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Measurements distributed in time provide information about a system at more than one time; they
cannot be described in terms of the conventional language of a system quantum state evolving in
time. This paper, the second in a series, explores connections among various ways of formulating a
quantum-mechanical description of time-distributed measurements. The natural formulation, in-

volving a "sum over histories, " arises directly from Feynman's rules for combining probability am-

plitudes. One equivalent formulation uses a standard measurement model, in which the system is
coupled to a set of "measuring apparatuses. " A second equivalent formulation uses the language of
"effects" and "operations. " Still a third formulation attempts to create a new language of multiple-
time states and multiple-time eigenstates.

I. INTRODUCTION

Quantum mechanics is a logic—a set of rules —for
manipulating probability amplitudes. ' The task of this
logic—its only task—is to provide the joint statistics for
successive observations of some system. Often one im-
plements the amplitude logic in terms of a wave function,
or quantum state, for the system. Consider, for example,
a sequence of instantaneous measurements of some quan-
tity. One can calculate the required joint statistics from a
system wave function, which evolves in time according to
two rules —between measurements, unitary Schrodinger
evolution, and at the time of each measurement, a sudden,
nonunitary change called the "collapse of the wave func-
tion. " One is sometimes tempted to think that the
wave function represents an objective "state of the
system" —that it describes "physical reality" during the
time between measurements —but quantum mechanics al-
lows no such interpretation. The only reality is the net-
work of observations we make; nothing can be said about
a system between observations. The wave function is
merely a tool for implementing the amplitude logic of
quantum mechanics.

Nowhere is this conclusion clearer than for measure-
ments distributed in time. Nowhere clearer because the
notion of a system quantum state loses its usefulness. '

A measurement distributed in time (or a multiple-time
measurement ' ) provides information about a system
not at a single time, but at many times —perhaps over a
continuous time interval. During a sequence of measure-
ments distributed in time, the measurements can overlap
and interleave in complicated ways. There are in general
no times when the system is undisturbed by measure-
ments, no periods of unitary evolution. One can find no
"time of each measurement" when there should be a sud-
den disturbance of the system, no set of times when there
should be instantaneous collapses of the wave function.
Ordinary unitary evolution and the disturbances produced
by measurements become so entangled that there is no
way to derive the joint statistics from a system quantum
state evolving in time.

Despite these difficulties, one can still implement the

amplitude logic of quantum mechanics for a sequence of
measurements distributed in time. The natural formula-
tion ' involves a "sum over histories, " from which
one calculates the joint statistics. The effect of each mea-
surement is to restrict the sum over histories. A sum-
over-histories formulation is natural because each time-
distributed measurement can restrict the sum disturb the
system —at many times, instead of at a single time.

This is the second in a series of papers on measure-
ments distributed in time. The first paper in the series
developed a path-integral formulation for time-distributed
measurements which provide information about the posi-
tion of a system. Aharonov and Albert and, more recent-
ly, D'Amato ' have given a similar sum-over-histories
formulation for multiple-time measurements involving
spin.

In this paper I review in Sec. II the sum-over-histories
formulation for measurements distributed in time, both
for measurements involving position (Sec. IIA) and for
measurements involving spin (Sec. IIB). The purpose of
this paper is to make connections between the sum-over-
histories formulation and other, equivalent formulations
for measurements distributed in time. One equivalent for-
mulation (Sec. III) recovers the notion of a quantum state
by extending the quantum-mechanical analysis to include
a set of measuring apparatuses, " each of which records
and stores the result of one measurement. ' ' " A
second equivalent formulation (Sec. IV) uses the language
of "effects" and "operations, "' which have been used ex-
tensively to analyze measurements in quantum mechan-
ics. '3 ' Still a third formulation (Sec. V) attempts to
create a new language of multiple-time states and
multiple-time eigenstates. ' All of these formulations
testify to the same conclusion: measurements distributed
in time cannot be analyzed in terms of the conventional
language of a system quantum state evolving in time. A
final section (Sec. VI) offers concluding remarks.

II. SUM-OVER-HISTORIES FORMULATION

A sum over histories provides a natural language for
describing measurements distributed in time —natural be-
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cause a sum over histories arises directly from Feynman's
rules' for combining probability amplitudes. Consider
two quantities 3 and B. The amplitude of A given B
times the amplitude of B is the joint amplitude of A and
B. Depending on whether B is potentially observable, the
probability of A is derived from the joint amplitude in
one of two ways. If 8 is unobservable, then the joint am-
plitude, summed over all values of B, yields the ampli-
tude of 2, whose absolute square is the probability of A.
If B is observable, then the absolute square of the joint
amplitude is the joint probability of A and 8, which,
summed over B, yields the probability of A.

In this section I outline the sum-over-histories formula-
tion, first for measurements involving position and then
for rneasurernents involving spin, and I interpret the for-
mulation in terms of Feynrnan's rules.

A. Measurements involving position

Consider a one-dimensional, nonrelativistic, quantum-
mechanical system with position x, momentum p
([x,p]=i%'), Lagrangian L (x,x;t), and Hamiltonian H.
(Throughout this paper Hilbert-space operators are dis-
tinguished by a caret. ) Denote the 5-function normalized
eigenstates of x by

~

x }.
Consider further a sequence of Q measurements, each

of which provides time-distributed information about
x (t). Each measurement can be regarded as sampling, at
a particular time t, the value of a quantity y (t), which is a
functional of x (t') for t'& t. Choose the functional form
of y (t) to be

y(t)= f dt' Y„,(x(r'))

dt' Y... x t' (2.1)

where Y, denotes a real function of position which de-
ft

pends on both t and t' and which vanishes identically if
t t' & 0 or t t' & b, , —& 0. Notic—e that a sampling of y (t)
yields information about x (t ) in the past, during the in-
terval [t A„t] of durat—ion b, Finally, let the samplings

of y (t) occur at times t„.. . , t~ (t) & t2 & ' ' & rg); then
the Q sampled quantities are given by

f

y(tq) f dt Yi i(x(t)) q 1 Q (22)
q t

After the samplings are completed, one has accumulat-
ed Q numbers, one result for each sampling. Label the re-
sult of the qth sampling by y~. The task of quantum
mechanics is to provide a joint probability distribution
P(y), . . . ,y&) for the samplings to yield the sequence of
results y&, . . . ,y~. This joint probability distribution can
be derived from a Feynman path integral, ' but before
writing the path-integral expression, two further in-
gredients are necessary.

First, one must take into account the irresolution or im-
precision of the samplings. Such irresolution can be in-
corporated in a conditional probability amplitude
Y(y —y), called the resolution amplitude; Y(y —y) is the
amplitude to obtain the result y in a sampling at time t,
given that y(t) has precisely the value y. (For simplicity,
I assume here that all the samplings have the same resolu-
tion amplitude and that the resolution amplitude is only a
function of the difference y —y. ) The form of the resolu-
tion amplitude must come ultimately from a detailed
description of whatever apparatus is used to make the
measurements, but quite generally the resolution ampli-
tude means that even if y (t) has a precise value, the result
of a sampling at time t cannot be predicted with certainty.

Second, one must specify an initial state for the system
at some time to that precedes all times that contribute to
the sampled quantities (to&tq —6, for q= 1, . . . , Q).
Let

~ Po( to ) } be this initial state, with the corresponding
wave function Po(x, rp) = (x

~
Po(ro) }.

In hand now are the ingredients for deriving the joint
probability distribution P(y„. . . ,y~). Derive it from a
joint probability amplitude @(y), . . . , y[2,'x, tg), which is
the amplitude that the sarnplings yield the results
y], . . . ,yQ and that the system is at x at time tQ. This
fundamental joint probability amplitude has the following
path-integral expression:

(i/R)S[x(t))y (x (r ) r )
(x, tg) Q

4&(y„. . . ,y&,x, t&)= f ux(r) g r(y, y(tq))—
0 j=l

(2.3a)

In this expression the integral denotes a sum over all
paths x (t) on the interval [to, t~] such that x (t&)=x [ini-
tial positions x (to) are summed over]; the sampled quan-
tity y(tz) is evaluated from x(t) using Eq. (2.2) 6 and

fg
S[x(t)]= f drL(x, x;r)

is the action for the path x (t).
Interpretation of the path integral (2.3a) arises from

Feynman's rules. ' Select a path x (t), and begin with the
quantity e' "' "'", the familiar quantum-mechanical
amplitude for the path, conditioned on the initial value
x (to). Multiply by the initial wave function $0(x (ro) rp),
the amplitude for the path's initial value x (to); thereby

I

obtain the unconditioned amplitude

(i/R)S[ (t)]q x( (t ) t )

for the path x (t). For each q =1, . . . , Q, multiply by a
resolution amplitude f(y~ —y(t~)}, the amplitude to ob-
tain the result yq in the qth sampling, given the path s
value for y (tq) or, more generally, given the path x (t);
thereby find the joint amplitude

Q f(yy( t ))e(i/ii)S[x(i)]q(X(r)r)
q=1

for the sequence of results y&, . . . ,yQ and for the path
x (t). Finally, compute the fundamental amplitude
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4(3T&, . . . ,yg, x, tg) by summing over all paths such that
x(tg)=x.

Why not sum over final values x(tg) as well? Because
the system's final position is potentially observable by an
independent measurement. Hence, first take the absolute
square of @, and then integrate over final positions x to
obtain the joint probability distribution

&(y&, . . . ,yg)= f dx l@(y), . . . ,yg, x, tg) l'. (2.3b)

This joint probability distribution is normalized with
respect to the integration measure dy1 . - dy~, i.e.,

I= f dyl dyg~(yl, . ,3g), (24)

provided that the resolution amplitude Y(y —y) and the
initial wave function gp(x tp) are normalized to unity [see
Eq. (3.8)].

Equations (2.3) constitute the path-integral (or sum-
over-histories) formulation for time-distributed measure-
ments involving position. Mensky' ' has given a similar
path-integral formulation for specific kinds of time-
distributed measurements made on a harmonic oscillator.

l

In particular, Mensky has analyzed measurements of the
Fourier components of x (t) when the system is a harmon-
ic oscillator. ' Schmid' has also recently considered a
path-integral formulation for time-distributed measure-
ments on dissipative linear systems.

Notice that if y (t) =x (t), Eqs. (2.3) describe a sequence
of instantaneous measurements (samplings) of position.
In this situation the resolution amplitudes restrict the sum
over paths only at the measurement times tq. The periods
of unrestricted sum over paths between measurements
correspond to unitary evolution, and the restriction of the
sum at each measurement time corresponds to instantane-
ous wave-function collapse. In contrast, for measure-
ments distributed in time, the resolution amplitudes re-
strict the sum over paths at many times; there is, in gen-
eral, no sharp demarcation between unitary evolution and
the disturbances produced by measurements.

It is convenient to rewrite the fundamental amplitude
(2.3a) in terms of a kernel which is independent of the
system's initial wave function. There are two good
choices for such a kernel. One choice is defined by

(x, tg ) Q
(y yg'»tg lxo t )—= f ~x(t) + 5(y —y(t )) eI'~"'s("'"},

q=1
(2.5)

(x, tg ) Q
x t Yy —y tq e' (2.6)

q=l
takes into account the resolution of the samplings. It can be interpreted as the amplitude that the samplings yield the re-
sults y&, . . . ,yg and that the system is at x at time tg, given that the system was at xo at time to The fun.damental am-
plitude (2.3a) can now be written as

C&(y&, . . . ,yg ,x, tg)= f'dxp~(y&, . . . ,yg, x, tg lxp tp)P (pxtpp) .
In the absence of samplings, both ~ and M reduce to the ordinary propagator

(x, tg )

&(x, tg lxp, tp)=— f. . .~ (x) t"e"' '"'"'=&»
l
U(tg, to) lxo&, (2.8)

the conditional amplitude that the system is at x at time tg, given that it was at xp at time to. In Eq. (2.8), U(tg, to) is
the unitary evolution operator corresponding to the system Hamiltonian H. Both kernels can be regarded as "modified
propagators" —modified because of the measurements.

Important for later developments are the following Fourier-domain representations of the kernels:

—ayK(k„. . . , kg xtg I
xo to)= 'f H dy, e— ' ' K(yi . yg'x tg lxo to)

q=1

(2.7)

where the integral denotes a sum over all paths x (t) on the interval [to, tg] such that x (tp) =xp and x (tg) =x. In Eq.
(2.5) the 5 functions restrict the sum over paths so that only paths which have the values y~, . . . ,yg for the sampled
quantities contribute to the sum. The kernel ~ can be interpreted as a conditional probability amplitude, the amplitude
that the sampled quantities have precisely the values y1, . . . ,y~ and that the system is at x at time t~, given that the
system was at xo at time to. The second choice for a kernel, defined by

Q
~(y . yg x tg lxo to)=—f +dy, Y(y, —y, ) (y yg x tg I

q=1

(x, tg ) Q= f &x (t) exp —S[x (t)]—g fikqy (tq )
(xO, tO) q=1

(2.9)

, . . . , kg,'x, tg l
xo to)—= f + e q q ~(y& yg;x, tg l

xo, t )
, (2m. )'i

Q+ Y(kq) K(k(, . . . , kg, x, tg l
xp, tp) .

q=1
(2.10)
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Here Y(k) is the Fourier transform of the resolution am-
plitude:

f d (y y) ~(—
)

—'k(- — ) (2.11)

B. Measurements involving spin

Consider a spin- —,
' (two-level) system with spin

S=fio/2 and Hamiltonian H (e.g., in the presence of a

magnetic field B, the Hamiltonian is H = —pS B, where

p is the system's gyromagnetic ratio). The components of
the vector operator o. can be represented by the Pauli ma-
trices; one need only note here the commutator of the
components of & along arbitrary unit vectors e) and e2..

[&.e),&.ez]=2i& e(Xez .

Let e be a unit vector, and denote the eigenstates of the
spin component & e by I

o,e ), where o = + 1 is the eigen-
value, i.e.,

N

y(t, )= g cr(tqj) e,q + qj z

is the average of the z-spin values at the times tqj.
Just as for measurements involving position, label the

results of the samplings by y), . . . ,y~, and introduce a
resolution amplitude Y(y —y) to account for the impre-
cision of the samplings. In addition, let

I Pp(tp)) be the
initial state of the system at some time to that precedes all
the times tql , th'en (crp, ep I Pp(tp)) is the amplitude that
o"eo has the value o.o at time to.

Before formulating a sum over histories, two further
preliminaries are necessary. First, one must order expli-
citly the times tqj To .do so, introduce an index P which
runs from 1 to

(8 is the total number of times tqj). Further, define a map
from the index P to the pair of indices qj:

& eI cr, e) =0 Io.,e) . (2.12)
cit3J t3 = (P) (2.14)

The task now is to develop a sum-over-histories formu-
lation for a sequence of time-distributed measurements in-
volving spin. The measurements can be regarded as a se-
quence of samplings of a quantity y (t) at times t„.. . , t&

(t) & t2 « . tg). The qth sampled quantity y (tq ) de-
pends on previous spin values, in a way analogous to the
qth sampled quantity for measurements involving position
[Eq. (2.2)]. There are, however, two important differ-
ences. First, because spin is a discrete quantity, I find it
convenient to let y(tq) be a sum of contributions from a
set of discrete times tqj, j = 1, . . . , Xq, where

tq) &tq2« ' ' tqz &tq. The case where y(tq) is an in-'—
tegral over contributions from a continuous time interval
could be treated by a limiting procedure. Second, I want
to allow y (tq ) to receive contributions from different spin
components at different times. To deal with this possibil-
ity, introduce for each time tqj a unit vector eqj, which
specifies the spin component that contributes to y(tq) at
time tqj. These considerations lead to the following form
for the qth sampled quantity:

N

y(tq)= g &~)(cr(t~)) eq, ) .
j=1

(2.13)

Here 1'qi is a real-valued function of spin component
(real-valued function defined on the domain consisting of
+1 and —1).

Worth emphasizing are the instructions Eq. (2.13) gives
for computing the qth sampled quantity: y (tq ) is a sum of
contributions from the times tqj,

' to obtain the jth contri-
bution, apply the function Y+ to the value of the spin
component cr eqj at time tqj. For example, if eqj e, and
Yqi(cr)=o'/Nq then

Equation (2.14) introduces a shorthand notation: (p)
stands for qpjp —i.e., t(p] ——tq and e(pi ——e - . Finally,qgp
choose the map so that P orders the times t (assume no
two times coincide) —i.e.,

t(1) & t(2) « t(B) (2.15)

B
y q g qq (p) (p)

P=1
(2.16)

Notice that o.(0]—=o.o and o(B+1]=—o do not contribute to
the sampled quantities.

As the analogue of e('/R)s["(t)), introduce a probability
amplitude W(cr()), . . . , o(z+)) I cr(p)), defined as the am-
plitude that cr-e(p] has the value o.(p] at time t(p], for
P=1, . . . ,8 +1, given that cr e(p) had the value cr(p) at
time t(p) Put anothe. r way, W(cr((), . . . , cr(z+)) I cr(p)) is
the amplitude for the history o-(oi, . . . , o.(B+1], condi-
tioned on the initial value o.(0). One can write an explicit
expression in terms of the evolution operator U(t, t') cor-
responding to the system Hamiltonian H:

It is useful to extend the index P to P=O so that the initial
time is tp=t(p) &t()) and to P=B+1 so that
t&=t(B+1]&t(B]. One can choose initial and final spin
directions eo:—e(oi and e~

—=e(B+1] for convenience, since
these spin directions are not specified by the samp1ed
quantities.

The second preliminary is to identify the analogue of
e'i") ("'"), the amplitude for a path x (t), conditioned on
the initial value x(tp). Let cr(t)) ——+1 be a value for the
spin component cr.e(p] at time t(p~', a sequence of spin
values o.(o], . . . , o.(B+1] is a "history" for the system. The
value of y (tq ) for the history cr(p), . . . , cr(z+ ) ) is obtained
by applying the prescription (2.13):

B+1
M(cr()), . . . , cr(g+)) I

cr(p))= + (cr(tt), e(tt) I U(t(tt), t(t) )) )
I cr(t)-)) e(t)-() ) .

P=1
(2.17)
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The pth term in this product is the conditional amplitude that »T e(.a) has the value o(t)) at time t(a), given that o"e(t)
had the value o.(~ ~) at time t(~

Define now a joint probability amplitude @(y), . . . ,yg,'o, tg), the amplitude that the samplings yield the sequence of
results y&, . . . ,y~ and that cr.e~=cr.e(~+~) has the value o'—o.(z+~] at time t~. This fundamental amplitude can be
written as a sum over histories:

0 (y) r ~ ~ ~ ryg,'(7rtg ) =
Q

Q Y(y, —y(t, )) ~(~()) . ~ o(a+() I
~(o)) & o(o) e(o) I 4o(tp) & .

O(O) O(a)

(2.18a)

In this expression the sum includes all histories
(T(p), . . . , (T(a+)) such that o(a+))——o, and y(tq) is
evaluated from each history using Eq. (2.16).

The sum over histories (2.18a) is closely analogous to
the path integral (2.3a), and the interpretations of the two
are virtually identical. Select a history o(0], . . . , cr(z+&],
and begin with the amPlitude M(o((), . . . , o(a+() I

(T(p)),
the amplitude for the history, conditioned on the initial
value a.(o]. Multiply by the initial amplitude
&o(o),e(p) I gp(tp)& the amplitude for o"e(p) to have the
value o(0) at time t(0], thereby obtain the unconditioned
amplitude

~(o())~ ~ . r (a+() I (o))& (p), (o) I A( o) &

for the history o(p), . . . , o(a+)). For each q =I, . . . , Q,
multiply by a resolution amplitude Y(yq y(tq )), th—e am-
plitude to obtain yq in the qth sampling, given the
history's value for y(tq) or, more generally, given the
history cr(0), . . . , o.(~+ &),

' thereby find the joint amplitude

Q

Q Y{yq y(» )) ~(o(1) o(a+1) I o(o))
q=1

x&(T, ,, e, ) I f (t ))

for the sequence of results y), . . . , yg and for the history
o(p), . . . , (T(a+(). Finally, comPute the fundamental am-
plitude @(y(, . . . ,yg, cr, tg) by summing over all histories
such that o.(~+ &)

——cr.
The joint probability distribution to obtain the results

y], . . . ,y~ follows immediately as

&(y(, . . . ,yg)= g I
4&(y(, . . . , yg,.(T, tg)

I

'. (2.18b)

It is normalized with respect to the integration measure
dy, dyg, provided that Y(y —y) and

I Po(to) ) are nor-
malized [see Eq. (3.23)].

Equations (2.18) constitute the sum-over-histories for-
mulation for time-distributed measurements involving
spin. Aharonov and Albert have outlined a similar sum-
over-histories formulation, which has been developed in
greater detail by O'Amato. '

The introduction of kernels follows closely the analo-
gous development for measurements involving position
[Eqs. (2.5)—(2.7)]. Here I merely list the appropriate defi-
nitions and relations:

K(y( . . . yg', (J tg I
(Tp tp) —=

Q

II&{y —y(t » ~«() . ~(a) ol o»
O( 1 )T ~ ~ T O(g) 'q 1

(2.19)

Q
X'(y) . . . yg'(T tg I

o'p tp)—:f Q dyq Y(yq yq ) K(y), . . . ,yg'0', tg I
o'p, tp)

q=1

Q+ Y(yq —y (tq )) W(o()), . . . , o(a), o
I
(To),

O( f )y ~ T O(g) 'q 1

N(y(, . . . ,yg(T»g)= +Xi (y„. . . ,yg, o, tg I
(Tp to.)&opep

I gp(to) & .
Op

In the absence of samplings, the kernels (2.19) and (2.20) reduce to the ordinary propagator

~((T(() . . o(a) o
I

(To) —&o eg I
U(tg tp)

I
(To eo&

(1)' ' ' ' ' (B)

(2.20)

(2.21)

(2.22)

[cf. Eq. (2.17)].
The Fourier transforms of the kernels (2.19) and (2.20) are defined exactly as in Eqs. (2.9) and (2.10). Indeed, with the

replacements xp~crp and x~o, Eqs. (2.9) and (2.10) can be taken over to the spin case as they stand, except for the
latter equality in Eq. (2.9), which becomes

a(k), . . . , kg, o, tg I op, tp)=
O( l )) ~ ~ ~ y O(g)

Q
~((T())r. . . , (T(a)~oI(To) exP 'i g kqy (tq )—

q=1
(2.23)
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III. MEASUREMENT MODEL

In this section I show the equivalence of the sum-over-
histories formulation to a model that uses the convention-
al language of nonrelativistic quantum mechanics —a
quantum state evolving in time. The model is a standard
measurement model, which involves enlarging the
quantum-mechanical description to include "measuring
apparatuses" that record and store the results of the sam-
plings.

A. Measurements involving position

Begin with the Fourier-domain representation of the
kernel «[Eq. (2.9)], written in the form

'Q (i/R)se ff[x (t) ]«(k], . . . , kg, x, tg I
xp, rp) =, ,

&x (r) e

(3.1)

where the effective action S,rr[x (t)] is derived from a La-
I

grangian

Q
Leff(x&x&r)=L(x x r&) g Rkq Y«(x(t)) .

q=1

The corresponding effective Hamiltonian is

Q
H,rr=H+ g fikq Y, , (x) .

q=l

(3.2)

(3.3)

«(k&, . . . , kg ,x, tg'Ixp, tp)=&x
I Upff(tg rp) Ixp» (3.4)

where U,rr(t, to) is the unitary evolution operator for the
effective Hamiltonian (3.3). Keep in mind that all the
"effective" quantities just defined depend on k&, . . . , kg,
although that dependence is not indicated explicitly.

Using Eq. (3.4), one can write the kernel ~ and the
fundamental amplitude N as

Equation (3.1) shows that «(k&, . . . , kg, x, tg I
xp, to) is the

ordinary propagator for the effective action; hence, it can
be written as

dkq, k y
~(y& . yg'»rgIxoro)= f +, e ''Y(k ) & IU (rg ro)l o&

, (2')'~

dkqc(y, -,yg', x,rg)= f / e ' 'Y(k, ) &x
I

U,ff(rg, ro) I qo(ro)&
, (2')'

(3.5)

(3.6)

[Eqs. (2.10) and (2.7)]. These relations can be used to demonstrate the following normalization conditions:
Qf dy] ' ' dygdx M (y&, . . . yg x rg Ixp tp)A (y], ~,yg x, rg Ixp, rp)= f dk

I
Y(k)

I
5(xp —xo)

Qf "k IY(k) I' &A(rp) Ifo(ro)& .

(3.7)

(3.8)

Equation (3.8) verifies the normalization of P(y„. . . ,yg )

given in Eq. (2.4), provided that Y(k) and
I
go(tp) & are

normalized to unity, conditions which I assume hence-
forth.

Turn now to constructing the measurement model. In-
troduce for each sampling a "measuring apparatus, "
called a meter, which is a one-dimensional quantum-
mechanical system with zero self-Hamiltonian. Let the
qth meter have canonical coordinate yq and canonical

momentum pq ([yq,p„]=i fi5q, ) Denote the. 5-function

normalized eigenstates of yq by Iyq & and the 5-function

normalized eigenstates of pq /R by I kq &

[pq I
kq&=fikq I kq &; &yq I kq &=(2n) ~ e ]. Couple

the meters to the system so that the total Hamiltonian is
given by

Q
H...=H+ g pq Y, , (x) .

q=l
(3.9)

This total Hamiltonian leaves the meter momenta con-
served, and it displaces the qth meter's coordinate by
y(tq). Thus the coordinate of the qth meter stores the
quantity one wants to measure.

Let the initial state of the qth meter be
I
Yq&, with

wave function &yq I Yq & =Y(yq) and with momentum-
space wave function

& kq I Yq &
=Y(kq ) =f, Y(yq )e q q . (3.10)

Q
=H„, g 5(k, —k,')

q=l
(3.12)

and the evolution equations for U„,(t, to) and U,ff(t, tp),
one can show that the (unnormalized) vector

& k), . . . , kg I
U„,(t, tp) I

4(rp) &,

which lies in the system Hilbert space, satisfies the same
temporal differential equation as the (normalized) state
vector

U ff(r ro)
I @o(ro) &

which also lies in the system Hilbert space. Comparison
of initial conditions at t =to shows that these vectors are

Notice that all the meters have the same initial wave func-
tion. The initial state for the total system is

I
+(ro)&=

I Y]& ' '
131

I Yg& I po(ro)& (3 11)

Now let U„,(t, tp) be the unitary evolution operator for
the total Hamiltonian (3.9). Using the property

& k), . . . , kg I H„, I
k'), . . . , kg&
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multiples of one another and thus establishes the relation

) . g I U(o((tg t())1%'(to)&
T

Q

Q Y(kq) U,ff(tgitp) I fo(t o)& . (3.13)

An equivalent relation in the meters' coordinate space
reads

&y) . yg I
U(.«tg, to)

I
q'(to) &

dkq
1~~e

~ ~Y kq Uff tg to 0 to
, (2m)'

(3.14)

=(I)(y„. . . ,yg,'x, tg) . (3.15)

This same relation was obtained in Sec. III A of Ref. 7 in
a less direct, but perhaps more physically illuminating
fashion.

Equation (3.15) establishes the connection between the
path-integral formulation and the measurement model. In
terms of the model, the fundamental amplitude
C)(y), . . . ,yg,.x, tg ) is the total wave function for the sys-
tem and meters, evolved to time t~ usi. ng the Hamiltonian
8„,; it can be interpreted as the amplitude that the meter
coordinates have values y1, . . . ,y~ and that the system is
at x at time t~. In the model the resolution amplitude
Y(yq —yq) arises naturally as the initial wave function for
the qth meter, displaced by a distance yq; it can be inter-
preted as the conditional amplitude to find the qth meter

I

One can now use Eq. (3.14) to show that the total wave
function for the system and meters at time tg is simply
the fundamental amplitude (3.6):

&y) . yg» I U(0((tg to)l p(to)&

B. Measurements involving spin

Begin again with the Fourier-domain representation of
the kernel x. [Eq. (2.23)]. By using the relation

Q B
g kqy(tq)= Q kq Y(p)(o(p))

q =1 P=1
(3.16)

[Eq. (2.16)] and by using the explicit form (2.17) for
W(o()), . . . , o(p), o

I
pro), one can write )~ as an ordinary

propagator

~(k„. . . , kg', a, tg I oo, to)= &o,eg I
U,ff(tg to)

I
oo eo&

(3.17)
where

. at yq, given displacement by yq. One can then reinterpret
the kernel )t(y), . . . ,yg, x, tg I

xp tp) [Eq. (2.5)] as the am-
plitude that the meter coordinates are displaced by the
distances y1, . . . ,y~ and that the system is at x at time
t~, given that the system was at xo at time to. This
makes clear the reason for integrating over y), . . . ,yQ at
the amplitude level in Eq. (2.6): y), . . . , yg are unobserv-
able displacements of the meter coordinates.

Two further aspects of the model deserve mention.
First, the model reveals why the Fourier-domain represen-
tations of the kernels [Eqs. (2.9) and (2.10)] have such a
simple form. The reason is that the meter momenta are
conserved in the model. Second, one sees clearly why I re-
strict the sampled quantity y(tq) to have the functional
form (2.2)—an integral over separate contributions from
times t'. Were one to allow y(tq) to receive contributions
that involve products of positions evaluated at different
times, then the resulting effective action could not be de-
rived from an effective Lagrangian which is local in time.
The path-integral formulation could still be written down
in exactly the same form, but whether it would be
equivalent to some measurement model is not apparent.

U,ff(tg, to)= U(tg, t(p)) Q exp[ —ikq Y(p)(& e(p))]U(t(p), t(p )))
P=l

is the evolution operator for the effective Hamiltonian
B g

H,rt=H+ g 5(t t(p))Akq Y(p)(&—e(p))=H+ g ))lkq g 5(t tqj)YqJ(& eqz) .—
P=1 q=1 j=1

(3.18)

(3.19)

In Eq. (3.18) the product is time ordered —i.e., increasing values of P on the left.
Just as for measurements involving position, one can, using Eq. (3.17), write new expressions for the kernel ~ and the

fundamental amplitude N:

y) . yg'a' Q I
ao to)= f +, e Y(kq) &cr eg I

U tr(tg to)
I

oo'
, (2n)'i

I(y(),). . . ,yg, a, tg)= f Q e ' 'Y(kq) &a, eg I U,tt(tg, to)
I
Po(to)& .(2~))/2

(3.20)

(3.21)

These relations lead to the normalization conditions,
Qg f dy) . dyg A '(y), . . . ,yg ,a, tg I a(), to).~(y), . . . ,yg, o, tg I

o(), t())= f dk .
I
Y(k)

I
5

CT

Qf dy) dyg I +(y) . yg a tg) I

'= f dk
I
Y(k)

I

'
&(i'o(to)

I 4o(to) &

(3.22)

(3.23)
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the latter of which verifies the normalization of
P(y i, . . . ,yg ) [Eq. (2.18b)].

Construction of a measurement model in this case
proceeds just as for measurements involving position.
One introduces the meters and their initial states. The
form (3.18) for U,tt(tg, to) can be used directly to estab-
lish Eq. (3.13) in this case, where U„,(tg, to) in Eq. (3.13)
is the evolution operator corresponding to the total Ham-
iltonian

1V
Q

H«, H+ g——p~ g 6(t —tqj) Yq~(& eqj )
q=1 j=1

linear mapping of the space of trace-class operators into
itself, which is positive,

W~ (X))0 for all X)0,
and trace-decreasing,

tr[W„—(X)](tr(X) for all X)0 .

The operation determines the associated effect through
the condition

tr[W~(p)]=tr(pF —„)=P(A) .

B
=H + g 5(t —t(p) )pq Y(p) (& 'e(p))

P=1
(3.24)

Let p—denote the state of the system just after a measure-
ment that yields the result A. The operation Wz relates
the state before the measurement to the state afterward by

for the system and meters. One can then proceed to the
desired result —that the fundamental amplitude
@(y ,i. . . ,yg, cr, tg) [Eq. (3.21)] is the total wave function
for the system and meters, evolved to time tg using the
Hamiltonian H,g, .

Aharonov and Albert and O'Amato ' have used a
slightly different, but equivalent measurement model for
time-distributed measurements involving spin. Peres and
Wootters" have analyzed in detail a special case of the
measurement model specified by the Hamiltonian (3.24);
the case they consider is time-distributed measurements
involving only the z component of the spin.

IV. EFFECTS AND OPERATIONS

Effects and operations' provide still another
mathematical language for describing measurements. The
language is based on ordinary Hilbert-space operators, but
it can do without the conventional notion of a quantum
state evolving in time, because it is couched directly in
terms of the results of measurements.

To illustrate how this language works, consider an in-

stantaneous measurement of an observable A, which has
discrete eigenvalues A and eigenvectors J A &. Label the
possible results of the measurement by A. For each A,
there is an effect F„,a positive (self-adj—oint) operator that
is bounded from above by the unit operator:

0&F~ =F~ (1 .

The effect F„gives the probability —P(A ) of obtaining the
result A by

P( A ) =tr(pF~ ),
where~ is the density operator of the system. If the re-
sults A constitute a complete set of possible results, then
P(A ) is normalized,

1= gP(A),

which implies that the effects are complete:

F—

For each result 3 there is also an operation Wz, a

dkq, -k ye 'Yk Uff tg ta 4
, (2w)'

[Eq. (3.5)], whose matrix elements in the position basis
yield the kernel M [Eq. (2.6)]:

m(yi, ,yg» tg I
xo to) = &x

I
f

y, . y I
xo & . (4.2)

Just as A can be viewed as a modified propagator—
modified by the presence of measurements —so I — . . .

X~ Xg
can be viewed as a "modified evolution operator. " The
fundamental amplitude (2.7) can now be written as

+(y . . . ,yg, ~, tg)=&x Il; . . .; IA(to)& (4.3)

Notice the connection between I „.. .„and the total evo-

lution operator of the model in Sec. III A:

p—„=~„-(p)/P(A ) .

Effects and operations generalize the usual description
of measurements in terms of projection operators. The
generalization provides a natural way to incorporate the
irresolution or imprecision of a measurement, and it is
essential when dealing with measurements of an observ-
able with a continuous spectrum. One can recover the
projection-operator description in the case where the pos-
sible results are the eigenvalues A of A. One chooses
operations defined by Wz (p) =Pz pP&, where
P„=

I

A & & A
I

projects onto the eigenstate
I

A &, and one
finds that P(A)=tr(pP&)=&A Ip I

A &, Fz Pz, and——
p~ =~~.

Effects and operations permit a complete description of
a sequence of instantaneous measurements. The statistics
of each measurement are determined by a set of effects,
and the system state after each measurement is given by
an operation, which generalizes the usual notion of wave-
function collapse (state reduction). The only other in-
gredient is unitary evolution, which takes the system state
from one measurement to another.

To see how effects and operations arise in the context
of time-distributed measurements, consider measurements
involving position (Sec. II A). Define first an operator

I„,. =—f d d
I

&~(y„. . . ,yg, , tg I,t )&
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I, . . ., ~q,(tp))=(yi, . . . ,yg ~
U, ,(tg, tp) ~+(tp)) (44)

[Eqs. (3.14) and (4.1)].
Consider now the joint probability distribution

P(y i, . . . ,yg ) for obtaining the results y &, . . . , yg [Eq.
(2.3b)]. Using Eq. (4.3), one can write P(y „.. . ,yg) as2p

which emphasizes again the role of I — . . . „- as a modified
Vi

''
Vg

evolution operator. In terms of the measurement model
of Sec. IIIA, the state (4.9) is obtained by projecting the
total state U«, (tg, tp)

~

%'(tp) ) onto the results yi, . . . ,yg
and then normalizing [cf. Eq. (4.4)].

Rewriting Eq. (4.9) in terms of the system density
operator

=tr[pp(tp)F-, . . . „- ] (4.5)
p~ . . . (tg)—:

i P (tg))(Q- . . . (tg) i, (4.10)

one finds that
where pp(tp):

~
Pp(tp))(gp(tp)

~

is the system's initial
density operator (which can now be generalized to be a
mixed state), and

(4.6)

is an effect density.
' The measure

dE— . . . — —=dyi ' ' dygF-

is an effect Ualued m-easure, ' normalized by

1= f dyi. . dygF (4.7)

&[P(yi . yg)] (4.8)

The first term on the right is the system wave function at
time t~—the amplitude that the system is at x, condi-
tioned on the results y1, . . . ,y~. The second term on the
right is the "amplitude" that the samplings yield the re-
sults yi, . . . ,yg. [There is clearly a phase ambiguity in
obtaining this amplitude from P(yj, . . . ,yg ), but the am-
biguous phase has no effect on the subsequent behavior of
the system. ) Equations (4.3) and (4.8) show that

~
g- . . .„- (tg))= (4.9)

[P(yi, . . . ,yg)]'"

[Eqs. (4.1) and (3.7)]. The lesson taught by Eqs.
(4.5)—(4.7) is that the statistics of a sequence of samplings
of y (t) are derivable from an effect density.

The state of the system after a sequence of samplings of
y (t) is specified by an operation density. Let

~ g„- . . . — (tg) ) denote the state of the system at time tg,
just after a sequence of samplings which yield results
y1, . . . ,y~. To determine this state, use a Bayesian logic
applied to amplitudes. Start with the fundamental am-
plitude 4(y&, . . . ,yg', x, tg), the joint amplitude for the re-
sults yi, . . . ,yg and for the system to be at x at time tg
Using Feynman s rules for combining probability ampli-
tudes, write the fundamental amplitude as a product:

4(yi, . . . ,yg, x, tg)=(x
~ g . . . (tg))

p- . . . — (tg) =
. . . z (pp(tp))

(4.1 1)

(once again, one can generalize to a mixed initial state),
where W is an operation density ' defined by

(4.12)

The measure dy1 . dy~u . . . is an operation-valued
Vl '''Vg

measure. ' The operation density (4.12) is a special kind,
which maps pure states to (unnormalized) pure states.
One can show immediately the relation between the opera-
tion and effect densities:

tr[W . . . (pp(tp ) )]= tr[pp(tp )F . . . ]

,yg) (4.13)

One has now translated the path-integral formulation
into the language of effects and operations. The effects
and operations, like the path integral, describe the se-
quence of samplings as a whole. The effect density
F „yields the statistics for the entire sequence, and
the operation density P: . . . gives the system state after

the entire sequence is completed. Is it really necessary to
consider the entire sequence at once? Is there not some
way to deal with one sampling at a time, finishing with
one sampling before going on to the next? In general, the
answer is no. The qth sampling gathers information
about x(t) during the time interval [tq —h, , tq]. In gen-i~q
eral, the intervals for different samplings overlap; before
the interval for the qth sampling has ended, the (q +1)th
sampling has already begun. Under these circumstances,
there is no way to disentangle the samplings in order to
deal with one at a time. Further discussion of this ques-
tion can be found in Sec. III B of Ref. 7.

Consider now the case where it is possible to deal with
one sampling at a time —the case where the samplings do
not overlap, i.e., tq i ~tq —b,

&
for q =1, . . . , Q. In thist

case the kernel A can be decomposed as

Q —1

M(y~, . . . ,yg, x, tg ~x, t )= f A 'g'(yg, 'x, tg ~xg „tg,) + dx A"' '(y;x, t ~x „t,)
q=1

where
(x, t )

Mq(yq xq tq ~xq i tq i):—f &x(t)Y(yq y(tq))e

(4.14)

(4.15)
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q=1
(4.16)

~ (q)
where I is a modified evolution operator for the qth

sampling:

I„- = Jd dx,
I )

Pq

In Eq. (4.15) the sum over paths includes all paths on the
interval [tq i, tq ] such that x (tq i ) =xq i and
x(tq)=xq. One recognizes Miq' as a kernel for the qth
sampling alone; it has the same interpretation and the
same properties as the kernel M has when specialized to a
single sampling. The decomposition (4.14) of M means
that the modified evolution operator (4.1) factors into the
orm

~ (q)f
t, , )r,

(4.23)

Iterating Eqs. (4.22) and (4.23) leads to the joint probabili-
ty distribution (4.5) and to the system state (4.11) after the
Qth sampling.

Specialize now to a sequence of instantaneous measure-
ments (samplings) of position [y(tq)=x(tq)], for which
the samplings certainly do not overlap. Let xq label the
result of the qth sampling. Then Eqs. (4.15), (4.17a), and
(4.21) simplify to

(xqixq~tq I xq ittq i)x~ (yq ~xq~t
qI xq i, tq i )(xq (4.17a)

(4.17b)
=Y(xq —xq)K(x q,

t
qI

x „t,), (4.24a)~ (q)~'"(y 'x tq I
x —i t —i)= &xq I

r-
I x, r„=Y(x x)U(t—„tX

q(P)=Y(xq -x)U(tq, t— , )PU ( t,t, )[ Y( x x)]"X

(4.24b)
In Eq. (4.16) the product is ordered with increasin~ values
of q on the left. Properties of the operator I 'q follow

3'q

from those of I . . . specialized to a single sampling.

For example, I 'q' gives rise to an effect density
y

3'q Xq 3'q

(4.24c)

[see Eq. (2.8)]. For instantaneous measurements of posi-
tion, one can resurrect the notion of a system quantum
state evolving in time. In view of Eq. (4.23), Eq. (4.24c)
describes a system quantum state that undergoes unitary
evolution between samplings [system evolution operator
U(tq, tq i)] and suffers an instantaneous wave-function
collapse at the time of each sampling ["resolution opera-
tor" Y(xq —x)]. When one generalizes to nonoverlapping
samplings of y(t), these two kinds of evolution become
inextricably entangled, as evidenced in the path integral
for M'q' [Eq. (4.15)]; indeed, it is not generally possible to
define a system quantum state during the interval between
the sampling times. Nonetheless, for nonoverlapping
samplings it is still possible to define a system quantum
state just after each sampling, which serves as initial state
for the next sampling [cf. Eq. (4.23)]. When one general-
izes further to overlapping samplings of y(t), even this
last possibility disappears; it is not possible, in general, to
define a system quantum state at any time during a se-
quence of overlapping samplings of y(t). ' All that
remains in the general case is the joint probability distri-
bution for the results [Eq. (4.5)] and a system quantum
state after all samplings are completed [Eq. (4.11)].

Barchielli, Lanz, and Prosperi ' have developed a
description of continuous position measurements (see also
Refs. 24 and 25). They begin with a sequence of Q sam-
plings (instantaneous measurements) of position, which
occur at uniformly spaced times tq to+q~ in the inter-
val [to, tI], where tt =t~ to+ Q7.. They choose th——e reso-
lution amplitude to be a real Gaussian,

(4.18)

normalized by

(4.19)

Y(x —x)=(2rro )
' exp[ (x x) /4cr ]—, —(4.25)

where o. , the variance of the associated conditional prob-
ability distribution

I
Y(x —x) I, might be called the reso-

lution of the samplings. They then let the sequence be-
come continuous on the interval [to, t~] by taking the lim-

The density operator just after the qth sampling is given
by the operation density W'q':

3'q

The factorization (4.16) further allows one to decompose
the operation density W- . . . — [Eq. (4.12)] as» ' '3'g

(P) =~='~'[ . ~'"(~'"(P)).. . ] (4 2O)
3'1 ' '

Pg 3'g 3'2

where P q' is an operation density for the qth sampling,

defined by

(4.21)

~(q)
Notice that tr[W-'q'(p)] =tr(pF- ). Physically, the factor-

y,
ization (4.16) means that the joint statistics of the first q
samplings are independent of the existence of subsequent
samplings; this property does not hold in the general case
of overlapping samplings (for further discussion, see Sec.
III B of Ref. 7).

One can now describe a sequence of nonoverlapping
samplings in the following way. Define a system density
operator p . . . (tq i) just after the (q —1)th sampling» '&q —l

(just after time tq i); this state is conditioned on the re-
sults of the first q —1 samplings. The probability distri-
bution P(yq Iyi, . . . ,yq i) to obtain yq as the result of
the qth sampling, conditioned on the results of previous
samplings, is determined by the effect density F -' ':

w(q)
P(yq Iyi, . . . ,yq i)=tr[p — . . . — (tq i)F ]. (4.22)—
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o. ~—= 1/2y =const . (4.26)
I

it Q~ao, v~0 (Qr=ty —tp}; they simultaneously take
the limit a ~ 00 in such a way that

By specializing the kernel A [Eq. (2.6)] to samplings of
position [yq

——xq', y(tq)=x(tq)] and by taking the above
limit, one can derive a kernel which is a functional of
x(t), the continuous sequence of results:

(Z, tI)
PC[x(t);x, tg ~xp, tp]= f, ,

& x(t) exp ——,'y f dt [x(t)—x(t)] e' "' ("'")
Zoy 0 0

(4.27)

Q
Mx(t)= lim (yrlm. )~ g dx

Q~ oo q=1
(4.30)

[cf. Eq. (3.11) of Ref. 22]. The kernel
A [x(t);x,ty

~
xp tp] is the amplitude that the continuous

measurement of position yields the trajectory of results
x(t) and that the system is at x at time tI, given that it
was at xp at time tp Fro. m the kernel (4.27) comes the
fundamental amplitude,

@[X(t);x,ty]= f dxp M[X(t); xt IIxp, tp]yp(x„tp)

(4.28)

[cf. Eq. (2.7)], and a functional probability distribution for
the results x(t),

P[x(t)]= f dx
~
@[x(t);x,t~] ~

(4.29)

[cf. Eq. (3.15) of Ref. 22]. This functional probability dis-
tribution is normalized with respect to the integration
measure

as the sampled quantities y(tq) [Eq. (2.2)] are obtained
from x (t). Would the resulting probability distribution be
the same as that obtained for time-distributed measure-
ments from the path-integral formulation? No. The
difference lies in how one goes from amplitudes to proba-
bilities. In the continuous measurement approach, one
calculates first an amplitude @[x(t);x,t~] for a continu-
ous measurement, squares and integrates to obtain a func-
tional probability distribution P [x(t)], and then averages
over P [x(t)] to get a probability distribution for the func-
tionals of interest. Operationally, this corresponds to
gathering arbitrarily wideband data about the position of
the system and then processing this data to obtain the
functionals of interest. In the case of time-distributed
measurements, one calculates directly a probability ampli-
tude @(yi, . . . ,y&,x, t&} for the functionals of interest
and then squares and integrates to obtain a probability
distribution P (y„.. . ,y~ ). Operationally, this corre-
sponds to gathering only data about the functionals of in-
terest.

i.e.,

1= f Mx(t)P[x(t)] . (4.31) V. MULTIPLE- TIME EIGENSTATES

It should be emphasized that P [x(t)] is not a function-
al probability distribution for system paths x(t). Quan-
tum mechanics assigns to a path x (t) a probability
amplitude e'~"' s"('" p}( x(t p), t p}—not a probability.
Feynman's rules do not instruct one to square the proba-
bility amplitude to obtain a functional probability distri-
bution for the path; rather, they instruct one to sum the
amplitude over all paths with a particular final value be
fore squaring to obtain a probability distribution for the
final value. Thus there is no sensible way in quantum
mechanics to define a functional probability distribution
for system paths x(t). What then is P[x(t)]? The over-
bar on x(t) signifies results of measurements; P[x(t)] is
the functional probability distribution that the continuous
measurement of position yields the trajectory of results
x(t). This is made particularly clear by the measurement
model of Sec. IIIA, which can easily be applied to the
case of continuous measurements. In the model P[x(t)]
is the functional probability distribution that the coordi-
nates of an infinite set of meters have the continuous se-
quence of values x(t)

Attention should also be drawn to the distinction be-
tween continuous position measurements and measure-
ments distributed in time. Given P[x(t)], one can calcu-
late in principle a joint probability distribution for any set
of functionals of x(t); one could, for example, consider
functionals that are obtained from x(t) in the same way

y(tq)= g o(t~) e~ . (5.1)

This assumption implies that y(tq) can take on only
discrete values from the sequence

—Sq, —Sq+2, . . . , Sq —2, Sq . (5 2)

As a consequence, it is useful to introduce a new kernel

The conventional language of a system quantum state
evolving in time is inadequate for describing measure-
ments distributed in time. That is the message delivered
by the preceding sections. The concepts of multiple-time
states and multiple-time eigenstates ' constitute an at-
tempt to generalize the conventional language to a
higher-level language that can be applied to time-
distributed measurements (or multiple-time measure-
ments ' ' ). In this section I explore the usefulness of
these concepts.

Consider measurements involving spin, as do Refs.
8—10 (referred to hereafter as AAD). For that purpose,
recall the sum-over-histories formulation developed in
Sec. IIB. To facilitate comparison with AAD, make a
simplification: choose Yqj(a)=cr, for all q and j. 'Thus,
throughout this section, the sampled quantities (2.13) are
simply sums of spin components in various directions at
different times:
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K(ni, . . . , ng , CT', tg I op, tp)=
Q

8n,y(t ) ~(~(l)~ ~~(B)~o I
~o)

(T(f)) ~ ~ ~ ) o(g) q = 1

(5.3)

[cf. Eq. (2.17)], where 5„T(, ) is the Kronecker delta and

B

X ~qj' X ~qq ~(P)
j=1 P=1

(5.4)

[cf. Eq. (2.16)]. The kernel (5.3) is the discrete analogue of the kernel (2.19). It can clearly be interpreted as the ampli-
tude that the sampled quantities have the discrete values n], . . . , n~ and that a'e~ has the value o. at time t&, given that
a..eo had the value o.o at time to.

From the discrete kernel (5.3), one can derive the kernels (2.19) and (2.20):

Q

K(yi . yg'(T tg l(To to)= p + 5(yq nq—) K(ni, . . . , ng, otg l(ro 'o. )

n&, . . . , n~ q =1

Q

~(y) . yg'(T tg l(To to)= p g Y(y n) K(ni—, . . . , ng,'o tg loo to) .

(s.sa)

(s.sb)
n&). . . , n~ q=1

Y(yq)=0 for lyq I
) 1 (5.6)

When the qth sampling yields a result yq, it is viewed as
yielding the nearest discrete result nq. With the good
resolution (5.6), there is a one-to-one correspondence be-

In Sec. II the kernel K [Eq. (s.sa)] is interpreted as an am-
plitude for the values of the sampled quantities, whereas
the kernel Xi [Eq. (5.5b)], which takes into account the
resolution of the samplings, is interpreted as an amplitude
for the results of the samplings. In this section no such
distinction is made; the analysis is framed entirely in
terms of the discrete kernel (5.3). Why can I ignore this
distinction? Because of the discreteness of the sampled
quantities (5.1), and because I assume throughout this sec-
tion that the samplings have sufficiently good resolution
to resolve the discrete values —i.e., to distinguish neigh-
boring values in the sequence (5.2). Such resolution is
achieved if the resolution amplitude satisfies Q K(n (, . . . , ng, o, tg I

(To, tp) . (5.7)

This normalization follows directly from the normaliza-
tion of the kernel (5.5b) [see Eq. (3.22)], applied to a reso-
lution amplitude that satisfies Eq. (5.6).

Define now an operator

I

tween the value of the sampled quantity and this discrete
result of the sampling. Thus, in this section, the Q sam-
plings are viewed as yielding a sequence n1, . . . , n& of
discrete results. The kernel (5.3) can be interpreted
directly —no need for a resolution amplitude —as the am-
plitude that the samplings yield the sequence n1, . . . , n~
and that cr e~ has the value o. at time t~, given that cr eo
had the value (Tp at time tp. The kernel (5.3) is normal-
ized by

6,= g g K'(ni, . . . , ng, o, tg I op to)
o n&, . . . , n&

+n, . . .„=g l(Teg)K(ni ng'(T tg I(ro to)&(To ep
I

= U(tg, t(B) )
g

n,y(t )

~(a)

B

I (T(tt), e(p) ) ((T(ti), e(t)) I U(t(p) t(p
P=1

(5.8)

[Eqs. (5.3) and (2.17)], which is the discrete analogue of
the operator I . . . — introduced in Sec. IV [see Eq. (4.1)].

3' I yg
In the second equality of Eq. (5.8), the operator product is
ordered with increasing values of P on the left. The ma-

trix elements of A„.. . „give the discrete kerneln&-. n&

K(ni, . . . , ng,'tr, tg I
tTp, tp) = (cr, eg I +n, na I

(To~co)

(5.9)

Just as K(ni, . . . , ng, o, tg I
op, tp) can be regarded as a

modified propagator, so A„.. . „plays the role ofii) ' 'ng

a modified evolution operator. This role is particularly
apparent in the second equality of Eq. (5.8): without the
product of Kronecker deltas, Eq. (5.8) would yield the
system's unitary evolution operator U( tg, tp ); the
Kronecker deltas restrict the sum over histories to those
histories which satisfy y (tq) =nq, for q = 1, . . . , Q.

A fundamental amplitude can now be defined by

C(ni, . . . , ng,'o', tg)= QK(ni, . . . , ng,'cT, tg I
op tp)

crO

x (op, ep I gp(tp) )

= (o,eg I A„, . . . „& I gp(t ) ); (5.10a)
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which is normalized according to
1= g P(ni, . . . , ng)

n1, . . . , ng

[Eq. (5.7)]. Notice that the effect

Fn . n =+n . n ~n . . n
Q 1 Q 1 Q

(5.11)

(5.12)

generates the probability P(n~, . . . , ng).
For comparison with AAD, one further change of in-

terpretation is needed. The amplitude

4(n i, . . . , ng jcT, tg )
(5.13)]/2

I
N( n, i. . . , gn, otg )

I

'
nip ~ ~ ~ y ng

is the (normalized) conditional amplitude that the sam-
pled quantities have values n&, . . . , n~, given that the
spin component cr.e~ has the value o. at time t&. Its abso-
lute square is the corresponding conditional probability
that the sampled quantities have values n &, . . . , n~, given
the final spin value cr. Thus, one can regard

@(ni, . . . , ng , o, tg) = &'o, eg I
A„.. . „ I gp(tp) & (5.14)

it is the joint amplitude that the samplings yield the se-
quence of results n &, . . . , n~ and that cr e~ has the value
o. at time t~. It gives rise to the joint probability for the
results n&, . . . , n&,

P(ni, . . . , ng)= g I
@(ni, . . . , ng, o, tg. )

I

= &Pp(to) I
A„.. .„A„.. . „ I Pp(to) &,

(5.10b)

as a relatiue (unnormalized) conditional amplitude; its ab-
solute square is a relative conditional probability. With
this new interpretation comes a new idea: AAD refer to
the expression

&o eg I

' '
I
4o(to) & (5.15)

as a "two-time state, " determined by the initial state
I gp(tp) & at time tp and by the final spin value o for cr eg

at time tg [A. ctually, AAD write
I

cr, eg &
. &gp(tp) I

for the two-time state (S.15), but this interchange of bras
and kets is of no consequence. I find the form (5.1S) to be
more appropriate for the subsequent discussion. ] The
three dots in the two-time state (5.15) invite one to insert
an operator between the bra and the ket; one gets the con-
ditional amplitude (5.14) by inserting the modified evolu-
tion operator A„.. .„.n1 -. ~

n&

Focus now on a single sampling (Q= 1). The single
sampled quantity is given by

(5.16)

[cf. Eq. (5.1)]. The time-ordering map (2.14) is trivial:

P~qgjp=IP=(P), P= 1, . . . ,8, 8 =Ni . (5.17)

From Eq. (5.14) comes the relative conditional amplitude

&o ei
I A, I go(to) & =@(ni'o ti ) (5.18)

that the sampled quantity has value n], given the spin
value o for rr ei at time ti. By specializing Eq. (5.8) to a
single sampling, one obtains

A„~ = U(ti, tits )

11''''' 1N
1

Nl

&..,.() g I iJeiJ&& 1Je J I
U(t J t, ) (5.19)

where

y(ti)= Q CTiJ
j=1

(5.20)

AAD call the operator A„a "multiple-time eigenstate, "
with "eigenvalue" ni, of the "multiple-time observable"
y(ti ) defined by Eq. (5.16). Actually, AAD define expli-
citly the notion of a multiple-time eigenstate only when
two further simplifications are made: (i) the spin system
has zero Hamiltonian (H =0), in which case the evolution
operators in Eq. (5.19) become the unit operator, and (ii)
y(ti) obtains information from only two times (Ni ——2;
"two-time measurement"). Equation (5.19) is a natural
generalization of the definition given by AAD.

Why refer to A„as an eigenstate at alii Consider for
1

comparison the amplitude &o,e
I

rt & that the spin com-
ponent cr-e has the value o. This amplitude is obtained by
projecting the system state

I p & onto the eigenstate
I
o,e &

y( tl ) o(tll )'ell (5.21)

With these simplifications, A„should be a "one-time
n1

corresponding to o. Firmly associated with the notion of
an eigenstate is this procedure for obtaining the amplitude
for some value of an observable: project the system state
onto the eigenstate corresponding to the value of interest.
For a single multiple-time measurement, AAD find this
procedure expressed in the relative conditional amplitude
&o., ei

I A„ I gp(tp)& that the sampled quantity has value

ni. They interpret this amplitude as corning from a "pro-
jection" of the two-time state &o,ei I I gp(tp)& onto
the multiple-time eigenstate A„corresponding to n&.

1

Here "projection" means to insert An in place of the

three dots in the two-time state.
A check that the idea of a multiple-time eigenstate

makes sense comes from specializing to zero system Ham-
iltonian and to an ordinary "one-time" (Ni ——1) sampled
quantity
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=
I
n) e)1)(n 1 e)11 (5.22)

eigenstate" of the "one-time observable" V (t, ), and indeed
Eq. (5.19) shows that

A. , =X&., „l~)) e»&&~)),e)) I

Consider for comparison two consecutive, precise, one-
time measurements, the first a measurement of the spin
component cr.e] and the second a measurement of the spin
component (T e2. If

I g) is the initial state, then the am-
plitude to obtain o.] as the result of the first measurement
is (o i,ei

I
)tj), with corresponding probability

V(tl ) ~(tll ) el)+~(t)2) e)2

V ( t2) =o(t2) ) e2) +o(t22). e22 .

(5.23a)

(5.23b)

The relative conditional amplitude to obtain results n&

and nz is given by

is the projection operator onto the ordinary eigenstate

I
n i,eii ). Thus, in this simplest of cases, A„does reducen1

to something associated with the appropriate eigenstate.
The real test of the idea of multitime eigenstates comes

when one tries to apply the idea to many multitime mea-
surements. For that purpose, it is sufficient to consider
two measurements (Q =2; 8 =X) +%2). Further, it is in-
structive initially to specialize to the case considered by
AAD: zero system Hamiltonian (H=0) and "two-time"
(X) ——X2 ——2) sampled quantities

This first measurement leaves the system in a new state

I 0,&=
I ~) e) &&~) ei I

W&~[P(~))]'"

obtained by projecting the initial state onto the eigenstate
I
cr), e) ) corresponding to the result o 1 and then normaliz-

ing. Given result o.
~ for the first measurement, the ampli-

tude to obtain cr2 as the result of the second measurement
is (cr2, e2

I p, ), with corresponding conditional probabili-

ty

P(~2
I
~1)

I
(~2 e2

I P., &
I

~2 e2 +1 el 1 el

P((T))

Thus the joint probability for the two measurements is

( cr, e2 I
A n „ I 1(jo(t () ) ) =e( n 1,n 2,

' cr, t2 )

[Eq. (5.14)], where

(5.24) P((r), o2)=P(cr2
I
o))P(0))

=
I

& ~2 e2
I
~) ei) & ~»e)

I 1t ) I

'

~» ~12 ~21 ~22

6 51' ll + 12 2' 21 + 22

g I o(t)), e(t)) ) ((T(t)),e((s) I
(5.25)

P=]

A„= g 5„+„I
(r22, e22)

~21 ~22

[Eq. (5.8)]. If the two measurements were performed
separately, they would be described by the operators

An( g ~n(, cr((+o(2 I (T)2~e)2)
~» ~12

x ((r)2, e)2 I (2)) e» & &(r» eii
I

which is a special case of Eq. (5.10b). The joint probabili-
ty P ((r), (72) is derived from a joint amplitude
(o2, e2 I o),e))(o),e)

I
g). Firmly associated with the no-

tion of an eigenstate is the procedure for obtaining the
system state after the first measurement: project the sys-
tern into the eigenstate corresponding to the result of the
measurement. A consequence of this procedure and of
the properties of ordinary eigenstates is that the measure-
ments are reproducible: if the two spin measurements
measure the same spin component (e, =e2), then the result
of the second measurement must be the same as the result
of the first —i.e., P(o), (72) =5 P(o 1).

Return now to the case of two two-time measurements.
Suppose that the measurement labeled by 2 is "nested" in-
side the measurement labeled by 1, i.e.,

X (o'22 e221(r21 e21) ((r21 e21 I
(5.26b)

t11 + t21 + t22 + t12 (5.27)

[cf. Eq. (5.19)]; AAD identify A„and A„as the "two-

time eigenstates" of the "two-time observables" V (ti) and
V(t2). The objective now is to investigate the usefulness
of this identification.

(recall that t)2 (ti &t2); one can think of measurement 1

as the "outside measurement" and of measurement 2 as
the "inside measurement. " The time ordering (5.27) im-
plies that A„,„,[Eq. (5.25)] takes the explicit form

~» ~21 ~22 ~12

5 51' ll + 12 2' 21 + 22

xI~12 e12&(~12 e121~22 e22&&~2»e221~21 e21) &~21 e2) I ~)) e)) &&~)) eii I
(5.28a)

and Eq. (5.26b) further shows that

„+ „1~12e)2& &~12 e)2 I A., I
~» e»&&~» eii I

(5.28b)

AAD view the relative amplitude (o,e2 I A„„ I $0(to) ) as arising in the following way. If the outside measurement were
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performed alone, the relative amplitude to obtain result ni would be &o, e2 I A&
I gp(tp) & [cf. Eq. (5.26a)]. The outside

measurement "projects" the system into a new two-time state

~~i, cy„+cr,2&~ e2
I ol»e12&&ol»e121 . .

I ~ii e»&&o» eii I
1('p(tp) &

~11 ~12

(5.29)

obtained by "pulling apart'* A„at its middle. The rela-

tive amPlitude & cr, e2 I A„,„ I 1(p(tp) & for the two measure-

ments then comes from "projecting" the new two-time
state (5.29) onto the two-time eigenstate A„. This pro-

cedure can obviously be extended to include as many nest-
ed two-time measurements as desired. Are these nested
measurements reproducible~ Indeed they are. Suppose
the two sampled quantities (5.23) measure the same sum
of spin components —i.e., e2i ——e» and e22 ——ei2,' then one
finds that A„„=5„„A„,which shows that the result of

1 2 2 1 1

the inside measurement must be the same as the result of
the outside measurement.

The concept of multitime eigenstates seems to provide a
reasonable description of nested two-time measurements.
The first fly in the ointment shows up when one considers
what AAD eall "crossed" two-time measurements. Two
crossed measurement overlap according to the time order-
ing

(5.30)

which implies that

Ann =
~11~~21~ ~12~~22

&., ~„+.,p..,.„+.„1~22 e22&&~22 e221~12 ei2&&~12 e121~21 e21&&~21 e21 I ~» e»&&~» e»
I

[Eq. (5.25)]. Neither A„nor A„appears unmolested in
1 A.

A„„, [cf. Eqs. (5.26)]. To construct A„„,both A„and
An must be "pulled apart" at the middle; the components
are then interleaved according to Eq. (5.31). Neither A„n1

nor A„, can be profitably regarded as "projecting" the
system into a new two-time state. The idea of multitime
eigenstates seems not to apply to crossed two-time mea-
surements. Yet such measurements are reproducible: if
the two sampled quantities (5.23) measure the same sum
of spin components —i.e., e2& ——e» and e22 ——e~2—then Eq.
(5.31) reduces to A„,„,=5„,„,A „,.

Given a sequence of one-time measurements, one can
work through the sequence serially, projecting the system
into a new one-time state at each measurement. Given a
set of nested two-time measurements, one can work
through the set from the "outside" to the "inside, " "pro-
jecting" the system into a new two-time state at each mea-
surement. For crossed two-time measurements, neither of
these procedures works; the difficulty is that neither A„
nor A„ is an appropriate building block for constructingn2

1 2

This difficulty becomes more acute when one general-
izes to multitime measurements that receive information
from more than two times. Return to the general case of
Q multitime measurements of the quantities (5.1); the
samplings are described by the operator A„.. . „[Eq.n1 .

n&

(5.8)]. If the samplings were performed separately, they
mould be described by operators A„ for single samplings;n

the ideas of AAD suggest calling An a multitirnen

eigenstate, with eigenvalue nq of the multitime observable
y(tq). The issue is not whether A„deserves the designa-

nq

tion "eigenstate"; the issue is really whether An deservesn

any designation at all. True, An would describe the qthn

sampling if it were performed alone. True, the operators

A„collectively contain all the ingredients that go into

An . . .„.But, to construct An . . .„,one must in general
1 Q n1 ' ng&

pull apart the operators An at every joint and thenn

reassemble the components according to the ordering of
the times tqJ. There seems to be no way to think of any of
the operators An as projecting the system into some new

sort of state.
The message here was actually delivered in Sec. IV:

during a sequence of overlapping samplings, there is in
general no way to analyze each sampling separately and
no way to make use of the description each sampling
would have were it performed separately. The physics lies
in the modified evolution operator A„.. .„,which de-

1 Q
scribes the Q samplings as a whole; it gives rise to the ef-
feet F„.. .„,which in turn generates the statistics of then1 ~ ~ n&~

samplings [Eqs. (5.10b) and (5.12)].
The concept of multitime eigenstates flounders when

generalized beyond nested two-time measurements.
Nonetheless, as suggested by the case of crossed two-time
measurements, the property of reproducibility survives.
This property deserves to be spelled out clearly, because it
is the important physical property, regardless of whether
one attaches to it some notion of an eigenstate. For that
purpose, specialize to two samplings (Q =2) that measure
the same sum of spin components —i.e., Xi N2 Nand-— ——

e» ——e», j =1, . . . , N (5.32a)

[cf. Eq. (5.1)]. For one-time measurements, reproducibili-
ty is associated with immediate repetition of a measure-
ment. Thus one might think to analyze the situation
where the second sampling begins just after the first sam-
pling ends (i.e., t2i ——ti~+e), but two such samplings
clearly do not in general yield the same result. For multi-
time measurements, "immediate repetition" means some-
thing different. It means that the jth contributions to the
two sampled quantities occur at times which are infini-
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tesimally different, i.e.,

t2J ——t))+e, j =1, . . . ,N, (5.32b)

[Eqs. (5.8) and (5.19)],which implies that

lim P(n i, n2) =5„„P(ni )
p 2 1

(5.33b)

[Eq. (5.10b)]. Hence the two samplings must yield the
same result. If the system has zero Hamiltonian, then one
need not take the limit e—+0 in Eq. (5.33a). The property
A„„=5„„A„holdsso long as the times tqj satisfy

1],~t21 (t12~t22 & & tlN~t2N ~ (5.34)

for each value of j, one can choose either t&J ~t2J or
tlj & t2J

In a comment on the work of Aharonov and Albert,
Cohen and Peres criticize the idea of two-time Ineasure-
ments on the grounds that such measurements are not
reproducible when the second measurement begins after
the first has been completed. In their reply Aharonov and
Albert emphasize that reproducibility is achieved in the
way just described.

where e & 0 is an infinitesimal time, and the sign can be
chosen independently for each value of j. Thus t2J can ei-
ther precede or succeed t&J- by an infinitesimal amount.
With assumptions (5.32), one can easily show that

(5.33a)

VI. CONCLUSION

It is often said that the quantum state of a system—
whether a wave function or a density matrix —provides a
complete quantum-mechanical description of the system.
Measurements distributed in time force one to reexamine
this statement. A quantum state contains all information
about a system at a particular time, but it contains no
multitime information. To analyze time-distributed mea-
surements, one requires new quantum-mechanical tools-
new ways of addressing multitime questions. An ideal
conceptual tool is provided by a sum over histories: the
histories contain multitime information; quantum
mechanics comes in through the rule for summing proba-
bility amplitudes over histories. Though ideal conceptual-
ly, a sum over histories is not always the most effective
tool for attacking a particular problem. In this paper I
have attempted to enlarge the analytical tool box by estab-
lishing connections between the sum-over-histories formu-
lation and other ways of formulating a quantum-
mechanical description of measurements distributed in
time.
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