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The effective potential in scalar quantum field theory is calculated using different expansions of
the path integral for the generating functional. The conventional loop expansion is compared with

the interpolated, optimized, and mean-field expansions in the lowest orders. The optimized expan-

sion is studied up to third order. In the space-time dimensions 0 and 1 the comparison with the "ex-
act" effective potential calculated numerically shows that the only method which gives qualitative

agreement in the whole range of Lagrangi'an parameters is the mean-field expansion. In 4 dimen-

sions the mean-field method seems also to be most reliable and the theory to be noninteracting.

I. INTRODUCTION

Z[J]=f D@exp —S[@]+f d„x J(x)@(x)

We fix the normalization of the measure to have

(1.2)

f DCsexp —f d„x d„y @(x)A(x,y)Ct(y) =det '~2A .

(1.3)

An effective method to calculate the generating functional
(1.2) is the steepest-descent method, which generates a
series of Gaussian functional integrals. As discussed in
Sec. II, when the subintegral expression is represented in
various forms the different expansions of the generating
functional are obtained, leading to different expansions
for the effective action and the effective potential.

The effective action, being the generating functional for
one-particle-irreducible (1PI) Green s functions is defined
as

(1.4)

The effective potential (EP) has been introduced' in
quantum field theory in order to study the spontaneous
symmetry breaking induced by scalar fields. Usually the
effective potential as a function of the vacuum expecta-
tion values (VEV's) of the scalar fields is calculated in the
loop expansion. However, it was pointed out that the
loop expansion breaks down for the VEV of the fields in
the region where the classical potential is nonconvex.
Therefore the conventional loop expansion is not useful to
investigate the shape of the EP when the symmetry is ex-
pected to be spontaneously broken.

In this work we will study the applicability of some
nonstandard methods in this case. We limit ourselves to
the theory of the real scalar field in n-dimensional Eu-
clidean space with the classical action given by

S[@]=f d„x[—,'@(x)(—8 +m )&Ii(x)+AC& (x)] . (1.1)

The theory can be quantized by representing the generat-
ing functional for Green's functions as the path integral
over the fields:

= f DC@exp —S[@]+f d„x J(x)@(x) (1.5)

is the VEV of the scalar field. It can be proved that

~[J]
l J(x)=const

(o( J)=— (1.6)

is the vacuum energy density for the system interacting
with the constant source J. The effective action, as the
Legendre transition (1.4), satisfies

51
5t)t (x )

(1.7)

and is stationary in the physical theory when the sources
are absent. Only constant background fields can describe
the true vacuum, since the translational invariance is not
expected to be broken. Hence the true VEV can be found
as the stationary point of the effective potential, defined
as

r[4']
l p(x)=const

d~x
(1.8)

The EP can be shown to be convex. It can be inter-
preted as the work done by the external source J to dis-
place the VEV from t)It(J =0) to P(J) in the unit volume.
If the stationary point of the EP is at tI)t~, different from
zero, the symmetry is spontaneously broken and the effec-
tive potential is not defined for P &Pt, (Refs. 4 and 5).
The nonconvex part of the EP indicates the instability of
the vacuum for corresponding (t (Ref. 5). This interval
should be deleted from the domain of definition of the
EP. However, every value of (t from this interval can be
obtained for a nonhomogeneous vacuum taken as a linear
combination of the states with VEV equal to the values at
the inflection points of the EP. In analogy with the
Maxwell construction in thermodynamics it gives the con-

where W[J]=lnZ[J] is the generating functional for the
connected Green's functions, and the background field

58'
(t}(x) =
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vex hull of the EP. The value of the EP at the minimum
is equal to the vacuum energy density for vanishing
source:

II. FORMAL METHODS OF EVALUATION OF
THE EFFECTIVE ACTION

A. Loop expansion

V(gi, ) = W0) (1.9)
The conventional loop expansion is generated if the

steepest-descent method is applied to the generating func-
tional written in the form

The 1PI vertices for vanishing external momenta can be
obtained as derivatives of the effective potential. The re-
normalized mass and coupling constant (which are used to
reparametrize the EP for scalar QFT to be finite in 4 di-
mensions) are usually defined as the second and fourth
derivative at the stationary point of the EP.

In this work we will study the effective potential ob-
tained in the (A) loop expansion (LE), (B) interpolated
loop expansion (ILE), (C) optimized expansion (OE), and
(D) mean-field (MF) expansion. These methods in arbi-
trary space-time dimensions are reviewed in Sec. II. The
results are discussed in Sec. III. In the dimension n =0
and 1 the theory is finite and we can compare the results
with the "exact" EP calculated numerically. In 4 dimen-
sions two possibilities emerge in the comparison of dif-
ferent approximations for the renormalized QFT—
triviality or precariousness.

Z[J]=f D@exp —( —S[@]+J@)I
(2.1)

(2.2)

As usual, for notational simplicity we suppress the space
arguments and the integrations over them. The Planck
constant, retained in the exponent, is the dimensionful
quantity; therefore it cannot be thought of as a small pa-
rameter (Pi= 1 in natural units), but as a formal parameter
of the expansion. Therefore, to each order, the result
should be verified, showing that the higher-order contri-
butions are really small.

Upon translating the integration variable @ by
chosen to satisfy the classical equation of motion

5S
&do

and rescaling by fi', the exponential is expanded into a
Taylor series, giving

Z[J]=exp —( —S[go]+Jgo) f D@exp —— 41 1 5S
2 5+o

E

3 4 3
'2

~f/2 6 S @3 j g
6 S C4 1 g

6 S
6

gp 3 24
~~ 4 72

1:e"p ( ~[4o]+Jdo)

2
]/2 5 S

ay, '
5S 6S
sc,' ay, ' 3 $p 2 + 0 ~ ~ (2.3)

The effective action, to each order in A, can be obtained
using the implicit definition (2.4) and (2.5). It can be
proved that I [P] to the order k is a sum of k-loop 1PI
vacuum Feynman diagrams in the theory with mass
(m +12k/ )'~, quartic vertex 24K, , and cubic vertex
24AP. For the constant source, the energy density w(J)
and the effective potential V(P) can be expressed in terms
of the ordinary integrals in momentum space. %'e intro-
duce the notation

m
Vi (P) = P +kP + fil i (m + 12K,Q ) .

2
(2.5)

mz ——m + 12AIo(0)

and the renormalized coupling constant

(2.6)

For m &0 the EP at /=0 is complex; therefore, the re-
normalized vertices are usually defined as the derivatives
of the EP at the stationary point Pi&0. To the first order
we obtain the renormalized mass

Ii(Q)= —,
' f ln(p +0 ),

(2n)"

d„p
Io(Q) =

(2n. )" p +0 (2.4)

A.g ——X[1—18XI,(Q) —864k, P, I', (fl)
—3456k, Pi I" i(Q)], (2.7)

where 0 =m +12k,Pi and a prime denotes a derivative
with respect to Q .

d~pI i(Q)=2
(2~)" (p +0 )

The effective potential to the order R can be expressed as

B. Interpolated loop expansion

As pointed out by Fujimoto, O'Raifeartaigh, and Par-
ravicini, the loop expansion is valid only if the Gaussian
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integrals in (2.3) converge, i.e., the operator

5S = [—82+m 2+ 12K,Q'(x)]5(x —y)
5$(x)5$(y)

(2.8)

is positive definite, i.e., the classical potential is convex.
In the case when we expect the reflection symmetry to be
broken spontaneously (m &0), the classical potential is
double-well (DW) shaped and the operator (2.8) is not pos-
itive definite for P & —m /12K, . The imaginary part of
the effective potential, appearing in the order fi in (2.5), is
a signal of the failure of the loop expansion in this range
of P. In this case the interpolated loop expansion, which
takes into account the contributions of all minima of
S[P]—JP, has been proposed. The range of integration

+exp —Vi ($2)fd„x (2.9)

The interpolated one-loop EP coincides with the conven-
tional Vi(p) in the region where the latter is convex and
the region between its inflection points given by

in (2.1) is divided into two regions and the Taylor expan-
sion is made about each minimum ($1 and $2) and the
Gaussian integrations are performed over all ranges, argu-
ing that the main contribution comes from the neighbor-
hood of the minima. To the first order the energy density
becomes

1w(J)= ln exp —Vi($1)f d„x
d„x

(t'1 Vl ( 42 ) 02 Vl ( (t'1 ) Vl (0 1 ) Vi (0'2 )

p p + 0 0 ~+ 0 0 0 0 + 0 0
01—02 01 (t'2 01 02 01 02

(2.10)

where $1 and pz are the minima of the classical potential.
The interpolated one-loop result is real and convex in
agreement with the general proof and lattice calcula-
tions, and becomes a straight line (Maxwell construction)
in the infinite-volume limit. The renormalized vertices
are given by (2.6) and (2.7), as in the conventional LE.

The method is applicable only if the minima of the
classical potential are far apart, and taking their contribu-
tion independently does not introduce double counting. If
m approaches zero, the interpolated loop expansion
breaks down, as does the conventional loop expansion.

C. Optimized expansion

Nambu and Jona-Lasinio, in their study of the dynami-
cal breaking of chiral invariance, s proposed to modify the
bare mass in Ql I' to make the radiative corrections to the
self-energy vanish. Using a similar trick in the calcula-
tion of the effective action, we can generate a series with

all terms being converging Gaussian integrals in the whole
range of P even for m &0. We write the classical action
as

where the parameter e has been introduced to identify the
order of the perturbation and is set equal to one at the
end. After choosing 1I)0 to satisfy the classical equation of
motion for the modified action

5S,
500

(2.12)

we apply the steepest-descent method to the functional
z[J):

S,[N]=S' '[N]+eS'"[@]
= —,&5( 8+0—)4&+a[ , (m 0—)@—+A,C ],

(2.11)

Z[J]=exPI —
2 40( —~ +& )4'0 —&[

'
(m —& )40 +~4'0 1+J40I

1 5S"' 1 6S'" 1 6S"'
X fD@exp ——,'N( —8 +0 )@+@

2 5P 6 5/0 24 5/0

=expI —
& $0( —8 +0 )$0—e[ z (m —II )$0 +Ago )+Jgo]

1 5'S'", 1 5'S'", 1 6'S'"
X fD@exp[ ——,'e( —8'+Q')C) 1 —e — e' —— C' — e'+ .

2 5y' 6 5@0 24

The Gaussian integrals converge, as long as we choose Q (x) to be positive everywhere, and we obtain the series

(2.13)
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Z[J]=expI ——,'Pp( —8 +Q )Pp —6[ —,'(m —Q )Pp +Ago ]+JgpIDet ' ( —8 +Q )

1 52S(')
2 2 1 1 5'S")

2X 1 —e —,( —8'+Q') '+—,( —8'+Q') '
2 ~4o' 8 54o'

(2.14)

To the kth order in e, Z[J] can be found as the sum of all
vacuum diagrams with k interactions in the theory with
the mass Q(x), quartic vertex 24A, , cubic vertex 24APp,
and quadratic vertex (Q —m —12K,Pp ), where Pp is the
classical VEV of the scalar field.

The auxiliary field Q(x) has been introduced in such a
way that Z[J] does not depend on them. However, in the
truncated series the dependence on Q(x) appears. We can
take advantage of the freedom of choosing Q(x) to pro-
duce the optimized expansion (OE) (Ref. 9). Guided by
Stevenson's principle of minimal sensitivity, ' we require
the kth-order approximant of the physical quantity W[J]
to be as insensitive as possible to the small variation of Q,
choosing Q to satisfy

(2.15)

The effective action, as a Legendre transform, satisfies

(2.16)

and is a sum of 1PI vacuum diagrams with the mass
Q(x), quartic vertex 24A, , cubic vertex 24AP, and quadra-
tic vertex (Q —m —12K,Q ), where P is the scalar VEV to
the order k. If we limit ourselves to the constant Q, the
effective potential becomes

2 2

Vk(Q, Q) = +A/" +I i(Q)+EV"'(P, Q)
2

/ =0 are given by

mit ——m +12AIp(Mii)p, (2.21)

1 —12A.I i (mii )

1+6AI i(mii )
(2.22)

The EP to the first order of the OE is exactly the same as
the Gaussian effective potential (GEP). The GEP was ob-
tained by solving the functional Schrodinger equation in
QEl' by variational method with Gaussian trial wave
functional"' and is equivalent to the Hartree approxi-
mation. It has been shown' that GEP is the sum of IPI
vacuum diagrams without overlapping divergences; there-
fore, it should be a much better approximation than the
one-loop result, which sums only all tadpoles attached to
this loop. The GEP has been recently studied by Steven-
son in 1, 2, 3 and 4 space-time dimensions. Our ap-
proach offers the possibility of systematically improving
the variational result.

For /=0 Eq. (2.20) coincides with the Nambu —Jona-
Lasinio "gap equation, "which makes the radiative correc-
tions to the self-energy in the scalar QFT vanish. This
approach cannot be directly generalized to make the study
of the spontaneous symmetry breaking possible. In the
OE we can study dynamical and spontaneous symmetry
breaking simultaneously.

+. . . +&kV(k)(y (2.17) D. Mean-field theory

where V' ' is a sum of 1PI vacuum diagrams with j in-
teractions. The first three terms are calculated in the Ap-
pendix. To the given order, Q can be found as a root of
the equation

The mean-field (MF) expansion, proposed by Cooper,
Guralnik, and Kasdan, ' can be formulated in the path-
integral approach. ' Using the Gaussian integral

~~k
an

= (2.18) f DOexp — [8 i(m +—4A@ )] =Det ' (8AI),1

16K

To the first order in the OE the effective potential is given
by

2 2

Vi(P, Q)= +A/ +Ii(Q)
2

(2.23)

where I(x,y ) =5(x —y ), and the generating functional
(1.2) can be expressed as

+@I—,'(m +12AP —Q )Io(Q) Z[J]=fD@exp[ ——,
'

4&( —8 +m )@—AN +JN]

+3X[Ip(Q)] I (2.19) &&Det'~ (8A,I)
with Q fixed by Eq. (2.18), which becomes

Q —m —12A[P +Ip(Q)] =0 . (2.20)
X DO p — 0— +4k@

16K,

The renormalized mass and coupling constant defined at (2.24)
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Introducing the source S(x) for the field 8

4

Z[J,S]=fDOexp — (8 2—im 8)+ +SO
16K, and

m 1

16K, 16K. 8A,
™8

——,
' JGJ+ —,

' Tr lnG ' —Sg

F[O,J,S]=—

6 '(x,y ) = [ 8— i—8(x)]5(x—y ) .

(2.27)

(2.28)

)& Det' (8A.I )

&( f D@exp[ ——,
' @( 8 —i —8)4+JC&),

(2.25)

and performing the integration over @gives

Z[J,S]=Det'~ (8AJ) f DOexp( NF[8—,J,S]),
(2.26)

where

6F
5g.

' (2.29)

rescaling by N ' and expanding the exponent gives

The parameter N has been introduced only to identify the
orders of .the expansion and is set equal to one at the end.
For the N component scalar field the number of com-
ponents appears in (2.26) naturally, leading to the large-N
expansion. Therefore, the mean-field result can be ob-
tained by setting N =1 in the given order of the large-N
expansion.

Translating the integration variable by 80 satisfying

1 5F 1 5FZ[J,S]=Det'~ (8AI)exp( NF[OO—,J,S])f DOexp —— 82 1 — Oi
2 gg 2 6N~~~ gg 3

1 5F 4

24N ggo4

(2.30)

If the operator 5 F/580 is positive definite, the Gaussian integrations can be performed, generating a series in 1/N:

1 6FZ[J,S]=exp NF[OO, J,S]—z Tr ln i +
go'

K.eeping the first two terms only and replacing the sources by the background fields P =5 lnZ/5J and

. 51nZ
5S

with the aid of a Legendre transform, the effective potential V($, 8) for constant background fields becomes

4

V(Q, Q)=N — — 0 + 0 (m +4AQ )+ —, f ln(p +II )
16K, 16k, 8A,

' (2~)"

(2.31)

(2n. )" p +0 (2m)" (q +Q )[(q+p) +0 ]
(2.32)

In the physical theory the sources are absent, and the EP
satisfies

with the VEV of the auxiliary field Q eliminated by the
"gap equation" obtained from (2.34)

and

V
a

= —J=O (2.33) 0 —m —4Ap —4AIO(Q) =0 . (2.36)

V(P, Q) =—
(2.35)

av = —iS=O . (2.34)
BQ

To each order the auxiliary field Q can be eliminated
with the aid of (2.34), and the consistency of the method
requires II &0. To the leading (zeroth) order, after set-
ting N =1 we have

4
0 + (m +4AQ )+Ii(Q)

mg =m +4AIO(mg ), (2.37)

~R 1+2I i(ms )
(2.38)

To the next order, after setting N = 1 we have

The second and fourth derivative give the renormalized
vertices
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V(P, Q) =-
16k.

0 + (m +4Ap )+—f8A, 2
dna

ln(p +Q )
(2m )"

ln 1+ +4&
(2~)" p'+ 0' (2~)" (q'+ n')[(q+p)'+ n'] (2.39)

and the "gap equation" is the same as in the leading order
(2.36).

After replacing A, by 3A. the MF "gap equation" (2.36)
coincides with the first-order OE "gap equation" (2.20)
and the EP in the leading order of the mean-field (MFO)
approximation (2.35) coincides with the first-order OE re-
sult (2.19) after elimination of the auxiliary fields. The
similarities of the MF and OE are due to the fact that in
both methods some effects of the composite fields are in-
cluded by means of the auxiliary field 0 . In the MFO the
same class of Feynman diagrams without overlapping
divergences is summed as in OE1, only the coupling con-
stant is different, as a reminescence of the fact that the di-
agrams with the coupling between different components
of an 0( N) multiplet dominate if N is large.

III. RESULTS AND CONCLUSIONS

uii(J) = Vi(ko) —Jko (3.1)

The path-integral quantization enables study of the
field theory in arbitrary space-time dimension. As the
case N =4, which is believed to describe QFT in our
world, is the most difficult, the theory in lower dimen-
sions is frequently discussed. The large-order behavior of
the perturbation theory has been derived first' in n =1
dimension and the divergence of the series was demon-
strated. Afterward, the Borel summability has been
rigorously proven for m &0 in n &4 dimensions. ' For
m & 0 there are indications, that the perturbation series is
not even Borel summable. '

We will study the applicability of the approximations
discussed in the previous section to the evaluation of the
energy density and the effective potential in different di-
mensions n. In the previous section we did not give the
expressions for the energy density in the approximations
studied, as up to the first order in these approximations it
can be found as

A. The simple integral

In zero dimensions the functional integral for the ener-
gy density becomes the simple one-dimensional integral

2

w[J]= —In f exp — x —M +Jx,(3.2)—"(2m. )' '
which can be calculated numerically, as well as all its
derivatives and the Legendre transform. The EP in zero
dimensions has been studied in the LE and MF (Ref. 18)
and in the first-order OE (Ref. 9).

To the first order in the considered approximations the
EP after rescaling (z = —,

'
m A, '~, V~ V——,in'. , and

'~
) becomes one of the following.

(a) A loop expansion

V(P) =zP +P + —,
' In(2z+12$ ) .

(b) An interpolated loop expansion

(3.3)

V(P) = — + —,
'

ln( —2z)
4

+ [ —,
' —P( —2z) ' ]ln[ —,

' —P( —2z) '~ ]

+[—,'+P( —2z)-' ']ln[ —,'+P( —2z) —' '] . (3.4)

meaningful, as the derivatives of the EP are well defined.
It will be convenient to get rid of one parameter by re-

scaling. The rescaled energy density w=wA, " '" "', as a
function of J=JA,~'"+ ' '" '; and the rescaled effec-
tive potential V = W" '" ', as a function of

', depend on only one dimensionless pa-
rameter: z = —,m A,

'" '. When discussing the numeri-
cal results, we will use the rescaled quantities only, there-
fore we suppress the caret setting A. = 1.

with Po given by (2.2) for the LE, (2.12) for the OE, and
(2.29) for the MF. This is due to the fact that up to first
order all the connected diagrams are 1PI. It is worthwhi1e
to mention that the tree order is defined up to constant
term in these approximations, applying the steepest-
descent method to the path integral (1.2). If the constant
factor is extracted from the classical action (i.e., by the
change of the measure normalization) before introducing
the formal parameter of expansion, the tree order EP will
depend on them. In the first and higher orders the depen-
dence cancels and the results are well defined. The tree-
level results obtained with the measure normalized by
(1.3) are shown in our figures (CL and MFO) just for illus-
tration. However, the renormalized vertices in MFO are

(c) An optimized expansion

V($)=zg +P +lnQ—
20 $1

where

0'=z+6P'+[(z+6$')'+12]'~' .

(d) A mean-field expansion
2

V(P) = — ——,', 0'+ —0'+ —,O'P'

+lnA+ —,
' ln 1+ +8P 4

0 A

(3.5)

(3.6)

(3.7)
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where

(3.8)

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
I t I I I I

0

o —1

0-
-2. —

CL
w
w 3

OEN
MFl. ~~m ..Exac

I i I

—4.0 —3.0 —2.0 —1.0 0.0 1.0 2.0 3.0

FIG. 1. The vacuum energy density w(0) in zero-dimensional
QFT is plotted vs z= —,m X '~ . The solid line is the result cal-

culated numerically (Exact). The dotted lines are the one-loop
(LE) and the interpolated one-loop (ILE) results. The dashed
lines are the first-order optimized expansion results if the sym-
metric (OES) and the nonsymmetric (OEN) solutions of the clas-
sical equation of motion are chosen. The dashed-dotted lines
give the mean field in zeroth (MFO) and first (MF1) order.

In the OE and MF the positive root of the "gap equation"
is chosen to assure the consistence of the method.

The energy density can be obtained from Eqs.
(3.3)—(3.8) with the aid of (3.1). In Fig. 1 we compare
w (0) as a function of the parameter z, calculated in the
above approximations with "exact" result. For z &0 the
LE and OE have two branches, depending on the choice
of the symmetric (xo ——0) or nonsymmetric
[xo ——+( —z/2)'~ ] solution of the classical equation of
motion. For the LE we have plotted only the symmetric
branch for z &0, when it is real. The other branch (not
shown in the figure) is only higher by ln(2) than the ILE
result, and diverges for z =0, as ILE does. For the optim-
ized expansion we have plotted the symmetric (OES) as
well as nonsymmetric (OEN) branch for z & 0. For
z ~ —2.97 OES, and for z & —2.97 OEN agrees better
with the "exact" result. The MF result is reasonably good
in the whole range of z.

Now we discuss the EP in the considered approxima-
tions. For z &0 the results of the LE, OE, and MF are
very similar and agree with the "exact" EP; therefore, we
discuss only z &0. For the LE and OE the agreement be-
comes less as z decreases and is very marked for negative
values of z. In Fig. 2 we have plotted the results for
z =0, —1, —3, —5. The discrepancy is particularly large
in the case of the LE. The shape of the EP is very dif-
ferent from the "exact" one, being rather similar to the
classical DW potential. The conventional one-loop EP is
reliable only in the region of the convexity of the DW po-
tential. It diverges at P= —z/6 and approaches the "ex-
act" result only for large P. For z& —3 the second
minimum of finite depth appears at larger value of P and
the Maxwell construction can be done, giving the result
similar to the ILE, the agreement with the "exact" EP im-

l.

.5

.1

Z.'
Ld

.5 o
CL

O.

LU4.
la.
LLJ -5-

E,
~ W

IL

LaJ

Q
LaJ
LI

UJ

2=3 z= -5

-2.

-3. h
LLJ

LLI

~ -2. F
LIJ
44.
4J

l

:.~UFO
I

MFO

-5. w
O

6 b
--7 U

LLJ

FIG. 2. The effective potential for z =
z m A,

=0, —I, —3, —5 in zero-dimensional QFT. The classical (Cl)
and numerical (Exact) effective potential are shown by solid
lines. The dotted lines are the one-loop (LE) and the interpolat-
ed one-loop (ILE) results. The dashed-dotted lines show the
zeroth- (MFO) and first- (MF1) order mean-field EP.

proves for decreasing z. The mean-field results in the
zeroth (MFO) and first (MFl) order are shown. The MF1
is in good agreement with the "exact" result. The same
conclusion was drawn by Bender and Cooper' by corn-
parison with the accurate EP for strong coupling in zero
dimensions.

The EP in the first-order OE in zero dimensions agrees
quite well with the exact result for small ~z ~. For
z =z„=—2.45 the second minimum appears at /=0 and
for z= —2.85 it becomes deeper than the minimum at
/=0. The shape of the EP differs considerably from the
"exact" result, when

~

z
~

increases, only the Maxwell con-
struction make the agreement quite good. We can exam-
ine the change of the shape of the EP in higher orders of
the OE. The "gap equation" to the second order obtained
from Eq. (2.18), requiring the slope of the dependence of
V2 on 0 equal to vanish, cannot be satisfied by II &0.
We can choose 0, as a complex root with real part posi-
tive. The real part of the resulting EP is shown in Fig. 3.
We have checked that the imaginary part of the EP is
small as long as ~z

~
& ~z„~, but for larger ~z

~

it be-
comes considerable in the region between the classical
minima.

Alternatively, we can look for 0 real and positive,
which minimizes the slope of the dependence of V2 on 0,
requiring the second (or higher) derivative to vanish. The
resulting EP differs from the former one in the range
where the imaginary part was large. Therefore, for

~

z
~

large, the EP in the region between the classical minima
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B. Quantum mechanics

The field theory in one dimension (time) is interesting
on its own, as it is the quantum mechanics of the anhar-
monic oscillator (AO). With the measure normalization
(1.3), the energy density

1 1 d xw(J)= ln f Dx exp f dt —xf dt dt
Vl

X
2

shown in Fig. 4(a). In Figs. 4(b) and 4(c) we show in the
same approximations the second and fourth derivative of
the EP, reflecting the characteristic features of the EP.
These derivatives are used to define the renormalized
quantities in scalar QFT. In the LE the derivatives are
taken at the nonsymmetric minimum, as the EP is com-
plex at P =0. In the MF and OE they are taken at P =0
(taking the derivatives at nonsymmetric minimum in the
OE gives the results similar to obtained in the LE). The
only method which gives mz and Pz with reasonable ac-
curacy for all values of z is the tree-level MF. To obtain
the reasonable values of the EP, the first-order corrections
have to be included (Fig. 2).

FIG. 3. As Fig. 2, but for the optimized expansion. The first
order (OE1) is shown by the dashed line, the second order (OE2)
by the dashed-dotted line, and the third order (OE3) by the dot-
ted line.

—~4+ JX (3.9)

is the ground-state energy of the AO interacting with the
constant electric field J can be calculated as the lowest

depends heavily on the way of fixing 0, and the second-
order OE is not well defined. To the third (and all odd)
order the situation is better, since Eq. (2.18) can be satis-
fied by real 0 &0. The comparison in Fig. 3 shows, that
the OE converge smoothly to the "exact" result only for

~

z
~

&
~
z„~ . Above the "phase transition" the contribu-

tions of higher orders seem to increase with increasing
~z ~, especially for small P. However, the Maxwell con-

struction applied in each order improves the shape of the
EP.

The energy density for vanishing source can be found as
the value of the EP at the stationary point (1.8). In the
MF approximation the EP has only one minimum at
/=0, where the value of the EP equals w(0). In the OE
the value of the EP at P =0 coincides with the OES; how-
ever, for z ~ —2.45 according to the Maxwell construc-
tion the value of the EP at minimum at /&0 should be
taken. For z & —2.85 this value is lower than OES and
approaches OEN for large values of

~

z ~, agreeing slight-
ly better with the "exact" result than w(0) calculated
directly (even if the branch OEN for z & —2.97 is
chosen). This result improves in higher orders, if the
Maxwell construction is done, i.e., the value of the EP at
the nonsymmetric minimum is taken, even if the
minimum at /=0 becomes deeper. A similar situation
appears already in the first order in the LE, as the EP
develops an infinitely deep minimum. For z & —3, when
the second minimum occurs the Maxwell construction
skips the infinite minimum and gives the reasonable re-
sult. The vacuum energy density calculated as the value
of the EP in the first-order LE, OE, and tree-level MF is

-4

(o)

-3.
I

3. z
I

LE

-4-

10 -
(b) LE

— 10.

0
(c)

R -5-

-1.5—

MF
Exact

OE

LE

i-5

--15

0 1. 2. 3 z

FICz. 4. (a) The value of the EP at the lowest minimum as
compared with the numerical result. (b) The renormalized mass
mR and (c) the renormalized coupling constant A.~ as the
second and fourth derivatives of the EP in zero-dimensional
QFT. In the LE the derivatives are taken at nonsymmetric and
in the MF and OE at symmetric minimum.
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For J=0 this is the standard textbook example of pertur-
bative calculations of bound-state energies in QM. After
proving' that the conventional perturbation series
diverges, much effort has been done to obtain the summa-
tion method. The reviews can be found in Refs. 19 and
20. Most of the methods consist in the partition of the
Hamiltonian on the free and interaction part, different
rather than standard. The optimized expansion is con-
nected with the method proposed by Caswell ' and Kil-
lingbeck in QM. In the perturbative calculation with
the Hamiltonian written as

H = —,
'

(p +Q x }+@[M + —,
' (m —Q )x ] (3.11)

they obtained very good evaluation of bound-state ener-
gies. For m &0 the first order gives the ground-state en-
ergy with the error less then 2%. For DW potential it
was necessary to sum more orders (for small values of A.

even 20 orders were not enough). It was shown by Steven-
son that the value of the GEP at minimum gives the
ground-state energy with the error less then 10%, for
DW. The OE in QM is a generalization of the Caswell-
Killingbeck perturbative approach for J&0, which en-
ables us to study the EP. It has been suggested by Steven-
son to improve the GEP in the perturbative calculation
with the Hamiltonian written as

eigenvalue of the Schrodinger equation

m2 xz+M —Jx 1t(x) =w(J)1t(x) . (3.10)
dx

V(P) =zP'+ P'+ ,
' (2z+ 12$—')- '~' . (3.13)

(b) An interpolated loop expansion (in the region be-
tween the classical minima)

z
V(P) = — + —,( —4z) —'" .

4

(c) An optimized expansion

(3.14)

obtained and the mean value of the position operator is
equal to P. In higher orders, P has no longer such mean-
ing, it can be treat only as an arbitrary parameter, which
the calculated energy should not depend on. The quantity
calculated in the method suggested by Stevenson is not the
EP, as opposed to our OE method, which is constructed
to maintain the interpretation of P to all orders. Beyond
the first order the results of both approaches differ.

To find the exact EP in QM, we have to solve Eq.
(3.10). The accurate eigenvalues for z &0 have been ob-
tained only for J =0 by variational methods. To find
the ground-state energy for J&0, we have integrated the
differential equation (3.10) numerically, requiring the
wave function to vanish asymptotically and not to have
any zero (for J =0 our results agree up to 8 digits with
the variational calculations }. Afterward, to obtain the
"exact" effective potential, the Legendre transform has
been found numerically.

In QM the first order EP in the approximations studied
in the previous section after rescaling (z= —,'m A,

V~ VA, '~, /~PA, ' } become as follows.
(a) A loop expansion

H= —,p + —,Q (x —P) + —,m P +A,P

+@[M + —,'m x ——,Q (x —P) ——,m Q —A,P"],
(3.12)

where apart from Q an arbitrary translation P of the posi-
tion operator is introduced. To the first order, the OEP is

V(P)=zg +P +—+ 40
with Q satisfying the equation

Q —2(z+ 6P )Q —6=0 .

(d) A mean-field expansion

Q —m —6k/
4Q

(3.15)

(3.16)

V(P) =—
4

n4 n'
(z+2P ) —Q

2 ] /2 1/2

5Q'+ 8$'+ —+ 5Q'+ 8P'+ — —16(Q'+ 8Q'P'+ Q)

5Q'+ 8P'+ ——
2 2

2

5Q'+ 8$'+ ——16(Q'+ 8Q'P'+ Q)
4
0

1/2 I /2

(3.17)

where Q satisfies

Q' —2(z+2$')Q —2=0 . (3.18)

The results for the ground-state energy (Fig. 5) are
similar, as in the zero-dimensional case, except there are
no divergences in the LE (they appear only in higher or-
ders). The "exact" effective potential (Fig. 6) has only one
minimum at /=0, as there is no spontaneous symmetry

breaking in QM. In the ILE it is flat bottomed. The
shape of the EP in the OE is as in zero dimensions, only
the numerical values are different. The first-order OE ef-
fective potential has an unsymmetric minimum for
z & —2.48, which becomes deeper than the symmetric one
for z & —2.69. It can be seen in Fig. 7 that the higher-
order contributions at /=0 increase for increasing

~

z ~,
just the same as for ui(0), as it equals V(0) in the OES.
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10. —

(b)

LE

0 1. 2.

LE

of the considered methods, as it is in lower dimensional
space-time. The unstable EP obtained in the OE, can be
attributed to the breaking down of the method. In 4 di-
mensions the parameter z= —,'m A,

'" '~ —~, as the
bare mass should be negative to cancel Io(mit ) contribu-
tion. In lower dimensions the OE method fails for
z~ —~. The EP is double well, while the "exact" one is
single-well shaped; therefore, the derivatives correspond-
ing to the renormalized parameters are completely wrong
(Figs. 4 and 8). If it persists in 4 dimensions, the
reparametrization in terms of renormalized mass and cou-
pling constant can introduce the unboundness.
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The "precarious" EP in the weak-coupling limit is dif-
ferent from the EP obtained with the perturbative pro-
cedure applied before sending the cutoff to infinity. '

In the MF the renormalization should be done at the
tree level as the divergencies appear. The renormalized
mass and coupling constant are given by (2.37) and (2.38).
Keeping the bare coupling constant A, fixed and positive,
the renormalized coupling constant approaches zero, and
the renormalized EP

V(Q)= —,mg P (3.21)

becomes trivial. This result has been obtained in large-N
expansion. If the bare coupling constant is infinitesimal
and negative,
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APPENDIX

In this appendix we will calculate the effective potential
V(Q, Q) in the optimized expansion up to the third order
in e. The first three terms in the expansion (2.18) are
drawn in Fig. 9 by means of Feynman diagrams. It is
straightforward to derive the corresponding momentum
integ rais:

1 1+ 1

2I ((m~ ) 2/I, (mR )
(3.22)

the same "precarious" EP as in the first-order OE is ob-
tained. However, in the MF approximation the weak-
coupling limit of the "precarious" EP agrees with the per-
turbative result. The different relation to the perturbative
approach is due to the different relation between bare and
renormalized coupling in OE (3.20) and MF (3.22). It was
observed by Stevenson' that the large-N limit restores the
connection between "precarious" and "perturbative" (()

theory. The loss of this connection can be the feature of
the OE approximation, but not the P QFT.

The results of OE and MF for scalar QFT with positive
bare coupling differ from the conventional, perturbatively
renormalized theory. The MF result that the renormal-
ized theory is trivial agrees with the rigorous results.
This indicates that the MF expansion is the most reliable

FIG. 9. The Feynman diagrams, which contribute to the EP
in the first three orders of the OE. The solid line denotes the
propagator 1/(k +0 ), the dots denote the quartic (24k) and
cubic (24AP) vertices, and the cross corresponds to the quadratic
vertex (0 —m —12k,Q ).
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V"'(y Q)=-'(m'+12zy' —Q') f "
+3m fdnP 1 dnP

(2m)" p +Q (2~)" p +Q

2

(A1)

and

1

(p +Q )(q +Q )(r +Q )[(p+q+r) +Q ]

n p2+~2 2 2~ n q2+~2

v"'(y, Q) = —1u,2

(2~)3n

48&2~2 ~P ~q 1d d
2n p2+~2 q2+~2 p +q 2+ ~2

dnp——(m +12k/ —Q ) f (2~)" (p +Q )

dnP 1 dnq—6X(m +12k,(h —Q )
(2vr)" (p +Q ) (2rr)" (q +Q )

(A2)

v' '(Q, Q) =432k, f dnp

(2')" (p +Q )

2

dnP 1

(2vr)" (p +Q )

2

3

288g
p 1 pd

n p2+Q2 3 2~ n p2+@2

+576k3 d„p 1 d„p d„qd„r3 n

~ 2 2(2m. )" (p +Q ) (2')"
1

(p '+ Q')'(q'+ Q')(r '+ Q') [(p +q + r ) '+ Q']

+ 1728K,'P' d d
2n 2+g2 2 2+~2 + 2+~2 2 n 2+~2

+288k, 3

(2~)" (p +Q )(q +Q )(r +Q )(s +Q )[(p+q+r)2+Q2][(p+q+g)2+Q2]

+ 1728K.3/2
2~ 3n p2+~2 q2+~2 &2+~2 p+ 2+g2 +& 2+~2

+48k, (m +12k,Q —Q ) 3n 2+ ~2 2 2+~2 2+~2 + + 2+g2

dnp 1 dnp
+72k, (m +1245 —Q )

(2~)" (p +Q ) (2rr)" (p +Q )

dnp
+72k, (m +12k/ —Q ) f (2rr)" (p +Q )

2

f dnP 1

(2m. )" (p +Q )

dnp dnq+ 144K, P ( m + 12k,Q —Q )
+2 2

q
2 ++2 p +q

2 +

+6~(m '+ 12~$' —Q')' dnp 1 dnp

2n "
p +~2 2m n p2+Q

dnp
I 2

+3/(m 2+ 12Zy2 Q2)2 f (2vr)" (p +Q )

dnp+ —,(m +12k,Q —Q ) f (2rr)" (p +Q )
(A3)

These expressions are finite only if the dimension of the space-time is less than 2. In zero dimensions we have to per-
form "the integration in zero-dimensional momentum space, " i.e., to drop all the integrals, setting the momenta equal to
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zero and we obtain

V(((),Q)= —,m P +X/ +InQ+e
Q

Q —m —6k/
2Q

48K 48K, y 6A,(Q —m —6A,y )+& —
8

—
6 + n'

(Q —m —6AP )

4n4

1584k. 3456k, P
~12 ~10

192K, (Q —rn —6A,Q )

~10
144K, (() (Q —m —6A.(t )

n8

9A, (Q —m —6A,P ) (Q —m —6A,Q )

n8 6n'

In one dimension the one-dimensional momentum integrals can be easily evaluated giving

(A4)

V(P, Q) = ,' m'P—'+A,$4+ —+e
4Q,

Q —m —6A, tt)

4Q

21K.+e sn'
4A, P 3A,(Q —m —6A,Q )

4 + 4n4
(Q —m —6A(t )

16Q

333k. 78K, P 105K, (Q —m —6A,P )

16~8 g7 160
8A, P (Q —m —6A, (() )

n'

3A,(Q —m —6A,P ) (Q —m —6A,Q )

4n' 32n'
(A5)
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