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This paper applies a statistical-mechanics notion of nonequilibrium entropy to a quantum field in
a cosmological setting. The key idea is to view the bosonic field as a collection of harmonic oscilla-
tors, with natural frequencies Q(t), and to define a time-dependent entropy S(t) which reflects
correlations among the oscillators. The S so defined will be a constant of the motion in the absence
of couplings, so that, e.g., there can be no entropy generation for a source-free linear field in a con-
formally static spacetime. If, however, interactions are induced by nonlinearities, material sources,
or a more general dynamical background, S will exhibit a nontrivial time dependence. The form of
this time dependence can be analyzed through the introduction of a "subdynamics, " and one con-
cludes that, at least in one limit, dS/dt & 0. Specifically, in addition to the "stimulated" changes in

entropy, which reflect the choice of initial conditions and which can be either negative or positive,
there will also be a "spontaneous" change in S induced by the dynamics which, at least for short
times, is necessarily positive. The subdynamics analysis can also be applied to the phenomenon of
particle creation, and one concludes that, here as well, there is a "natural" decomposition into a
"spontaneous" particle creation induced by the dynamics, which leads to the net generation of quan-
ta and a "simulated" change in particle number reflecting the choice of initial conditions, which is
of indeterminate sign. The "spontaneous" contributions to particle creation can in turn be decom-

posed into two positive contributions: one, reflecting the effects of correlations, which is connected
with spontaneous entropy generation, and another, induced by the time dependence of the 0's,
which reflects instead a type of "phase mixing. "

I. INTRODUCTION

The general goal of this and related earlier work' has
been to understand the statistical properties of quantum
fields in curved space. Specifically, we are interested here
in the conditions and assumptions underlying the defini-
tion and usage of entropy associated with quantum pro-
cesses such as particle creation and interaction ' in
dynamical spacetimes. The relevance of this investigation
with ongoing research in general relativity, quantum field
theory, and statistical physics is at least twofold: (1)
physical problems related to quantum-statistical processes
in the early Universe and black holes and (2) theoretical
issues related to the statistical nature of fields and
geometry, both classical and quantum.

Cosmological particle production occurring in the
Planck area at —10 sec after the big bang has been
shown to be capable of playing a major role in determin-
ing the matter content and influencing the later evolution
of the Universe. This production is also believed to be
a major source of entropy generation which may account
for, among other observations, the age of the Universe.
Pair creation and interaction in strong or time-varying
gravitational fields is an intrinsically nonlocal, nonequili-
brium quantum-statistical process. Recently we see the
beginning of attempts to develop techniques and formal-
isms for treating nonequilibrium quantum processes in
curved space. ' ' An understanding of how entropy is
to be defined and measured for quantum fields is essential
to these developments.

The Bekenstein-Hawking result on black-hole quantum
radiance' is perhaps the foremost example of how the
behavior of quantum systems in curved space lends itself
forcefully to a thermodynamic interpretation. ' It is
tempting to ask similar theoretical questions for more
general curved spacetimes. However, while a geometric
meaning of entropy is relatively well defined for space-
times possessing event horizons, the more general case of
cosmological spacetimes are more difficult to analyze,
since in addition to global geometric factors, dynamics
enters in an essential way. In the test-field approxima-
tion, where the background metric is assumed fixed, one is
interested in entropy generation associated with the
creation and interaction of particles from the vacuum or
other quantum states with specified phase information.
In the self-consistent treatment, where the back reaction
of matter fields is included in the consideration, one
would be interested also in how quantum-statistical effects
of matter fields can influence the dynamics and geometry
of spacetime. Through this one hopes to deduce some
statistical measures or criteria for the realization of cer-
tain geometries as physical spacetimes. If spacetime has
some well-defined entropy, e.g., the gravitational entropy
of Penrose, ' then this may provide a thermodynamic
description of Einstein's geometrodynamics. It has also
been suggested' that the entropy of matter creation from
the vacuum may provide some measure of the entropy of
geometry and its dynamics. However, a viable definition
of gravitational entropy is hitherto lacking. It is with the
aim of understanding these issues concerning matter
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geometry and particle fields that a study of the statistical
properties of the quantum fields may prove fruitful. The
present work aims to provide a few threads for knitting a
web of interconnections for these ideas.

As in the analysis of the entropy associated with black-
hole radiance, several basic aspects enter into the con-
sideration of entropy generation in cosmological space-
times: the gravitational curved-spacetime aspect, the
quantum-field aspect, and the statistical-mechanics as-
pect. The mechanisms for particle creation in black-hole
and cosmological spacetimes are qualitatively different:
the former is a result of infinite red-shift near event hor-
izons, whereas the latter is related to the backscattering of
waves. Cosmological particle production can be under-
stood as the nonadiabatic parametric amplification of vac-
uum fluctuations, ' ' a process similar in nature to pair
creation in a strong external field. Here the coupling of
the system with the external source or driving force, the
interaction of modes, the phase relation of initial states,
the change of correlations in time, the geometry of the
spacetime, and the evolutionary history of the system all
enter in entropy considerations. As suggested in Ref. 1

entropy generation can be considered in accordance with
the nature of particle production and interaction as occur-
ring in three stages: (1) creation from the vacuum or
from n-particle states, (2) particle interaction, and (3)
nonadiabatic red-shifting. These are not necessarily chro-
nological stages, but should instead be viewed as different
interconnected and overlapping factors. For example,
with free fields, particles can be created from the vacuum
(spontaneous production) or from an initial n-particle
state with nontrivial phase information (stimulated pro-
duction), the latter causing either an enhancement or de-
pletion of the former, depending on the phase relation of
the states and the spin-statistics of the particles. For in-
teracting fields there could be additional contributions
from multiparticle production. In spacetimes with lesser
symmetry, where the fields do not admit a "natural"
normal-mode decomposition, modes can also be coupled
via the dynamics of spacetime over and above the cou-
pling associated with explicit interactions. ' In a chang-
ing background like the expanding Universe the created
particles are constantly red-shifted. The nonadiabatic
changes of the modes is an additional source of entropy
generation, albeit one which is classical in nature and well
understood. Analyzing entropy generation from particle
production needs a better understanding of the origin and
nature of the particle production processes —creation
through spontaneous and stimulated excitation, extrinsic
and intrinsic mode couplings and interactions, and nona-
diabatic red-shifting. One also needs a viable framework
to define entropy under these specific conditions.

Three earlier studies" ' sought to formulate the prob-
lem in a way understandable in simpler terms. Reference
1 used finite-temperature theory to derive the viscosity
functions associated with the nonadiabatic red-shifting of
modes in the classical (late times) regime. Reference 18
attempted a phenomenological description of the exact re-
sults from detailed back-reaction calculations of particle
production in sample cosmological spacetimes with
curved-space quantum-field-theory techniques. Using an

imperfect-fluid formulation, Ref. 18 derived the viscosity
functions associated with dissipations of the background
dynamics from vacuum particle creation in the quantum
regime .From the nature of the approximations used, we
may call this a thermodynamic entropy. Extending the
ideas of Ref. 1, Ref. 19 analyzed the problem of vacuum
creation in closer detail by studying a system of
parametric oscillators and explored the rationale for re-
garding the number of particles produced spontaneously
as a measure of entropy in such processes.

On the other hand, as already noted in Ref. 1, in a strict
statistical-mechanics sense, where entropy is regarded as a
measure of correlations or the lack thereof, the time-
reversal invariance of the classical or quantum-mechanic
laws governing the system suggests that one should expect
no entropy change between an initial vacuum state and a
final state consisting of particle pairs. In particular, the
pair is produced with exact correlations, albeit at a spatial
separation. As with any closed system, entropy appears
only when one divides the whole system into a part that is
of interest to the observer (the system) and the rest (the
"bath" ) whose detailed correlation and evolution one does
not need or want to know. This is the idea behind a sta-
tistical "subdynamics" analysis. ' The introduction of
a suitable notion of "coarse graining" which entails a
"loss of information" lies at the heart of a statistical defi-
nition of entropy, and underlies the basic approach adopt-
ed in this paper. ' ' From this point of view, it is easy
to see that entropy generation can arise from the interac-
tion, scattering, and decay of particles but not from the
creation of particles, i.e., entropy can be generated in the
second and third stages in the description of Ref. 1, but
not in the first stage. Of course, in realistic situations, the
normal modes of a system are usually coupled through in-
teractions or dynamics, and thus the two processes of
creation and interaction are necessarily interlinked. Cziven
that "particle creation" generally refers to all of these pro-
cesses combined, the entropy generation deduced here
from a statistical mechanics definition and viewpoint is
consistent with the thermodynamic viewpoint, " since
the latter is premised upon the existence of strong interac-
tion among the particles.

This paper is organized as follows. In Sec. II we give
an elementary description of particle creation in dynamic
spacetimes, starting with the Lagrangian of a free quan-
tum field and ending with the Hamiltonian for a set of
time-dependent coupled harmonic oscillators. We will use
this coupled-oscillator system to model particle creation
and discuss how to define the entropy of dynamical fields.
We first show how vacuum particle production is related
to parametric amplification. Using canonical quantiza-
tion we derive an expression for the number density and
the energy density of the produced particles. We indicate
how the choice of the initial state —zero (vacuum) or n
particle states, including the stipulation of phase relations,
leads to spontaneous and stimulated production of parti-
cles. We then use a A,P theory to show that interaction of
modes can lead to particle production. Finally we illus-
trate with a more general class of spacetime (the mixmas-
ter universe) how mode coupling can also arise from the
dynamics of the background spacetime without explicit
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interactions. These are the most relevant factors in parti-
cle creation which enter into the consideration of entropy
generation. Section III introduces the statistical-
mechanical view of entropy and its application to classical
and quantum fields. We review some of the basic notions
of entropy, discuss the meaning of "coarse graining, " and
construct a "subdynarnics" by projection operator tech-
niques. We then discuss the properties of statistical entro-
py and show that it obeys some of the well-known proper-
ties. In Sec. IV we apply the method introduced in Sec.
III to the consideration of entropy generation in particle
creation processes as described in Sec. II. We discuss the
effect of interaction and correlation and present results
for entropy generation associated with spontaneous and
induced particle creation. Section V ends with a discus-
sion of the concepts used and elicited in this paper.

@(x)= g [i/k(t)uk(x)+gk(t)uk (x)] .
k

(2.3)

After second quantization, the fields N and their ampli-
tudes i/k become operator-valued functions. Write

i/'k(t) ak(t)ek(t) (2.4)

where ak are the annihilation operators and the ( c-
number) functions pk(t) obey the wave equation derived
from (2.2). The canonical commutation rules on N imply
these conditions on ak and aj, i.e.,

choice of time and slicing. There is no natural mode
decomposition and no unique vacuum. At any constant-
time slice, one can expand the field N in terms of a com-
plete set of (spatial) orthonormal modes u;(x) (Refs. 3 and
28)

[ak,aj ]= [ak, a~ ]=0 and [ak, aj ]=5»J . (2.5)
II. COSMOLOGICAL PARTICLE CREATION

AND INTERACTION

This section gives a simplified but self-contained
description of particle creation and interaction via the
canonical quantization of fields in cosmological back-
grounds. The aim is to enable those readers unfamiliar
with the methods of quantum field theory in curved
spacetime to understand the physical origin of these pro-
cesses in quantum-mechanical language.

A. Free fields

Consider a massive ( m) scalar field 4& coupled arbitrari-
ly (g) with a background spacetime with metric g„and
scalar curvature R. Its dynamics is described by the La-
grangian density

Assume that initially at t =to, ak ——Ak and p» has only a
positive-frequency component, then one can define a vac-
uum state ~0) at to by

A»10), =0, (2.6)

and construct a Fock space from the n-particle states by
the action of the creation operators. At a later time, say
t&

——to+At, however, the vacuum state defined at to will
no longer be vacuous, since the annihilation operator
ak(t& ) at ti is not equal to Ak(to). In general, they are re-
lated by a set of Bogoliubov transformations

aj(t i ) = g [ajk(t)A»+ pjk(t)A») . (2.7)
k

A new vacuum state ~0) at t, can be defined by

L (x)= ——,&—g g""(x)V'„@V'„4& a)
~

0), =0 (2.8)

m +(1—g)—4 (x)
6

(2.1)

Here /=0 and 1 denotes, respectively, conformal and
minimal coupling. The scalar field satisfies the wave
equation

and from this a new Fock space can be constructed. One
can easily see that A; ~0)&0. The two vacuua are dif-
ferent by the coefficients a, /3, whose time dependence are
determined by the amplitude functions pk(t). In particu-
lar, any pk with only a positive-frequency component ini-
tially at to will acquire a negative-frequency component at
t&. The new vacuum at t& now contains

El+m'+(1 —g) —N(x, t) =0,
6

(2.2)
SJ = (0

f KJ /
0)= g / /jqk /

(2.9)

where O=g""V&V„ is the Laplace-Beltrami operator de-
fined on the background spacetime.

In the canonical quantization approach, one assumes a
foliation of spacetime into dynamically evolving, time-
ordered, spacelike hypersurfaces X, expands the field on X
in normal modes, imposes canonical commutation rela-
tions on the time-dependent expansion functions now re-
garded as creation and annihilation operators, defines the
vacuum state, and then constructs the Fock space. In flat
space, Poincare invariance guarantees the existence of a
unique global Killing vector 8, orthogonal to all
constant-time spacelike hypersurfaces, an unambiguous
separation of the positive- and negative-frequency modes,
and a unique and well-defined vacuum. In curved space-
time, general covariance precludes any such privileged

particles, where

NJ.
—=a~ aj (2.10)

is the particle number operator. From (2.7) one sees that
pjk measures the negative-frequency component generated
by dynamics. In curved space the inequivalence of Fock
representation due to the lack of a global timelike Killing
vector makes the constant separation of positive- and
negative-frequency modes in general impossible. The
mixing of positive- and negative-frequency modes in
second-quantized form leads to vacuum particle creation.
Particle creation may arise from topological, geometrical,
or dynamical causes. In cosmological spacetimes the ine-
quivalence of vacua appears at different times of evolu-
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tion, and thus cosmological particle creation is by nature a
dynamically induced effect. Note that we are dealing here
with a free-field: particles are not produced from interac-
tions, as in chemical reactions, but rather from the excita-
tion of vacuum fluctuations by the changing background
gravitational field.

1. Vacuum creation

g„„(x) =a (g )rj„ (2.1 1)

where a is the conformal factor, there exists a global con-
formal Killing vector 8„, where il =fdt/a (t) is the con-
formal time. Thus the vacuum defined by the mode
decomposition with respect to Bz is a globally well-defined
one, known as the conformal vacuum. For conformally
invariant fields [e.g. , a scalar field with g'=0 in (2.1)] in
conformally static spacetimes, it is easy to see that there is
no particle creation. Thus any small deviation from
these conditions, e.g., small m, g, can be treated perturba-
tively from these states. For definiteness, we may want to
use the Robertson-Walker universes as examples of our
background spacetime, as they possess these special prop-
erties which make the field theory well defined with
respect to the conformal vacuum. Consider the spatially
flat case with metric

For spacetimes with certain symmetries, some natural
mode decomposition may present itself. For example, in
the class of conformally static spacetimes (e.g.,
Robertson-Walker universe), where the metric is confor-
mally related to a static spacetime (e.g. , the Minkowski
metric),

the time-dependent Schrodinger equation, one can view
the (m —gR/6)a term in (2.16) as a time-dependent po-
tential V(71) which can induce backscattering of waves.
The number of created particles in the kth mode is given
in terms of 7' and X by '

sk I
/(Ik

I

'= (
I
Xk

I

'+&k
I
Xk

I

') —
220k

The energy density associated with these particles is given
by the expectation value of the 00 component of the con-
formal energy-momentum tensor (the Hamiltonian
H =Ap) with respect to the conformal vacuum:

pp ——(Oi Ap
i
0)
d JG,f, (

I Xi,
I

'+ &k'
I
Xk I

')
a 2(2m )

I d k Qk
4 3 2sk + 1

a (2n) 2
(2.18)

The analogy with parametric oscillators is formally clear:
the energy density of vacuum particle creation comes
from the amplification of vacuum fluctuations A'Qk/2 by
the factor Mk =2sk + 1. In a Hamiltonian description of
the dynamics of a finite system of oscillators, the Hamil-
tonian is simply

Q (irk ++k 7k ) g (Nk+ )IIk
k k

(2.19)

where one can identify
~
Xk

~

and
~
XI,

~

with the canon-
ical coordinates qk and moment mk, the eigenvalue of
Hp being the energy Ek (Nk+ —,

' )Q——k. One can also
identify the number operator Nk as sk in (2.17):

ds =a (g)(dg —dx ) .

The scalar fields can be separated into modes

@(rj,x) = g Pk(rj)e'" ",
k

(2.12)

(2.13)

Nk (~k ++k gk
2 2 Z

20k

2. n-particle creation

(2.20)

Ae &Qg+g —&Qq (2.15)

which are of the same form as traveling waves in flat
space. Since 0=k=const, the positive- and negative-
frequency components remain separated and there is no
particle production. More generally, the wave equation
for each mode has a time-dependent natural frequency
given by

where pk are the amplitude functions of the kth mode.
Define new field variables a (g)pk(g) =Xk(g). From the
wave equation (2.2) for the kth mode Xk(il ) satisfies

X'k(il)+[@'+(m —gR/6)a']Xk(g)=0. (2.14)

One sees that, for massless (m=0) conformally coupled
(/=0) fields, Xk admits solutions

Equation (2.18) gives the vacuum energy density of par-
ticles produced from an initial vacuum, a pure state. If
the initial state at to is a statistical mixture of pure states,
each of which contains a definite number of particles,
then an additional mechanism of particle creation enters.
This is categorically known as induced creation. In par-
ticular, as already pointed out in the original paper by
Parker, if the statistical density matrix p is diagonal in
the representation whose basis consists of the eigenstates
of the number operators AkAk at time tp (for example, if
the system has reached equilibrium by to, p could be a
function of the initial Hamiltonian which is diagonal in
the tp representation), then for bosons, this process in-
creases the average number of particles (in mode k in a
unit volume) at a later time t, over the initial amount:

( Nk(t) ) =Trina (t)ak(t)
ZR

Qk (g)=k + m —" a =co a
6

(2.16) = (Nk(tp) ~

+
~
pk(t)

~
[1+2(N/, (tp) )], (2.21)

The negative-frequency modes can thus be excited by the
dynamics of the background through a (71 ) and
R(g)=a "/a (a prime denotes d/dq). In analogy with

where (Nk(tp)) ) =TrpAkAk. For fermions it decreases
the initial number.
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The above result can be understood in the parametric
oscillator description as the amplification of particles
sk(0) already present, i.e.,

density

I- =I o+I. (2.27)

sk(t}=sk(0)+ Wksk(0)

by a factor

W„=1+2
I
P„(0)I'.

(2.22}

Pk(t)=Pk(0)+WkPk(0) . (2.24)

For the special but important case where p is thermal
at temperature T =p ', (,Nk & obeys the Bose-Einstein
distribution function for scalar fields. The magnification
of the n-particle thermal state gives the finite-temperature
contribution of particle creation, with energy density

PT —— f (2sk+ 1)Qk/(e —1) .1 d k PQk

a (2ir)
(2.25)

For a massless conformal field, this yields the familiar
Stefan-Boltzmann relation

2

pT= T
30

(2.26)

Finite-temperature particle creation and the related entro-

py generation problem have been discussed in Ref. 10.
For a more general density matrix the behavior of the

induced creation could be very different: it can increase
or decrease, depending on the correlation and phase rela-
tion of the initial state. We shall call those parts which
always give an increase in particle number spontaneous
creation, and those which may not, stimulated creation.
Both are important factors in the consideration of entropy
generation processes. These will be discussed in Sec. IV.

The corresponding energy density p is given by [cf.
(2.18)]

d kP= , f , (I&i, I'+flk'I&kI')(AkAk&,
a (2ir)'

where (AkAk&=(Nk(tp)&=TrpAkAk. Under the same
assumption for p, one sees that the energy density of the
enhanced particles in the kth mode corresponds to the
amplification of (Nk &iriQk by the amplification factor W,
where Nk is the number of particles originally present at
tp. The combined energy density of particles created from
the vacuum and the n-particle state with a diagonal densi-
ty matrix is

—gd3& C'4
4f

(2.29)

Assume that HI is adiabatically switched off in the re-
mote past q = —oo and future g =+ oo, whereupon 4 be-
comes a free field denoted by 4;„,@,„„respectively, and
the inIO& and outIO&+ vacua are well defined as in the
free-field theory. Impose the same canonical quantization
conditions on 4& as in the free field theory. The in and out
annihilation operators, A~ and a~, of the same mode k
are related by (2.7)

ak ~kAk+PkA k (2.30)

After formulating this problem in this way, one can use
the S-matrix theory to treat particle creation from self-
interaction. For small

I
A,

I
«1, the S matrix is given to

lowest order in A, by

S =1 i f —Hrdri . (2.31)

The interaction can produce particles in pairs or quartets.
The amplitude for the creation of a quartet is

S4 ——i„(kik2kik4
I

S
I
0&;„. (2.32)

This is similar to the scattering of a pair of particles.
Whereas scattering of particle pairs may occur in flat
spacetime, the creation process is possible only in a curved
spacetime, where the conservation of field energy is no
longer required. The pair creation process has amplitude

S =;„(k,k
I
S

I 0&;„. (2.33)

It contains divergences and need be renormalized. At
g —+0, the state of the system is a sum of vacuum, two-
particle, and four-particle terms:

I
0&=

I
o&-+ I2&+ l4&

where

(2.34)

where L p is that of a massless conformal scalar field (2.1)
and I.I ———A,N . For simplicity, take the background
spacetime to be that of a spatially flat Robertson-Walker
universe (2.11) and use the interaction picture to describe
the dynamics of the fields. The state vector

I P& satisfies
the Schrodinger equation

(2.28)

where HI is the interaction Hamiltonian

B. Interacting fields

It is clear from the above discussion that pair produc-
tion from free fields corresponds to the mixing of
positive- and negative-frequency components. If interac-
tions are present among the modes, there could also be
multiparticle production which, in general, can enhance
the amount over that of the free fields.

I2&= z fd'kid'k2S2 Iklk2&i»

14& = .fd'kid-'k2d k3d k@4
I
klk2k3k4&in,

with an appropriate normalization constant.
The energy of created particles is

(2.35)

l. Extrinsic (nonlinear) interactions

Consider a self-interacting scalar field with Lagrangian

where

Hp = d k Qkakak .3
(2.36)
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Expressing (ak, ak ) in terms of (Ak, Ak ), the in state, and
evaluating the integral of the matrix elements, one gets

J
X(x,g) = g Xx.(g)w~(x), (2.41)

p=po+p2. +p4+po2+P24 ~ (2.37)

where po denotes contribution from free fields, p2 and p4
that from 2-particle and 4-particle creation and po2 and

pz4 are the interference terms proportional to (0
~
Ho

~
2)

and (2
~

H
~
4), etc. Just as for free fields, the interacting

field theory can be described and formulated in the analog
of coupled oscillators via a Hamiltonian:

H =Ho+Hr

where Ho is that of the free field given by (2.19) and

(2.38)

H, = gq„'—
4I

(2.39)

for a quartic interaction. Categorically, there can also be
interaction among different modes in the bilinear form

~ ~kk'Ik9k'
k~k'

(2.40)

or other forms involving higher products.
There are two distinct features in the quantum-field-

theory treatment of interacting particle creation in the
above example. (1) The term poz is of linear order in A. as
it arises from the interaction with the vacuum. In the
analogous quantum-mechanical description the lowest-
order term would be A. . (2) For massless, conformal
fields coupled via A,P interaction, there is no particle pro-
duction in the Robertson-%'alker spacetime. This is in
conformity with Parker's theorem, as the A,P theory is
conformally invariant and the RW universe is conformal-
ly static. The discussion of entropy generation in Secs. III
and IV is based on the quantum mechanics of coupled os-
cillators with Hamiltonian [in the form of (2.38)]. The
first point above therefore indicates where a possible
discrepancy may arise, i.e., there are quantum field pro-
cesses which may not be included in such descriptions.
More important is the second point. Since the entropy de-
fined in Sec. III deals with the statistical correlation of the
states of the system, the presence of interactions as in the

theory can introduce entropy, albeit without particle
creation. This shows the distinction between these two
processes, and the difference in concepts adopted in
describing them, which is the main theme of our later dis-
cussion. %'e now turn to another mechanism which can
bring about interaction among modes even in a free field
theory.

where x denotes Euler angle variables ($,8,$) and
uz ——DKM are the symmetric top wave function. The
wave equation for each mode amplitude then has the gen-
eral form

&x(rl)+(&scar +Q4x»x =0
where

Qxx ——a (E~x+m ),2= 2 2

Q(71)=a R/6 —a "/a,
a =l)l213,3

(2.42)

and the Ez~ 's are the eigenvalues of the Helmholtz
operator on the mixmaster space with principal curvature
radii l; and scalar curvature R. The natural frequency
matrix elements in (2.42) are the eigenvalues of the Ham-
iltonian operator

[3]g+g y6+m 2 (2.43)

III. THE "STATISTICAL" ENTROPY
OF A QUANTUM FIELD

A. What is meant by the entropy?

By way of illustration consider this question first for a
collection of X distinguishable quantum particles charac-
terized by an X-particle density matrix p whose evolution
is governed by a quantum Liouville equation

with respect to the characteristic function uk. One can
factor out the part diagonal in H, call it Ho, and treat the
nondiagonal part as the interacting Hamiltonian Hr. In
the parametric oscillator analogy, Ho would be of the
form (2.19) and HI would be of the form (2.40) with
time-dependent coupling constants Cxx. (g). This exam-
ple illustrates how the modes of a free field could be cou-
pled via the dynamics of spacetime. We see that this
arises from the lack of a preferred choice of mode decom-
position in curved spacetime and the lack of special sym-
metry in the space to warrant any special choice of eigen-
functions. We will use the form (2.40) as a model for par-
ticle creation and interaction in our later considerations of
entropy generation in cosmological spacetimes. The
overall qualitative features do not depend on the exact
form of the interaction assumed.

B,p= [H,p]:— Lp —. — (3.1)

2. Dynamica! (linear) interactions

In Ref. 17 particle creation for a free field in a rnixmas-
ter universe was studied. The lesser symmetry of the
space does not allow for a "natural" mode decomposition
in terms of simple basis functions. The eigenrnodes are
linear combinations of the characteristic functions wx(x)
with time-dependent expansion coefficients. This leads to
coupling between modes through the dynamics of the
background. Write the complete wave functions as

Here 8, and [, ] denote, respectively, a time derivative
and a commutator, and H is the Hamiltonian from which
the dynamics derives. Given such a system, one is wont
to introduce an "entropy"

W[p]—:—Try In@, (3.2)

where Tr denotes a trace over the degrees of freedom of
the system. The presumption then is that this W admits
to a probabilistic or information-theoretic interpretation.
Statistically probable mixed states are assumed to have
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large W, whereas states which are somehow improbable
are assumed to have a small W. The special case of a
pure state corresponds to a vanishing W. If, moreover,
the Hamiltonian is time independent, so that a static
equilibrium state can be defined, one believes that W will
be maximized by the thermal density matrix

p,~
~ exp( —pH), toward which the system is presumed to

evolve.
The problem, however, is that such an interpretation is

inconsistent with the linearity of the Liouville equation.
It seems reasonable intuitively to argue that the evolution
induced by the dynamics will lead to a more "random" or
generic state, but it is obvious that W can provide no in-
formation about this randomization. It follows as a trivi-
al consequence of the Liouville equation that dW!dt —=0.
The entropy W, like any functional of p, must be con-
served absolutely.

Historically, this difficulty led to the concept of a
"coarse-grained averaging, " namely, the notion that the
microscopic entropy really is conserved, and that a true H
theorem expressing entropy increase can only obtain in
some quasimacroscopic average sense. This idea seems at-
tractive, at least superficially, but it also leads to a serious
problem. Even if one could construct an explicit algo-
rithm to implement the desired averaging —which has not
yet been done for any realistic systems one would be
confronted with the formidable task of proving that the
averaging is "canonical" in some natural sense. Other-
wise, one would be led to the conclusion that the existence
of a meaningful notion of entropy is not a fundamental
property of the dynamics, but reflects instead the
physicist's anthropomorphic interpretation of the evolu-
tion of the system. Indeed, once one accepts that no
unique coarse graining exists, one appears forced ultimate-
ly toward the extreme viewpoint advocated by Jaynes,
namely, that "Entropy is a property, not of the physical
system, but of the particular experiments you or I choose
to perform on it."

This viewpoint, albeit extreme, does serve to stress an
important question: namely, what is it that one actually
measures when probing the state of the system? The
answer to this would in fact seem quite obvious. One at-
tempts, typically, to measure the reduced one-particle den-
sity matrices, or perhaps the comparatively simple corre-
lations buried in the two- and three-particle reduced ma-
trices, but one never presumes to probe the complex
higher-order correlations encapsulated in the fu11 X-
particle p. One might, therefore, argue that realistic mea-
surements of the state of a system entail a type of "intrin-
sic coarse graining, " predicated not upon a quasimacro-
scopic averaging„but reflecting instead an incomplete
knowledge of the form of the higher-order correlations.

Given this observation, the materialist might argue that
the "physical" entropy should be constructed from the re-
duced one-particle density matrices, say f (i ), and, as
such, he might propose tentatively an "entropy"

NS—:g Trf (i)lnf (i ), (3.3)
i=1 I

where Tr; denotes a partial trace over the degrees of free-
dom of the ith particle. Given the demand that S be con-

structed solely from the f(i)'s, this is perhaps the most
conservative possible choice; and, indeed, this S has a
number of attractive properties.

(1) In that the f ( i)'s are well defined, physically
measurable quantities, one may argue that S has a con-
crete physical meaning.

(2) In the presence of couplings between degrees of free-
dom, S, unlike W, will in general be time-dependent.
Thus, e.g., for a collection of N identical particles in-
teracting via a pair potential H z, it follows immediately
that

dS =X(X—1)Tr Tr lnf (i)i [f2(ij ),H~].dt i j (3.4)

where f2(ij ) is the reduced two-particle density matrix
for particles i and j.

(3) In the absence of couplings between degrees of free-
dom, dS/dt=—0. Changes in the entropy can occur only
in the presence of interactions which induce correlations
among the particles not reflected in the one-particle
f (i)'s.

(4) This S is in fact the standard Boltzmann entropy,
and, as such, one anticipates that an H-theorem inequality
will obtain at least in a "weak coupling" or "dilute gas"
approximation. It is well known that, in such a limit, a
collection of N identical particles will satisfy the Landau,
or collisional Boltzmann, equation, and it follows trivially
from each of these equations that dS /dt )0.

(5) Regardless of the form of the interactions, one can
prove a rigorous H theorem in at least one simple case.
Specifically, if, at some initial time to, the system is free
of correlations, so that p = Q,.f (i), it follows rigorously
that, an instant later, at time to+At, the entropy will be
increasing:

dS(r, +b, r)ldt &0! . (3.5)

Evolving correlations induce at least an initia1 increase in
entropy. This demonstrates, in particular, that even for
periodic systems, in which a universal H theorem cannot
hold, changes in S are intimately connected with evolving
(or decaying) interparticle correlations.

Equation (3.4) illustrates the obvious fact that, quite
generally, for arbitrary interparticle interactions, the time
derivative of the one-particle entropy S can be expressed
in terms of the two- and higher-particle reduced density
matrices. This is nothing other than a simple manifesta-
tion of the standard Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy of equations. What makes the
definition of S more fundamental mathematically is the
fact that, by introducing an appropriate "subdynamics, "
dS/dt can instead be reexpressed as a nonlocal, nonlinear
functional of the one-particle f ( i)'s.

As discussed by many authors, and applied to field
theory by Kandrup, the idea behind a "subdynamics" is
very simple: view the full N-particle density matrix p as
being a sum of two contributions, a "relevant" p~ and an
"irrelevant" pl, and extract from the full N-particle Liou-
ville equation B,p= —I-p an equation for B,p~ which
contains no explicit reference to pl. For the system of in-

terest here,
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N

v~= gf(i) (3.6)

and the entropy

S[i ii ]= —Trpii1 pg (3.7)

The nontrivial fact then is that dS(t)ldt can be reex-
pressed in terms of pR at retarded times t —r. The key to
obtaining such a "subdynamics" is the observation that
pz and pq =—p —pz can be viewed as "orthogonal" in an
appropriate function space, so that, as illustrated at the
end of this section, the decomposition of p=p~+pq can
be implemented rigorously by means of projection opera-
tors.

This basic idea sounds so simple that it is important to
stress that there is no guarantee that an arbitrary decom-
position of p into two pieces p~ and pq can be implement-
ed rigorously. The existence of such a closed subdynam-
ics for specific choices of pii exploits in a deep and funda-
mental way the overall symmetries of the Liouville equa-
tion. The p~ of Eq. (3.6) is especially simple and, as first
illustrated by Willis and Picard, admits to a compara-
tively simple subdynamics. If, alternatively, one were
concerned instead with pair correlations rather than sim-
ply with the one-particle f ( i)'s, the construction of an ap-
propriate pg which satisfies a closed subdynamics be-
comes a far more complicated, albeit still soluble, prob-
lem. '4

leak Pk'] i~kk' ~ (3.9)

Given this structure, it is straightforward formally to
define reduced density matrices by partial traces over all
but some finite number of field degrees of freedom. Thus,
e.g. , in analogy with the case of a system of N particles,
one can define a reduced density matrix for the kth oscil-
lator

g(k):—+Try,
r~k '

(3.10)

so that the "relevant" contribution to the total density
matrix p, takes the form

section. Specifically, assume that this system can be
characterized by a many-oscillator density matrix p de-
fined in an appropriate infinite-dimensional phase space,
and suppose that its evolution is governed by a quantum
Liouville equation B,p = i —[H,p]—:Lp— which
expresses probability conservation in that infinite-
dimensional space. The natural geometric structure of
this space is unfortunately less than obvious. However, as
discussed, e.g., in Ref. 25, it suffices to proceed as if this
phase space were a flat infinite-dimensional manifold con-
structed in the obvious way as a direct product of infinite-
ly many one-oscillator phase spaces. The commutator in
the Liouville equation is then reinterpreted by the im-
plementation of the canonical commutation relations

B. Abstract definition of "field entropy" PR= +g(&) .
k

(3.11)

P(x, t)= gqk(r)gk(x, r) .
k

(3.&)

For the case of flat space, these pk's are to be chosen as
the plane-wave eigenfunctions of the spatial Laplacian
which serves to define the notion of particle. In a more
complicated spacetime, they will in general be something
quite different. Thus, for example, in a mixmaster
universe, the "natural" decomposition entails an expan-
sion in generalized Wang functions. ' By exploiting the
orthogonality of the 1ijk's, one can reinterpret L as being a
function of the qk s and their time derivatives qk. Stan-
dard manipulations then permit one to construct a Hamil-
tonian H which depends upon the "coordinates" qk and
the canonically conjugate momenta ~k, and which can be
interpreted as representing a collection of oscillators.

The object now is to treat these oscillators as if they
were a collection of real particles and proceed in complete
analogy with the program outlined in the first part of this

The object here is to construct an analogous definition
of entropy for a quantum field by exploiting the
mathematical fact that such a field is equivalent to an in-
finite collection of oscillators. As illustrated for the case
of a scalar field N, the idea is in fact straightforward.

Start with the fundamental action S[C&] from which
the basic field equation derives. Implement a preferred
splitting into space and time so as to extract a Lagrangian
L[4]. Now expand N(x, t) in terms of an appropriate
orthogonal basis set of eigenfunctions gk(x, t) with time-
dependent coefficients qk(t):

The field entropy S is then defined by the obvious
prescription

S = Try~ in@~ ————g Trk g (k)lng (k) .
k

(3.12)

For a source-free linear field theory in fiat space, the
oscillators decouple and the field entropy is conserved ab-
solutely: dS/dt —=0. If, alternatively, couplings are intro-
duced by nonlinearities (as in a A,W field theory), by the
presence of material sources, or, as illustrated in Sec. IV,
by a nontrivial background spacetime, S will instead ex-
hibit a complicated time dependence.

At this point it is important to reiterate the two critical,
and potentially ambiguous, steps involved in the definition
of S, namely, the implementation of a preferred splitting
into space and time and the choice of a particular set of
basis functions gk. The definition of dynamics requires
the singling out of a preferred notion of time. The
enumeration of the degrees of freedom requires a pre-
ferred decomposition into "oscillators. " For certain phys-
ical systems of interest, there will exist a canonical notion
of time and an obvious preferred decomposition into some
appropriate analogue of spatial plane waves, but, in gen-
eral, even these apparently innocuous preliminaries intro-
duce a fundamental ambiguity (or at least observer depen-
dence) into the basic field-theoretic description.

It should, however, be emphasized that these are not
ambiguities associated specifically with the definition of
entropy or even the formulation of a Liouville equation.
These are instead ambiguities arising at the very founda-



1784 B. L. HU AND HENRY E. KANDRUP 35

tions of general relativity (choice of time) and quantum
field theory in curved space (mode decomposition), and,
particularly, the definition of "particle. " From this point
of view, the field entropy (3.12) is as reasonable —or
unreasonable —an object as is the notion of "particle. "

In conventional relativistic kinetic theory, these prob-
lems of noncovariance are circumvented by replacing the
ordinary notion of an entropy S by a locally defined en-
tropy flux s", a vector field living in the spacetime mani-
fold. The notion of an H theorem is then captured by the
local statement that the covariant divergence Vzs" is
non-negative (see, e.g. , Ref. 31), and it is only by integrat-
ing over some arbitrary three-dimensional spacelike hy-
persurface that one can identify a total entropy S which
increases monotonically: dS/dt )0. Such a covariant
reinterpretation of the field entropy (3.12) seems, however,
very difficult to realize. The field entropy S is defined
not in the spacetime manifold, or even in the associated
cotangent bundle, but, instead, in the abstract Hilbert
space associated with the q's and vr's. Indeed, the entropy
S, like the density matrix p, makes no explicit reference at
all to the spatial coordinates x, so that there is no obvious
sense in which, at some instant of time, some "piece" of
the total entropy can be associated with some region of
space.

C. The time dependence of the entropy

The object now is to use the notion of a subdynamics to
obtain an expression for the time derivative dS/dt which
involves only the "relevant" density matrix pR. The con-
struction of the desired subdynamics is considered in great
detail by Kandrup, and, as such, it suffices here to sim-

ply sketch the basic picture and then quote the final re-
sults.

The key idea is to introduce a linear projection operator
P(t) defined to satisfy the three requirements '

and

PP =PR

P(t2)P(ti)=P(t2) for t2&t, ,

(3.13)

(3.14)

(3.15)

and

B,p +(1 P)Lp = ——(1 P)Lp— (3.17)

The first of these equations expresses the fact that the
correlations buried in pr serve as a source for changes in
pR. The second equation expresses the fact that pR back
reacts to induce changes in pt. The net effect of this in-
terplay is that B,p~(t) will involve the form of p~ at re-
tarded times t —~.

In terms of an initial condition at time t0, the equation
for B,pt admits the solution

The first of these requirements ensures that the operator
P serves to project out from the total p the desired pR.
The second guarantees that, at any instant of time, P is in
fact idempotent, so that pR does lie in an "invariant" sub-
space. The third requirement ensures that the notions of
projection and time evolution commute, at least when re-
stricted to the fundamental many-oscillator p.

Given such a P, an explicit realization of which is
presented in Ref. 26, it follows immediately that the sin-
gle quantum Liouville equation B,p = —Lp is equivalent
to the coupled system

(3.16)

0
pl(t)= $(tqtp)pl(tp) d79 (tit 7)[1—P(t —p)]L (t —r)pg(t —7)

0

where

(3.18)

$(t2, t& )—:T exp —J dr[1 P(r)]L (r)—
1

(3.19)

and T denotes a time-ordering operator. By inserting this formal solution back into Eq. (3.16), one then concludes that
f —t0

B,p„(t)+P(t)L(t)p„(t)= P(t)L(t)9'(t, t —)p (t )+ J de(t)L(t)$(t, t —7)[1 P(t —7)]L(t —r)/L —(t —T) .
0

(3.20)

One has obtained an exact closed (albeit nonlocal) equation for the evolution of pz which contains explicit reference to
the "irrelevant" contribution pt only through the propagation of an initial condition pt(tp),

By exploiting the explicit realization of P presented in Ref. 26, it is then straightforward to work out more concretely
the form of the equation for B,pR, and to use that equation to evaluate the time derivative of the entropy. One discovers
thereby that the term PLpR has no effect on the evolution of S and that it is only the back reaction of the "irrelevant"
pi which induces changes in the entropy:

dS(t)
dt

= —Tr(1+ lnp~ )B,pz (t) = +Tr lnpz (t)P (t)L (t )pl(t) . (3.21)

By inserting into this equation the pt of Eq. (3.18), and observing that (1—P)Lptt contains no explicit reference to the
"free" piece of L involving only the uncoupled oscillators, one then concludes that

dS(t) f —fo

dt
= —Tr Input (t)P(t)L (t)$(t, tp)pt(tp)+ I dr Trpz '(t)g(t) S(t, t r)g(t —r), —

0
(3.22)
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where, in terms of a suitably defined "average" interaction
Liouvillian I L },

L ——[L }, (3.23)

IL,'k}4=i [IH,'k},kl

where

(3.24)

and the quantity /=DER. Note in particular that, in the
absence of couplings between the oscillators, I. and 5
vanish identically, so that dS/dt =—0.

The form of the "average" I L } will of course depend
upon the details of the interaction Hamiltonian H con-
necting the oscillators. Consider, for example, an interac-
tion H constructed as a sum of pair potentials Hz~ in-
volving couplings between oscillators j and k. In this
case, the interaction Liouvillian I, also degenerates into a
sum of contributions Ljk, and, for any function g, the
"average" I Ljk } takes the form

equivalent to the hypothesis that IJI(to)=—0 .If nontrivial
initial conditions are important, that equation must be
supplemented by an additional term involving pi(to), and,
in that case, the standard H theorem satisfied by the Lan-
dau equation requires a careful reexamination.

IV. ENTROPY GENERATION
AND PARTICLE CREATION

The object here is to use the notion of subdynamics
considered in the preceding section to address the
phenomenon of particle creation in the early Universe
and, especially, to illustrate the sense in which particle
creation correlates with the generation of entropy as de-
fined by Eq. (3.12). As a concrete example, attention will
focus upon a collection of oscillators described by the
specific model Hamiltonian discussed in Sec. II [Eqs.
(2.19) and (2.40)]:

[Hjk }= Tr HJkg (j )+ Tr H,„g(k)
J k

(3.25) g (~k +IIk qk )+ g &kk'Skulk
k k'~k

denotes an average value defined with respect to the one-
oscillator reduced density matrices.

A "short times" H theorem follows immediately from
Eq. (3.22). In the limit that x~0, S(t, t —r)~l, and
thus, neglecting temporarily the contribution to dS/dt in-
volving the initial condition pl(to), one concludes that, at
time to+Et,

dS(ra+Br)ldr =Dr Trpb (r)
~ g (r)

~

&0 (3.26)

a quantity which, depending upon the detailed form of
pi(to), could be either positive or negative. This indeter-
minacy in the sign of dS/dt illustrates the fact that the
field entropy cannot satisfy a completely general H
theorem for all times. One might naively claim that this
means that S does not constitute a satisfactory notion of
entropy. However, further reflection suggests that, at
least in principle, one should be able to specify initial con-
ditions which result in an initial decrease in the entropy.

What one really expects physically is that, eventually,
the effects of any nontrivial initial correlations may be ig-
nored compared with the "systematic" correlations in-
duced by the evolving dynamics. It is these systematic ef-
fects which are reflected in the "spontaneous" changes as-
sociated with the contribution to dS/dt that involves the
form of pz at retarded times t —~.

In this regard, it is worth emphasizing that standard
derivations of the Landau equation for an electrostatic
plasma all entail an assumption of "molecular chaos"

If, at some time to, the system is free of correlations,
dS(to) Idt will vanish, but the subsequent evolution of the
system, induced by couplings between the degrees of free-
dom, leads at least initially to a subsequent increase in the
entropy. In this sense, one can speak of a "spontaneous
generation of entropy" induced by the evolving dynamics.

If, alternatively, one allows for nontrivial initial condi-
tions, one can also obtain "stimulated" changes in the en-
tropy. Thos, quite generally, one concludes that

dS(to)/dt = —Tr input (to)P(to)L (to)pi(to), (3.27)

—:g Hk+HI =Ho+H;, —
k

(4.1)

where Qk & 0 and ckk ——ck k are arbitrary real functions of
time t.

This is a useful Hamiltonian to consider for a number
of reasons. (1) In the limit that ckk =—0 and the Qk's are
time-independent, this is the Hamiltonian appropriate for
a Klein-Crordon field in Minkowski space. (2) More gen-
erally, by assuming that ckk &0 but that Qk is in fact
time dependent, one recovers the form appropriate for a
Klein-Gordon field in a spatially flat Friedmann cosmolo-
gy [see, e.g., Eqs. (2.12)—(2.14)]. (3) By allowing for non-
trivial time-dependent ckk s, one can mock realistically
the evolution of a Klein-Gordon field in a mixmaster
universe. ' This is important both for practical and con-
ceptual reasons. On the practical side is the observation
that these mixmaster universes represent a very general
class of solutions to the classical Einstein equation which
are believed in certain respects to illustrate the generic
behavior of a realistic cosmology at very early times as
one approaches the initial singularity. On the conceptual
side, this Hamiltonian illustrates the important fact that,
in a nontrivial background spacetime, the "normal
modes" for even a source-free linear field theory will not
decouple from one another. Even the simplest sorts of
linear theory can, in a dynamical background, evidence
complicated interactions among the normal modes.
Mathematically, as discussed in Ref. 17, the reason for
this is that, if the spacetime is not (at least) conformally
static, the "natural" generalization of the three-
dimensional Laplacian, which generates the decomposi-
tion into modes, will itself evidence a time dependence;
and this time dependence, when combined with the
dynamics encapsulated in the field equation, will indoce a
time-dependent linear mode-mode coupling.

One might also like to allow in the model Hamiltonian
for nonlinear couplings of the form which would, e.g. ,
arise in a A,W field theory even in flat space, but as dis-
cussed in Ref. 26, these additional complications would
not alter the principal conclusions established here.
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Given the Hamiltonian (4.1), it is natural to introduce
the "number operator"

Nk = ('ttk ++k 'qk ) Y2Q, k
(4.2)

8 Nk — (Kk Qk qk ) ~

2Qkz

This means that the statistical expectation value

(4.3)

(Nk) =TrpNk (4 4)

associated with the density matrix p changes both by vir-
tue of changes p and by virtue of changes in the definition
of particle:

For free fields (ckk =0) in flat space, this Nk admits to an
unambiguous interpretation as representing the "number
of quanta in the kth mode. " And, in the presence of in-
teractions (ckk«0), this interpretation remains valid if, in
the usual way, one supposes an adiabatic switching on and
off of the ckk's in the asymptotic regions. In curved
spaces, the physical interpretation is in general less obvi-
ous, but it is evident that the statistical expectation values
of the Nk s still contain important information, for exam-
ple, about how the total energy of the field is distributed.

Because the natural frequencies Qk are functions of
time, Nk itself is a time-dependent operator:

A t ~ ( rtk +k ~qk ) 2+k +k qk (4.7)

where Qk and Ak refer to conditions at time to, and this
leads to a contribution to d (Nk ) Idt of the form

d (Nk(tp+At) )f Qk
qk At &0, (4.8)

dt k

particles. " That this is the case may be established
straightforwardly in the context of a simple perturbation
theory. Indeed, given initial conditions at some time to 1t
is simple but tedious to calculate the expectation value
d(Nk(tp+At))jdt to first order in A.t. The principal
conclusion of this computation is that d(Nk(tp+At))ldt
can be decomposed into a sum of two terms which are
intrinsically positive for an arbitrary state, and a remain-
ing piece, of indeterminate sign, which vanishes identical-
ly for an initial eigenstate of the Nk's (and many other
nontrivial initial states). The former contributions, which
will always be present, may be defined as corresponding to
"spontaneous particle creation" induced by the dynamics.
The latter, which require specialized initial conditions,
may be defined as corresponding instead to a "stimulated
particle creation. "

It is instructive to focus explicitly upon the origin of
the two sources of "spontaneous particle creation. "

(1) Because Qk is time dependent, the system cannot in
general remain "at equipartition. " The number operator
Nk(tp+ At) will contain a contribution proportional to

d(Nk )

dt
=Tr(pB, Nk+NkB, p) . (4.5)

The second term in Eq. (4.5) can be reexpressed in terms
of p(t), rather than its time derivative, by exploiting the
quantum Liouville equation for p, the cyclic trace identi-
ty, and the fact that [H,Hk] = [Ht, Hk]. The net result is
that

where the subscript f denotes spontaneous creation of
quanta arising even in the absence of interactions.

(2) Correlations buried in the evolving p (tt) necessarily
induce a nontrivial expectation value for (nkqk ). Sup-
pose that, initially, pt(tp)=—0. It then follows from the
discussion in Sec. III that the interactions induce a non-
vanishing

d(N„&
dt

k 2 2 2
Ckk'

('trk ~Ik 'qk & g & ~kqk')
2QkZ k'~k

pt( tp +At): —At ( 1 —P)Lp~ (tp )

At/(t p ), — (4.9)

(4.6)

It is clear from Eq. (4.6) that particle creation can be
induced either from a time-dependent Qk or from cou-
plings between degrees of freedom encapsulated in non-
vanishing ckk s. The former mechanism will be viable if
(vrk Qk qk )&0, i.e.,—if the system is not "at equiparti-
tion. " The latter will be viable if (vrkqk )&0. Initial con-
ditions for which one or both of these expectation values
is nonvanishing lead to a "stimulated" change in the num-
ber of particles. If, alternatively, initial conditions are
chosen so that these expectation values all vanish (as is,
e.g., the case for the vacuum), there will be no immediate
change in the particle number.

What is, however, important to observe is that, even in
the absence of such "stimulating" initial conditions, the
evolving dynamics will lead to a "spontaneous creation of

and, given this expression, it is easy to see that the quanti-
ty Trpt(tp+At)mkqk &0. The net result is a contribution
of d (Nk ) Idt of the form

d (Nk(tp+ At) ),
dt

2

(&qk'& —&qk &')At »,
k~k'

(4.10)

where the subscript c denotes spontaneous creation of
quanta associated with correlations induced by interac-
tions.

Equations (4.8) and (4.10) represent the spontaneous
creation of quanta. Assuming, for simplicity, that
pt(tp) =0, i.e., that no initial correlations are present, the
remaining "simulated" contributions take the form
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d(Nk(tp+ At) )„
dt

Ckk'—&Pk & &qk»+
k'~k Ckk

At
Ak

[('trk ) ('7rk') Qk &qk & &qk'& g kl(qk'& &qi &]
~

1~k

k 2 2 2 Ak 20k
+ g

' (~k Qk qk & + ~ ~ +~ [2Qk ('trkqk+qk'trk &

20k Ok

+2 g cki&qk &&e &]
1~k

(4.1 1)

As noted already, this contribution has no fixed sign: by
a judicious choice of initial conditions, one can stimulate
either a net increase or decrease in particle number.
Indeed, this stimulated contribution can be nonvanishing
only for special initial conditions so chosen that (qk),
(mk), (mk Qk qk—), and/or (~kqk+qkmk) is itself
non vanishing.

To further justify the appelation "stimulated, " it is use-
ful to ask what sorts of initial conditions are in fact re-
quired if the expectation value in Eq. (4.11) is to be non-
vanishing. The first point to observe is that this expecta-
tion value vanishes identically if one chooses as an initial
state the vacuum or, indeed, any initial eigenstate of the
Nk's. That this is the case is easy to see. By reexpressing
the q's and m's in terms of the standard creation and an-
nihilation operators

and

a =(2Q) '~ (Qq im.)—
a =(2Q) '~ (Qq+im),

(4.12)

q~+~q =i[(a ) —(a )], (4.13)

it is easy to see that the remaining expectation values
must vanish as well.

Less obvious, but equally important, is the fact that
d (Nk )„Idt also vanishes for some highly nontrivial
mixed states. Thus, for example, one can verify directly
that there is no "stimulated" change in the number of
quanta for an initial "pseudothermal" density matrix

it becomes obvious that (qk ) and (nk) must vanish. for
such an eigenstate. And, by observing that

n.~ —Q q = —Q[(a ) +(a) ]

and

~k =qk &qk & (4.16)

sense described below, contain nontrivial "phase" infor-
mation.

This observation is connected intimately with
Zel'dovich's intuitive explanation of why the spontaneous
contribution arising from a time-dependent Ok are always
positive regardless of the sign of Qk, i.e., whether the
Universe is expanding or contracting. The key to his
understanding of this fact is that quantum-mechanical
phase and occupation number are complementary notions
in the same sense as the q's and ~'s (Ref. 32). An initial
eigenstate of the Nk's has completely indeterminate phase,
but, as the field evolves away from this eigenstate, it tends
toward a configuration with partially determined phase
and number which necessarily entails an increase in the
expectation value of the Nk's.

The spontaneous "correlational" particle creation evi-
denced by Eq. (4.10) also admits to a simple physical in-
terpretation. As is clear from Eq. (4.6), d(Nk) Idt will
always contain a contribution involving the product
pz(t)ckk (t). The crucial point then is that, in the absence
of an initial pz(tp), a nontrivial pt(t) is generated only by
the evolving correlations and, as such, must itself be pro-
portional to the ckk 's. The net result is that, to lowest or-
der in quantum-mechanical perturbation theory, the
evolving correlations induce a rate of particle creation
quadratic in the c's (see, however, the quantum field dis-
cussion in Sec. II B2).

Turn now to the entropy generation induced by the
dynamics. In the absence of initial correlations
dS(tp+b, t)/dt will be given by Eq. (3.26) which, for the
model Hamiltonian (4.1), reduces to

dS (tp+ kt)Idt = g ckk' TER (tp)+kk (tp) 6t & 0'

k'~k

(4.15)
Here, in terms of the "fluctuating" coordinate

p;„~exp( PHp) . — (4.14) the operator gkk takes the form

Indeed, various simple model calculations lead one to the
conclusion that, at least in the absence of couplings be-
tween degrees of freedom, so that ckk =0, stimulated con-
tributions arise only for initial conditions which, in the

~kk' ~k[qk' PR l+ ~k'[qk' PR ]

~Pe ~Pa—k
~7k ~7k

(4.17)
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There is an obvious connection between entropy genera-
tion and particle creation in the sense that dS(to+3 t)ldt,
like the "correlational" particle creation d (Nk(to
+ At)), /dt, is positive and scales as

~
ckk

~

. However,
it is also clear that there can exist no direct one-to-one
connection. After all, spontaneous particle creation will
obtain even in the absence of correlations as a conse-
quence of the time dependence of the Qk's. What is, how-
ever, true is that the correlations which give rise to a non-
vanishing dS/dt lead also to an enhancement in the rate
of particle creation.

In this regard it is useful to pursue a simple analogy
with ordinary particle kinetic theory. Specifically, if, in
the spirit of a simple mean-field theory (self-consistent
field approximation), along the lines of the Vlasov (i.e. ,
collisionless Boltzmann) equation, one were to neglect the
evolving correlations and assume that p= +kg(k), one
would conclude that dS Idt and d (Nk ), Idt both vanish
identically, but that the total d(Nk ) Idt&0. The "mean
field" equation

a,»+n, @,=o, (4.18)

unlike the full equation (3.20) for B,pz, is linear and re-
versible, containing no "dissipation' which could lead to a
change in the entropy. Changes in quantities like (Nk)
induced from this simpler equation must be interpreted,
not as manifesting a fundamental irreversibility in the
subdynamics of pz, but, rather, as reflecting a type of

phase mixing.
From this point of view, one may say that d(Nk) Idt

contains two sorts of contributions: namely, (i) particle
creation due to a type of "phase mixing" which has no
connection with the entropy and which will be present
even if one pretends that pi =—0 and (ii) particle creation
induced by changes in pl which manifest a direct connec-
tion with the phenomenon of entropy generation.

The discussion hitherto has focused upon the short time
evolution of the field in response to specific initial condi-
tions. It remains to determine what can be said about the
later time evolution, e.g. , in the limit that t~ oo. In gen-
eral, not much is known about this more generic evolu-
tion, but at least in the limit that cI,I, =0, so that the oscil-
lators decouple and dS/dt =0, some concrete results are
known.

Thus, for example, such authors as Parker and
Zel'dovich have considered so-called "statically bounded"
situations, for which the natural frequencies take the form

Qk(t) =Qk[1+Qk(t)], (4.19)

where Qo is a constant and the dynamical function Q~(t)
tends toward well-defined static asymptotic limits Qk

—as
t~+ ap. This is, for example, the form of QI, appropri-
ate for a Klein-Gordon field in a conformally flat space-
time with metric g& =a (t)i)& where a~a+ as the con-
formal time t~+ac. For such a "statically bounded"
system, one anticipates that an initial density matrix p
will tend eventually toward a static end state p+ and, as
t~+ oo, the expectation value (Nk ) has an unambiguous
physical interpretation as the "number of quanta in the
kth mode. "

For this special case, it is well known that an initial

vacuum state, with (Nk) =0, will evolve ultimately to-
ward a final state (Nk )+——

~ pk ~, where pk is a calcul-
able Bogoliubov coefficient. The real question is how the
net change in quanta b(Nk)—:(Nk)+ —(Nk) will be
affected by nontrivial initial conditions. The principal
conclusion obtained to date is that an initial presence of
particles will, at least in the case of bosonic fields, tend to
enhance the overall rate of particle creation. Thus, for ex-
ample, Parker has showed that, for an arbitrary initial
mixed state constructed as a superposition of eigenstates
of NI„ the net generation of particles

~(Nk ~
l nk l

(1+2(Nk ~ —) (4.20)

Equation (4.20) manifests an obvious connection with the
short time d(Nk ) Idt of Eq. (4.8). Thus, if one supposes
that, initially, (nk —Ak qk ) =0, as is true for the situa-
tion considered by Parker, he concludes that

d (Nk (tO+ b, t) )q

dt
QI,

, Et[1+2(N (kr )o)] . (4.21)
2Aq2

pk- f dt Qk(t)exp( 20kt) —.
As a concrete example, suppose that

Qk QO(1+t /2)

(4.22)

(4.23)

where Qo and r are constants. In this case, one concludes
that

Pk -'irQo(2&kr)exp( 2&mr) (4.24)

this corresponding to an overall particle creation propor-
tional to

~ Qo ~

but modulated by the dimensionless
product Ao~. Here, the natural frequency QI, is invariant
under time inversion t~ —t, and, as such, it is evident
that the net creation of particles must be interpreted as a
direct consequence of an asymmetry imposed by the ini-
tial conditions, rather than by an "arrow" of time induced
by I.

Suppose, for instance, that at early times the system is
"at equilibrium, " so that

p =p( t~—oo ) ~ exp[ PH—
( t~—~ ) ] . —

In this case, the initial

( Nk ) = —,coth(pflk/2)=(peak )

(4.25)

(4.26)

the final approximate equality obtaining in the "semiclas-
sical" limit that /3Ak « 1. This implies a net creation of
particles

For short times,
~
pk ~

=Qk b t /20k. One obtains the
spontaneous particle creation associated with the vacuum,
amplified by a multiplicative factor 1 + 2(Nk(to) ) which
reflects the number of particles already present.

A simple expression for pk can be derived in the special
limit that Qk~0 in the limit that t~+ oo, i.e., for a
background spacetime which at early and late times ap-
proaches flat space with metric g„=g„. Thus, if one

assumes that
~ Qk ~

&&1 and that
~ Qk

~

is small in an ap-
propriate sense, he concludes that
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8m Qo (Qkr)
b (Nk )= 0 exp( —4Qkr) .

P&k
(4.27)

g;„(k)=(PQk/2m)exp — (mk +0k—qk )
2

and

g,q(k) =(PQka/2vr)exp — (mk +Ok —a qk ), (4.29)

where

a =1—ckI, /Qk Ak =1—A.2 2
I 2 1 2

(4.30)

Provided that ck, k &Qk Ak, a will be real and the

equilibrium g,q(k)'s are well defined. One then concludes
immediately that

and

( Nk );„=(pAk ) (4.31)

( Nk ),q ——(Nk );„[(1+A /2) l(1 —3 )] ) (Nk );„.
And, similarly, one verifies that

pQk pQt,
S;„=2 —ln —ln

277 2'
and

Seq Sin 2 1 & Sin

(4.32)

(4.33)

(4.34)

In a similar vein, one might hope to reach some con-
crete conclusions regarding the evolution of systems with
nontrivial couplings ckk in the limit that the Hamiltonian
H is independent of time, so that the average energy is
conserved. Here one is wont to suppose that an arbitrary
p;„will converge toward a thermal density matrix
p, q

cc exp( —P,+), where the value of P,q
is determined by

energy conservation. The problem, however, is that such
an interpretation cannot be literally true: conservation of
phase, as embodied in the Liouville equation, imposes a
severe restriction on the allowed evolution of p, so that, in
general, p, ;„cannot converge pointwise toward p,q (Refs.
26 and 33). There may perhaps be a convergence toward

p,q in some appropriate norm, or in some appropriate
time-averaged sense, but a true pointwise convergence is
simply impossible. What does, however, appear to be true
(see, e.g. , the plausibility arguments presented in Ref. 26)
is that, for arbitrary initial conditions, (1) S,q & 5;„and (2)

&Nk).,& &Nk),.
For the Hamiltonian (4.1), this can be established

rigorously for an initial pseudothermal density matrix
(4.14), at least in the limit that the ckk s are sufficiently
small that H is a positive quadratic form and p,q is well
defined.

By way of illustration, consider the case of two oscilla-
tors k

&
and k2 in the classical limit (PQk && 1) that p can

be interpreted as an ordinary distribution function. Here
energy conservation implies that the initial and final
"temperatures" must be equal, i.e., that P,q=P, so that the
normalized reduced one-oscillator distribution functions
take the forms

For this simple example, it is also easy to see that p,q

could not have evolved from p;„. As noted in Sec. III, it
is clear that the ordinary "entropy" W =Try Inp must be
conserved, but it is easy to verify explicitly that, in this
case, W,q~W;„. The initial W;„ is of course given by Eq.
(4.33), whereas the equilibrium value

W,q
——W;„—Ina . (4.35)

For an isolated system, it makes no sense a priori to
suppose that, for example, all initial configurations with
the same energy (and, perhaps, some other finite set of
conserved quantities, such as linear and/or angular
momentum) will converge toward the same final state.
Only by allowing for a coupling with some external envi-

ronment, which plays the role of a "bath" or "reservoir, "
can one relax the highly nontrivial constraints imposed by
"conservation of phase. "

V. DISCUSSION

By way of summarizing our results here we will make
precise some of the concepts and terminology we em-

ployed which may differ from ordinary loose usage.
(A) The main emphasis of this work has been on the re-

lationship between particle creation and entropy genera-
tion in dynamical spacetimes. We used a quantum field-
theoretical formalism (Sec. II) to discuss particle creation
and pointed out the following differences.

(1) The difference between particle creation in the ab-
sence of (ckk ——0) and those in the presence of interactions
(ckk &0). The free part includes parametric amplification
of vacuum fluctuations and from n-particle states [e.g., po
in (2.37)]. The interacting part includes those from the in
teractions among particles (accountable in a quantum-
mechanical treatment) and those between the particle
pairs and vacuum fluctuations [e.g., terms such as p02 in
(2.37), which are distinct quantum-field effects].

The free part we have loosely called creation by
"parametric amplification" and the interacting part,
"correlational" particle creation. This should not, howev-
er, be mistaken to mean that parametric amplification
acts only on free fields. There is also creation by
parametric amplification for interacting fields. Particle
creation by parametric amplification is present for all
dynamic fields, except for conformally invariant fields in
conformally static spacetimes.

(2) The difference between what we have called extrinsic
interaction of modes (including self-interaction) and in
trinsic interaction of modes due to the time dependence
and the coupling of the expansion functions. The latter
arises from the wide class of eigenfunctions associated
with spaces of lesser symmetry. This dynamically in-
duced linear coupling between modes in a free-field theory
is quite different from that of nonlinear coupling external-
ly introduced, but it generates "correlation entropy" just
the same. Coupling of this nature serves to illustrate the
breakdown of the apparent distinction between phenome-
na associated with free fields such as particle creation
alone and those with interacting fields; both can introduce
correlations and generate entropy. Note that there is no
preferred choice of mode decomposition in curved
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space—the corresponding vacuum state and the physical
effects associated therewith could vary accordingly. It
therefore is conceivable that an otherwise simple
phenomenon for an observer associated with one set of
eigenmodes (the "natural" one) may appear very compli-
cated (e.g. , with mode coupling) for another observer asso-
ciated with an "unnatural" set of eigenmodes. This
"naturalness" is of course a physically ill-defined concept.
The mixmaster space is for us an interesting illustration
of just this effect. If the nature of interaction depends on
the choice of the observer, then the correlational entropy
generated through these interactions may vary according-
ly. One needs to stipulate a complete set of eigenstates to
define the particle states, and the phenomena of particle
creation, interaction, and entropy generation will be mea-
sured with respect to these states. This apparent ambigui-
ty of course stems from the lack of a covariant description
of these processes and is common in quantum field theory
and statistical mechanics in curved spacetimes.

(3) The difference between spontaneous and stimulated
creation. We have defined spontaneous creation [Eqs.
(4.8) and (4.10)] as that part which has d(N) Idt ~, =0
initially (at to) and stimulated creation [Eq. (4.11)] as that
part which has d(N)ldt ~, &0. We have also shown

that for spontaneous creation, at least for short times, the
average particle number always increases. This spontane-
ous creation may come from parametric amplification
[Eq. (4.8)] or from interactions [Eq. (4.10)]: the latter part
which we call "correlational, " also gives rise to entropy
generation. For stimulated changes, the particle number
may increase or decrease at to+ At, depending on the
phase relation of the initial state. For example, the stimu-
lated contribution vanishes if the initial state is an eigen-
state of the number operator. Two important cases are
the vacuum (a pure state) and a thermal state (a special,
mixed state), neither of which leads to stimulated
creation. Spontaneous particle creation from the vacuum
gives rise to the zero-temperature vacuum quantum ener-

gy density po, while spontaneous creation from the
thermal n-particle state gives rise to the finite-
temperature energy density pT (Ref. 10). In discussions of
finite-temperature quantum field theory a distinction is
usually made between vacuum and n-particle states. The
latter refers to general mixed states containing n; particles
in k; modes with an arbitrary form of the density matrix.
Those described by a thermal density matrix are called
thermal n-particle states. These states, when subjected to
parametric amplification, give rise to finite-temperature
particle creation in exactly the same way [Eq. (2.25)] as
particle creation from the vacuum, both being spontane-
ous in nature. There should be corresponding stimulated
production from initial states containing nontrivial phase
information.

(B) For the discussion of entropy generation we used a
subdynamics analysis first developed for classical and
quantum fields in Ref. 26. Here we use this formalism as
a criterion to define and quantify the notion of entropy in
dynamical quantum systems. The central idea explained
in Sec. III involves the division of the full N-particle den-
sity matrix p into the sum of a relevant part pR and an ir-

relevant part p~. We used the model Hamiltonian of a
system of time-dependent coupled harmonic oscillators to
explicate these ideas. The relevant contribution to the to-
tal density matrix is defined as the product of the reduced
density matrices for each oscillator, and the entropy S is
defined by tracing pz [Eq. (3.12)]. In the absence of ini-
tial correlations the time rate of change of S(t) involves
only pz and the interaction Liouvillian [Eq. (3.26)] which
depends on the interaction of the oscillators. We then ap-
ply these results to the analysis of particle creation and in-
teraction. The usage and implication of the main ideas
here are quite different from those applied to particle
creation:

(4) The key idea for the discussion of entropy in this pa-
per is that of correlation. A system of completely un-
correlated states will have p~ ——0 identically and, in the
absence of interactions, the entropy of the system cannot
change with time. Interactions among the particles or
normal modes can generate correlations and increase the
entropy. Changes in entropy can also be classified into
spontaneous and stimulated, similar to that for particle
creation. For short times at least, just as in particle
creation, the spontaneous contributions always lead to a
net increase in entropy. The stimulated contributions,
which involve a nontrivial initial pz, can either increase or
decrease the entropy. Combining what we have learned
about the different particle creation processes, we con-
clude that the presence of interaction leads to a net in-
crease in both the particle number and entropy from an
initially uncorrelated state. Thus, according to this sta-
tistica1 definition of entropy it is only the correlational
part of particle creation which can generate entropy. It
says nothing, however, about the effect of parametric am-
plification (cf. Ref. 19). The correlational entropy which
is proportional to the product of pz(t) and ci,i, (t) always
increases in time.

(5) We suggested a statistical or wave mechanical ex-
planation of the fact that spontaneous particle creation
takes place for both the expanding and contracting phases
of the Universe (i.e., regardless of the sign of Qi, ). This
fact has been explained in a number of equivalent ways
before (cf. Refs. 3, 4, and 16). This apparent irreversibili-
ty can be viewed as the result of the stipulation of some
special initial state and the intrinsic simultaneous indeter-
minacy between occupation numbers N~ and phases 0~
(Ref. 32). It is well known that the number operator is an
adiabatic invariant under slowly varying conditions. ' '
Parametric amplification violates the adiabatic condition
and gives rise to particle creation. We remarked earlier
that all initial states which are eigenstates of the number
operator N~ can only engender spontaneous creation.
Such states have completely indeterminate phases OA. . As
the dynamics of spacetime drives the system away from
this eigenstate, the phases become partially determinate,
accompanied by an increase in the expectation value of
X~. The situation is analogous to the spreading of a wave
packet with x and p„playing the role of N and 0, in that
both pairs obey an uncertainty relation. Thus, an initial 5
function wave at x=0 provides complete information
about its position but is totally indeterminate in momen-
tum. As time evolves, it spreads into a Gaussian wave
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packet, with increasing variance in its position. Dynamics
of the background only serves to magnify this effect, '

which remains intrinsically time-reversal invariant. This
"spreading" is associated with a specially chosen initial
state (5 function) and is the workings of the uncertainty
principle intrinsic in wave mechanics (either classical or
quantum). For the same reason, in particle creation pro-
cesses, we can understand why there is always an increase
in particle number for initial states which are superposi-
tions of the eigenstates of the Nk's (such as the vacuum or
the thermal state). This explains the apparent irreversible
character of spontaneous particle creation. The phrase
phase m&xing is used loosely here to convey the phase-
number duality relation. It is clearly different from that
of frequency mixing on the one hand, which addresses the
mixing of positive- and negative-frequency components of
a mode leading to particle creation, and mode mixing on
the other, which addresses couplings amongst different
modes. More discussions on spontaneous creation can be
found in Ref. 19.

(6) The short and long time behavior of statistical sys-
tems can be very different. For example, stimulated en-
tropy generation can be a transient effect compared with
the systematic effects of spontaneous generation (Sec. III).
We also show that (detailed in Ref. 26) it makes no sense
to suppose that an isolated time-dependent system always
converge to an equilibrium state, or any single final state.
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