Killing equations' ' ) combine to define
uniquely the (infinitesimal) superconformal coordinate
transformations of 15+4+ 4+ 1=24 real parameters;
see Appendix A. In particular,

——,(D II )D D. V . (2.18)
and

f (z)=f (x,B,B)=f (x iB—o8, 8,0)

It is these 6@, 5e, arid 5V that admit of a natural in-
terpretation in terms of superconformal symmetry, as
shown in Sec. III. Hence, the gauge-invariant super-
current (2.13) of SQCD (and SQED) is characterized by
the combined field variations of superconformal symme-
try and the gauge symmetry. The combined transforma-
tions may be regarded as the superconformal analogue of
covariant conformal transformations. '

III. SUPERCONFORMAL TRANS FORMATIONS

f (z)=f (x,8,8)=f (x+iBo8,0,8)

have the parametrizations

f (x,8,0)=f' '+(iP+ ,'a"f„' '—)8

——,f„' '(o"o "8) —i —,8 (Bf ' ')

f (x,O, B)=f ' ' +( i/3—+ ,'a"f„'')8—

f(o) ((r ijrrvB)a i 8 2g f(0) )a

(3.8)

We shall now explore the physical meaning of the
superfield variations derived in Sec. II. Let us first survey
superconformal symmetry, whose algebra consists of
the conformal algebra [with generators (P„,M„,D,K„)]
combined with supertranslation (Q, Q, ), special super-
symmetry (S,S.) and R symmetry (R). We use the su-
perspace notation z"=(8,8 .,x") and a„=a/az"
=(a,a,a ). The exterior derivative d =dz a„, when
rewritten as d=e Dz in terms of the covariant deriva-
tives DA (D,D,a&——), defines the supertranslation-
invariant basis I e I of differentials

e =dO, e.=dO. ,

(3.1)

e"=dx"+i dOo."0+i dOo. "0 .

Following the standard treatment of conformal symme-
try, ' we shall set up the superconformal Killing equa-
tions. Consider the (infinitesimal) general coordinate
transformations

f '. '(x), and fz (x) denote the lowest components of
f (z), f .(z), and f„(z), respectively. The f„' '(x) is noth-
ing but the usual conformal Killing vector of 15 parame-
ters. Supertranslation and special supersymmetry are
parametrized by the Killing spinors' f '(x) and f . (x),
which a,re most linear in x&,' i.e., f' '(x)=g +x"(o&g)a.
A real constant /3 parametrizes the R transformation.
The f„(z) is expressed as a sum of a chiral vector super-
field and its conjugate; see Appendix A.

For the combination pD+PR of dilation and R
transformation, f =( ,

' p+i/3)8, —f. =( —,
'
p i/3)8, , and-

f"=px". Consider a real scalar superfield @(z) of mass
dimension d and R weight n. The superconformal field
variation, which takes correct account of the dilation and
R-transformation properties, is written as

5 4(z) =[f"a„+,' d(a"f„)+ ,' n(Df—Df—)]4(z)—,

(3.9)

where Df =D f and Df:D,f— —
A 'A A+f A( ) (3.2) f"a„=f a +f a +f"a„=fD +f,D +h"a„.

that scale the invariant length ds =e"e„ locally so that
e "ez——c(z)e"e&. This condition amounts to the follow-
ing set of constraints on f"(z)=(f (z) f, (z),f"(z)):

D h„+2i(o.g) =0,
D h„+2i(o'g) =0,
a„h.+ay„= —,

' (a'h, )g„„,
where

h„(z)=f„(z)+if(z)o'„B+if(z)o„B.

(3.3)

(3.4)

(3.5)

(3.6)

D f=Drf =0 . . (3.7)

Qf these only Eqs. (3.3) and (3.4) are independent, and Eq.
(3.5) follows from them. The spin- —, parts of Eqs. (3.3)
and (3.4) imply the relation D h& ——D h&

—0, which is
equivalent to the chirality constraint on f and f

D k„+2i(og) =0,

D k„+2i(oj') =0 .

(3.10)

(3.11)

Here k (z) is a complexification of h (z) such that
h&(z)= —,[k&(z)+k&(z)]; kz(z)=[kz(z)] . From Eqs.
(3.10) and (3.11) follows again the chirality constraint
(3.7), which is satisfied by setting

A chiral superfield N(z) must satisfy the relation d = ,n-
because of the chirality constraint D5 C&=0.

The Killing equations (3.3)—(3.7) characterize (global)
superconformal transformations. The Noether currents,
on the other hand, are constructed by use of local-
symmetry transformations. Accordingly, the Killing
equations have to be relaxed to admit suitable local
transformations. To this end, we replace Eqs. (3.3) and
(3.4) by
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f = —~D Q andf = —, D—fl (3.12) h "c}„—=—,'ih "(Dcr~D+Do„D )

where Q~(z) and its conjugate Q.(z) are unconstrained
spinor superfields. With II and Q., Eqs. (3.10) and

(3.11) can be solved for k„and k„:
k~ ———iDo.qQ, (3.13)

k„=—iDo.„O . (3.14)

and

F„(y,B)=k„(z)+2i Berg(z) .

The chiral component g (y) of 0 (z) is a kind of gauge
degree of freedom. The chiral vector superfield F„(y,B)
may be regarded as a complexification of f&(z) since

f„(z)= ,' [F„(y,B)—+F„(y,B))

holds
Global superconformal transformations correspond to

the parametrization [see Eq. (A4) in Appendix A]

F„(y,B)=f„' '(y) 2iBcrg' '(y)— (3.16)

and (f (z),f .(z)) given in Eq. (3.8). In this way, II (z),
when properly constrained, embodies the superconformal
Killing vector and spinors.

Let us turn to field transformation laws. For a chiral
superfield of R weight n (and d = ', n), Eq. —(3.9) reads

5 @(z)=[fD +h "8&+ 'n(c}"h&+D f—)]N(z), (3.17)

where we have rewritten the R-weight term using the rela-
tion

Df +Df = d"f„=——,
' c}i'h„,— (3.18)

which follows from the Killing equations. We generalize
Eq. (3.17) by substituting k"(z) for h "(z) so that the new
field variation is induced by 0 (z). The result is cast in
the compact form

54(z) = —
4 D [0 D~+ , n(D 0 —)]N(z), (3.19)

which is the local-superconformal field variation quoted
in Eq. (2.2). In the same way, the superconformal varia-
tion of the antichiral superfield is promoted to the field
variation [in Eq. (2.2)] generated by Q ..

A real scalar superfield has n =d =0, with the global-
superconformal transformation law

& V(z)=(f D +f D +h"c}„)V(z). (3.20)

The photon and the Yang-Mills superfields (and e as
well) obey this rule. Note that the substitution

Conversely, Eqs. (3.12)—(3.14) combine to fix 0 in
terms off and k„:

II (z)=i}'r (y) i ,'F—~(y—,B)(o„B) +8 f (z), (3.15)

where

II (z)=iD:-(z) (Q.= iD :-—), .

where =(z) is a real scalar superfield. Then the variation
of the action, Eq. (2.3), with respect to =(z) gives rise to
the divergence of the supereurrent

5S= —2 J d z=[B R&+i „m(D 4&—D4 )—],
(3.21)

where R„—= —,(cr„) R .. This variation, of course, car-
ries less information than the original one. ' Its physical
content is made clear by comparing the component struc-
ture of iD:- with the (global) superconformal case [Eqs.
(3.8), (3.15), and (3.16)]: It contains only translation (P&),
supertranslation (Q, Q ) and R transformation (R) of
the superconformal algebra. Their respective parameters
(a&,g,g .,P) are arranged in the form of an x-independent
superfield:

,'Bo Ba„iB—Bg+iB8 g—+ , 8 8 P . —(3.22)

A consequence of this structure is that, when the super-
current is conserved c}"R„=O, Jci xRO becomes a con-
stant superfield representing the conserved charges
(P„,Q,Q, R ):

I d xRO ——R iBQ+i —BQ 28cr"BPq . — (3.23)

IV. SUPERCURRENT ANOMALIES

In this section we study the anomalies of supercurrents.
%'e avoid using Pauli-Villars regulator fields, use of which
is sometimes problematic in supersymmetric calculations.
Here we follow the algorithm of the path-integral ap-
proach' and regularize the variations 6S/6Q and
5S/50. in Eqs. (2.7) to derive the anomalies. The basic
program for the calculation is analogous to that of con-
formal anomalies. ' It has been noted, in particular, that
the algorithm of the path-integral derivation of anomalies
has natural foundation within g-function regularization'
of quantum theories.

We begin with the Wess-Zumino model. Eqs. (2.3),
(2.5), and (2.7), being operator identities, are also valid as
the Green's functions. The source term can be included

~—4i (k "Dcr&D+k "Dcr&D)

immediately converts Eq. (3.20) into the local-
superconformal variation (2.18) of the photon superfield.
Likewise, on setting k"=k"=h", the generalized
transformation law (2.16) of the Yang-Mills superfield is
reduced to the above global one. [Actually, Eqs. (2.16)
and (2.18) differ only by nonlinear terms proportional to
k„—k„.]

Varying the actions with respect to unconstrained 0
and Q., we have obtained the supercurrents [Eqs. (2.4)
and (2.13)] and the associated conservation laws [Eq.
(2.7)]; the latter may be called the generalized trace identi-
ties in view of their component structures. Suppose now
that we restrict 0 by setting
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into them by the replacement

S S =S+ dzJW+ dz JN. (4.1)

Then Eq. (2.3) is equivalent to the Ward-Takahashi iden-
tity of the Green's-function form

(5$+f d'z JC+ f d z J4—M)=0. (4.2)

Here 5S stands for the right-hand side of Eq. (2.3) while
M denotes the equation-of-motion representation of 5S:

W= f d z 54(5S /54)+ f d z 54&(5S /54) . (4.3)

It is this M that turns into the anomaly.
The quantum structure of the Wess-Zumino action (2.1)

is extracted by use of the classical (P) and quantum (q)
splitting of the superfield 4&(z)=P(z)+q(z). In particu-
lar, the one-loop structure of the theory is described by
the quadratic quantum action, written in the matrix form

(5S/M )" = zD D [2m —g(P+P)]
1

768m.
(4.9)

For (5S/50. )"s, replace D D by D D . In Eq. (4.9)
one may replace (P, P) by (@,4) to obtain the oparator
form of the anomaly at the one-loop level.

Equation (4.9) introduces anomalies to both the general-
ized trace D R . and the divergence 8"Rz. However, it
is possible to redefine the supercurrent so that its diver-
gence becomes anomaly-free. Indeed, if we define the new
supercurrent

R, =R . — (cr") .B„[N(C&)—N(C&)], (4.10)

ization' of the propagator (X(z~)X(z2)) using the heat
~I 2

kernel (z~
~

e'"
~
z2); the regularized equation-of-motion

term agrees with the regularized Jacobian. The regular-
ized Jacobian is calculated in Appendix B. We quote the
result for (5S/Ml )—:5(M)/50:

S2[p;'ll] = —,(rI, TI)

(m —gg)1

1+1

1 1+

(m —gg)1+
(4.4) where N(x ) =—g x —4mgx, it obeys the conservation law

D R . = —,mD @ —(g /192m )D D (@4); (4.11)

= —,X' I [P,P] X, (4.5)

B=diag(1 [QD+ —, (DA)]1

1+[IID+—, (DQ)] 1+ ) . (4.6)

Then the Jacobian is given by exp(TrB) and the anomaly
(M) is written as

(M)=i(TrB) . (4.7)

This Jacobian needs short-distance regularization, which
may be carried out by setting

TrB"s=Tr(B e' ~'~) ) (v~0+), (4.8)

where X—= (rI,T1)' and I [p,p] are matrices in the chiral
and antichiral sectors of superspace. The dot implies a
summation over superspace coordinate labels of appropri-
ate chirality using d z or d z. The operators 1:———,D
and 1+=—

4 D combine with the chiral measures to
serve as 5 functions ' e.g. , 1 1 =1 and 1

The variation 5 (on 4&), being a linear operation, acts on
p and rl separately. Let us extract from W terms qua-
dratic in the quantum fields q and g. They, when suit-
ably regularized, determine the one-loop anomaly. As a
matter of fact, in the path-integral approach their effect is
expressed as the Jacobian associated with the change of
field variables X~X'=X+5X with 5X=(5q,5rl)'. We
shall evaluate this Jacobian. It is convenient to write 6X
in the matrix form 6X=B.X, where B is the diagonal ma-
trix in the chiral sectors of superspace:

likewise, D R . has the anomaly
—(g /192vr )D D(NN)-. It is easy to verify that 8"R&
possesses no anomaly. This form of the anomaly agrees
with the one obtained by a different method in Ref. 9.
(An adjustment of notations is needed for comparison. )

The form of the anomaly [such as Eq. (4.9)] depends on
the way one regularizes the quantum theory. However,
once the current is redefined so that, e.g. , B&R& is
anomaly-free, the anomaly of D R . is uniquely deter-
mined. This phenomenon, the trading of anomalies, has
also been encountered in the path-integral formulation of
conformal anomalies. '

The B"R„has no (one-loop) anomaly. Consequently,
among the symmetries associated with Rz, only R sym-
metry is broken by the mass term while translation (Pz)
and supertranslation (Q, Q. ) symmetries are kept exact,
as seen from Eq. (3.21). Similarly, it can be shown that,
with the supercurrent R . , the super-Poincare part of su-

perconformal symmetry becomes anomaly-free. This, in
fact, is a general feature of expressing the generalized
trace (D R . ) in terms of a chiral superfield.

Let us next examine the SQED case. We shall here
concentrate on the anomaly coming from the matter sec-
tor; then the analysis almost parallels that of the Wess-
Zumino model. It is important, on physics grounds, to
regularize the matter sector so that vector-gauge covari-
ance is preserved. The matter sector of the SQED action
can be written in the matrix form

where a Wick rotation to Euclidean space has been as-
sumed. Here e'", with r'=—r r, is defined in terms of
the dot product:

0
S „„„=(X,@)

+e

:—X*.I [ V].X,

e-~1+
(4.12)

(4.13)
e' =1+st + —,

' r I .I +
with 1 =diag(l, 1+ ). As noted in Ref. 17, the above
choice of regularization corresponds to g-function regular-

where V is now treated as an Abelian external superfield.
Let us write the variation ~—:(b+, bX)' as ~=C X
with
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C=diag(1 [QV+ —,(DQ)]1

1+[QV+ —,(DQ)]1+) (4.14)

where OV—:0, V and QV—:Q .V . Analogously, the
variation ~*—= (M, b4) is written as ~*=X* C' with

C'=diag( —1 [QV+ —,(DQ)]1

—1+[QV+ —,
' (DQ) ]1+ ) . (4.15)

Tr(C+C')" =Tr[(C+C') e'r(~} ] (r 0+) . (4.16)

with I [V] = I [ V].I [ V]. Substituting the explict forms
of I [ V], C, and C' yields the following representation for
the anomaly M =i Tr(C+ C')"s:

M= —i —,
' d z DQ z e + 1 z

e+(DQ)(z
~

e + 1+ ~z)] . (417)

The evaluation of the matrix elements is standard, with
the result

lim (z
~

exp(r —„D e D e )1
~
z) =(i /64m ) W W'

r-0
(4.18)

Consequently, the supercurrent obeys the anomalous con-
servation law (in the one-loop approximation):

D R =(I/96m )D W' (4.19)

The Jacobian associated with the change of variables
X~X+~ and X*~X*+~ is given by
exp[Tr(C+ C')], which we regularize in such a way that

of the action, the R weights of matter superfields may ap-
pear undetermined. Indeed, the R weight —, of @(z) in

Eq. (2.9) can formally be changed to n if we add the
chiral variation of @(z) with

A=( ,'n ———,
'

)( ——, )D D Q

As verified easily, the one-loop anomalies in Eqs. (4.19)
and (4.20) are multiplied by 3(1—n) if we assign R weight
n to the chiral superfields. Correspondingly, the super-
conformal transformation of 4& (of n = —,

'
) combines with

the chiral rotation of 4 with A = ——,'4 D D 0 to become
anomaly-free at the one-loop level. This, in particular,
implies that the one-loop chiral anomaly is characterized
by the same W (or W ) as the supercurrent anomaly.
The combined transformation, of course, is not the super-
conformal transformation any more.

Even the free-field action dictates the R weight n to be
for chiral superfields: The current R„=—,

' (0„) R
derived from the free-field action Jd z4@ by the varia-
tional procedure is Hermitian only for n = —', . Hence
n~ —', spoils the superconformal algebra; this, of course, is
because 4(z) has d =1.
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APPENDIX A

In this appendix we solve the superconformal Killing
equations (3.3)—(3.7).

It is convenient to use the chiral coordinate
(y&

——x& i8cr&8—, 8, 8) in solving Eq. (3.3) for h&(z), with
the result

D R =(1/96m. )/D W'. (4.20)

This result for the anomalies confirms that obtained by
different methods. ' It will be clear that vector gauge
covariance is manifest in each step of our treatment.

V. CONCLUDING REMARKS

In Secs. II and III, we have presented a variational for-
mulation of supercurrents and their associated anomalies
in such a manner that their foundation on superconformal
symmetry becomes explicit.

In connection with the supercurrent anomalies calculat-
ed in Sec. IV, some remarks on R symmetry and chiral
symmetry in gauge models will be useful. Chiral super-
fields have R weight n= —,, as implied by the chirality
constraint n = —', d which follows from the suprconformal
algebra. This R-weight value is easily read from the
Wess-Zumino action. On the other hand, the situation is
less obvious in gauge models. The massless SQED
(SQCD) action is chiral invariant as well as superconfor-
mal invariant. The chiral rotation of matter fields
(@,X)~e' (@,X) is contained in the chiral phase
transformation (@,g)~e (N, X), where A(z) is a chiral
superfield. Because of the (global) chiral U(1) invariance

h„(x,8,8)=h„(y, 8,0) 2i 8og—(z) . (Al)

APPENDIX B

In this appendix we evaluate the regularized Jacobian in
Eq. (4.8).

In the usual notation, Eq. (4.8) reads

TrB"s=f d z(z
~

1 [QD+ —,'(DQ)]1 .I» ~z)

+ f d z(z
~
1+[QD+ —,

' (DQ)]1+.I22
~
z), (Bl)

Equation (3.4) implies the Hermitian conjugate of (Al):

h„(x,8,8) =h„(y,0,8) 2i 8og—(z), (A2)

where y„=x„+i8o„8 Take. an. average of Eqs. (Al) and
(A2), recalling Eq. (3.6). The result is

f„(z)= ,
'
[h„(y,8,0—)+h„(yt,0,8)] . (A3)

Let us next equate (Al) with (A2) for each power of 8
and 8. The O(8) term fixes the structure of hz(y, 80):

h„(y, 8,0) =f„' '(y ) 2i8crg' '(y), — (A4)

which is quoted as F„(y,8) in Eq. (3.16). Comparing fur-
ther powers of 0 and 0 leads to the parametrizations of
f (z) and f (z) quoted in Eq. (3.8).
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Now observe that I» is symmetric: I» ——I», see Eq. (B5)
below. This implies that (z

i
0 D I~1

~

z)
=

2 6 D (z
~
I»

~

z ). Consequently, Eq. (B2) gets fur-

ther simplified:

TrB"s= ——, f d z[(D 0 )(z ~Iii iz)

+(D f) )(z
i Iqq ~z)] . (B3)

where I~, and I&2 stand for the diagonal elements of the
2&&2 matrix I=e ". Since I» is chiral, 1 -I» ——I».
Note that the first 1 in the matrix element is combined
with d z to form d z. Hence we get

TrB "s=fd z(z
~
[QD+ —,

' (DQ)]I»
~

z) +(f1 part) .

(B2)

To calculate (z
~
I» ~z), let us divide 1 =I 1 into

two parts I =H0+H] ..

p21 0 M 1 1 L1+

p 1+ ' ' 1+L1 M 1+
(B4)

where M =m —P, M—:m —P, and L—:2m —P —P; we
have used the relations' ' 1 1+ 1 =p 1 and
1+1 1+——p 1+, where p =i 8„.

We expand (z
~
I» ~z( in powers of H&. The first-

order term, which is proportional to M 1,vanishes since
(z

~

1 iz) =0. The M term in second order is vanishing
for the same reason. Only the L term survives the ~~0
limit:

(zlI&r Iz)= f ds f du(z ~e' ' 1 Ll+e' " Ll e" ~z)

,D, ds —du(z~e' "~ Ll+e ' ")' Ll e" ~z) .
0 0

(B5)

(B6)

Recall' ' ' that one needs at least two D's and two D's to obtain a nonvanishing matrix element diagonal in 0 and 49; in
particular, (z

i
1+1

~

z) = (x
i

1
~

x ). Hence, in the ~~0 limit,

(z )I„iz)= —,'D ( —,'r (—xie'~ ix)L ) (B7)

D 2L2
128m.

This leads to the expression for the anomaly in Eq. (4.9).

(B8)
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