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The possibility of localized inflation is investigated by calcu1ating the dynamics of a spherically
symmetric region of false vacuum which is separated by a domain wall from an infinite region of
true vacuum. For a range of initial conditions, the false-vacuum region will undergo inflation. An
observer in the exterior true-vacuum region will describe the system as a black hole, while an ob-
server in the interior will describe a closed universe which completely disconnects from the original
spacetime. We suggest that this mechanism is likely to lead to an instability of Minkowski space: a
region of space might undergo a quantum fluctuation into the false-vacuum state, evolving into an
isolated closed universe; the black hole which remains in the original space would disappear by
quantum evaporation. The formation of these isolated closed universes may also be relevant to the
question of information loss in black-hole formation.

I. INTRODUCTION

An intriguing feature of the inflationary universe
model' is the wide range of initial conditions which the
model a11ows. One can imagine an initial spacetime mani-
fold which is not at all homogeneous. The spacetime
could be hot in some regions, cold in other regions, ex-
panding in some regions, contracting in other regions, etc.
One could argue that the regions which were both hot and
expanding would cool down to the temperature of the in-
flationary phase transition. For an appropriate underly-
ing particle theory, these regions would then undergo ex-
treme supercooling, approaching the false-vacuum state.
The unusual properties of the energy-momentum tensor
for this state would then lead to the phenomenon of infla-
tion, causing these regions to expand by many orders of
magnitude to become much larger than the observed
universe. We would then be living today deep inside one
of these inflated regions. We could not be living in one of
the regions that did not inflate, because those regions
would have remained microscopic in size and would have
no chance of producing life.

While the description given above seems plausible, the
mathematical details have never been worked out. Most
calculations for inflationary models have been carried out

under the simplifying assumption of homogeneity, even
though one assumes that initial homogeneity is not a
necessary condition. There have also been calcula-
tions ' which have used perturbation theory to study
the mass density inhomogeneities caused by quantum ef-
fects, but these calculations rely on a homogeneous zero-
order approximation. Thus, the consequences of large in-
homogeneities in the initial conditions need to be elucidat-
ed.

The mathematics of inhomogeneous spacetimes can be
very complex, so we will content ourselves to study only
the simplest possible example. We will study the dynam-
ics of a spherically [O(3)] symmetric universe that consists
of a finite region of false vacuum separated by a domain
wall from an infinite region of true vacuum. Although
this system is highly simplified, it nonetheless raises two
significant paradoxes.

The first paradox concerns the behavior of the volume
of the false-vacuum region. If this region is sufficiently
large, then an observer who makes measurements deep
within the region would unambiguously expect to see in-
fiation. However, an observer who makes measurements
of the domain wall would have a different point of view.
He would note that the false-vacuum region has negative
pressure and is surrounded by the zero-pressure true vacu-
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um. The pressure forces are therefore inward, reflecting
the inherent instability of the false vacuum. Our assump-
tion of spherical symmetry implies that the metric in the
true-vacuum region has the usual Schwarzschild form, so
gravitational effects are not expected to cause the false-
vacuum region to expand into the true-vacuum region.
Thus, the second observer does not expect to see inflation.

In fact, these two points of view are not contradictory.
The key to reconciling them is an understanding of the
non-Euclidean geometry of the spacetime manifold. We
will discover that inflation does take place, for a suffi-
ciently large region of false vacuum, but that the inflating
false-vacuum region does not move out into the true-
vacuum region.

The second paradox, first discussed by Sato, Kodarna,
Sasaki, and Maeda, " is concerned with the time evolution
of the domain-wall radius of curvature. Suppose that this
quantity is measured simultaneously by two observers, one
of which is just inside the false-vacuum region, and the
second of which is just on the other side of the domain
wall. (Since the two observers can be arbitrarily close to
each other, there is no difficulty in defining simultaneity. )

Naively, we would expect the observer on the false-
vacuum side to see the radius of curvature increase with
the inflation of the false-vacuum region. On the other
hand, we would expect that the observer on the true-
vacuum side would not see an increase in the radius of
curvature, since we have already concluded that the false-
vacuum bubble does not expand into the true-vacuum re-
gion. General relativity guarantees, however, that the
manifold be continuous, and it follows that the two ob-
servers must measure the same radius of curvature.
Again, an understanding of the non-Euclidean geometry is
the key to resolving this paradox. In particular, the reso-
lution will hinge on the fact that the standard
Schwarzschild coordinates fail to cover the entire mani-
fold.

Although the problem which we solve is very idealized,
we believe that it contains the essential physics of more
complicated inhomogeneous spacetimes. The paradoxes
discussed above will exist whenever an inflating region is
surrounded by a noninflating region, and the qualitative
behavior of the system will be determined by the manner
in which these paradoxes are resolved.

In order to make the calculation tractable in closed
form, we will make one further assumption in addition to
that of spherical symmetry. The domain wall which
separates the false-vacuum region from the true-vacuum
region is in reality a dynamical object which can be
described properly only by specifying the scalar field as a
function of position. We will work, however, in the
"thin-wall" approximation which assumes that the thick-
ness of the wall is small compared to all other length
scales in the problem and that the scalar field configura-
tion has dynamically relaxed to its equilibrium form.
Thus, the energy-momentum tensor for the wall is deter-
mined completely once the position of the wall is known.

The dynamics of the universe is completely specified
once we have solved the Einstein equations in the true-
and false-vacuum regions and once we have determined
the evolution of the domain wall. The solution in the

true-vacuum region is guaranteed by Birkhoff's theorem
to be a Schwarzschild metric, with the parameter M signi-
fying the mass of the system as detected from asymptoti-
cally large distances. In the false-vacuum region, once the
energy density is specified, there is similarly a one-
parameter class of spherically symmetric solutions. How-
ever, since the false-vacuum region comprises the interior
of our configuration, we will consider only solutions that
are regular at r=0. (Note that for spherically symmetric
configurations r =0 can be defined in a coordinate-
invariant way as the locus of points which are invariant
under rotations. ) It is easily shown that this additional re-
quirement singles out the de Sitter space solution. The
dynamics of the domain wall is specified by the require-
ments that the Einstein equations hold at the wall and
that the tangential components of the metric remain con-
tinuous as the wall is crossed.

The behavior of regions of false vacuum that are sur-
rounded by true vacuum was first studied by Sato
et aI. ,

"' who were working in the context of the origi-
nal inflationary universe model. They considered the case
in which an infinite number of true-vacuum bubbles are
nucleated on the surface of a sphere, leaving a trapped re-
gion of false vacuum in the interior. ' The mathematical
problem which they solved is then identical to the one
that we consider, except that they avoided the complicat-
ed dynamics by working in the approximation that the
domain wall moves at the speed of light. This approxirna-
tion is valid, for plausible physical parameters, except for
a brief period during which the domain wall changes
direction. In one of their papers' they included the possi-
bility that the true-vacuum region could have a nonzero
energy density.

In this paper we use a mathematical formalism which
was developed primarily by Israel, ' and which has been
used by several previous authors. The collapse of domain
walls separating two regions of true vacuum has been
studied by Ipser and Sikivie. ' They however limited
their study to the case in which the domain wall lies out-
side the Schwarzschild horizon, and therefore bypassed
the unusual features of the spacetirne geometry. The
dynamics of domain walls separating regions of true or
false vacua with arbitrary non-negative energy densities
has been investigated by Berezin, Kuzmin, and Tka-
chev' ' and by Aurilia, Denardo, Legovini, and Spalluc-
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We will attempt to give a clearer and more detailed
description of the spacetime geometry than the previous
authors, and we will also present a more systematic cata-
log of the possible solutions. Our results disagree in some
respects with those of Berezin, Kuzmin, and Tkachev, and
Aurilia, Denavdo, Legovini, and Spalluci, and these
disagreements will be pointed out in Secs. IV and V and
also in Appendixes C and D.

In the next section we will review the Gauss-Codazzi
formalism, in which four-dimensional spacetime is
parametrized by a one-parameter family of three-
dimensional hypersurfaces; four-dimensional geometric
quantities are then expressed in terms of three-
dirnensional geometric quantities related to these hyper-
surfaces. The Einstein equations in this (3 + I)-
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dimensional language yield junction conditions which
determine the dynamics of the domain wall, given the
wall's energy-momentum tensor. In Sec. III we derive the
form of the energy-momentum tensor for a domain wall,
and in Sec. IV this result is combined with the solutions
to the Einstein equations in the true- and false-vacuum re-
gions to determine the equations of motion for the wall.
In Sec. V we discuss the solutions of these equations of
motion. We end with a summary which discusses some of
the implications of these results.

II. JUNCTION CONDITIONS

In this section we will use the Einstein field equations
to derive the equations which govern the evolution of the
domain waH. These equations are called junction condi-
tions because they describe the discontinuity, or junction,
between the true- and false-vacuum regions.

The four-dimensional Einstein equations are

Rp ——,'gp R =8~GTp (2.1)

where the metric has one negative eigenvalue, R& is the
Ricci tensor, R is the Ricci scalar, and T„ is the matter
energy-momentum tensor.

For the system under consideration,

—pog& in false-vacuum region,
Tp +

0 in true-vacuum region, (2.2)

g""=g~~ = ~ g"'=g (2.3)

Furthermore, one can define a unit vector field g"(x)
which is normal to each of the q=const hypersurfaces

and (in the thin-wall approximation) T„has a 5-function
singularity on the domain wall. Here po denotes the ener-
gy density of the false vacuum.

To describe the behavior of the domain wall, it is sim-
plest to introduce a Gaussian normal coordinate system in
the neighborhood of the wall. Denoting the (2 + 1)-
dimensional spacetime hypersurface swept out by the
domain wall as X, we begin by introducing a coordinate
system on X. For definiteness, two of the coordinates can
be taken to be the angular variables 8 and P which are al-
ways well defined, up to an overall rotation, for a spheri-
cally symmetric configuration. For the third coordinate,
one can use the proper-time variable ~ that would be mea-
sured by an observer moving along with the domain wall.
Next, consider all the geodesics which are orthogonal to
X. Choose a neighborhood 1V about X so that any point
p EK lies on one, and only one, geodesic. The first three
coordinates of p are then determined by the coordinates of
the intersection of this geodesic with X. Since X is orient-
able, we may regard one side of X as being the "positive
direction. " For definiteness, we take the true-vacuum side
as positive. The fourth coordinate g of any p EN is then
taken as the proper distance in the positive direction from
X to p along the geodesic passing through p. Thus, the
full set of coordinates is given by x"—:(x', g), where
x'=(r, 8,$), and i runs from 1 to 3.

In these coordinates the metric obeys the following sim-
plifying conditions:

and pointing from the de Sitter to the Schwarzschild
spacetime. In the Gaussian normal coordinates, this vec-
tor field is given by

P(x) =g„(x)= (0,0,0, 1) . (2.4)

The extrinsic curvature corresponding to each g =const
hypersurface is a three-dimensional tensor whose com-
ponents are defined by

/J k/;J (2.5)

Here the semicolon represents the four-dimensional co-
variant derivative with respect to whatever index follows
it, but the indices are restricted to the range of 1—3. In
the Gaussian normal coordinates, the extrinsic curvature
acquires the simple form

1

KJ = —l,j = —,/)~;, . (2.6)

One can easily see that E;J- is a symmetric tensor.
The Gauss-Codazzi formalism' ' ' is a method of view-

ing four-dimensional spacetime as being sliced up into
three-dimensional hypersurfaces At .any point, the four-
dimensional tensors R& ~, R„,and R may be expressed
in terms of the corresponding three-dimensional tensors
and the extrinsic curvature of the hypersurface passing
through the given point. The Gauss-Codazzi formalism
does not require the use of Gaussian normal coordinates,
but the formalism can be derived and expressed very sim-
ply with the use of these coordinates. One begins by not-
ing that the only nonzero components of the affine con-
nection are given by

k (3) kI;J —— I,q, I;q ———E;~, I ~)
——K'~, (2.7)

=8~GT"„,

G";—=K;
i

—(TrK) i; = 8nGT";, .

G'J =—' 'G'J —(K'J 6'~ TrK) „(—Tr K)
K' J-

+ —,
' 5'J [TrK +.(TrK) ] =8m.GT'J,

(2.8a)

(2.8b)

(2.8c)

where a comma denotes an ordinary derivative and a sub-
script vertical bar denotes the three-dimensional covariant
derivative.

The energy-momentum tensor T""is expected to have a
6-function singularity at the domain wall, so one can de-
fine the surface stress-energy tensor S""by writing

T" (x) =S" (x')6(g)+(regular terms) . (2.9)

In the next section we will discuss the form of S" and
will show that energy-momentum conservation implies
S""=S"'=0.

When the energy-momentum tensor of Eq. (2.9) is in-
serted into the field equations (2.8), one sees that (2.8a)
and (2.8b) are satisfied automatically provided that they
are satisfied for g&0 and provided that g,j is continuous
at g=0 (so that K;~ does not acquire a 5-functi. on singu-

where the superscript (3) denotes three-dimensional
geometric quantities. It can then be shown that the Ein-
stein equations become

G"„=———,
' ' '8+ —,

' [(TrK) —Tr(K )]
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larity). Equation (2.8c) then leads to the junction condi-
tion

and the ambiguity disappears. The vanishing of the term
in 5(7) ) then implies that

y'~ —5'J.Try = —Sm.GS'~,

where

(2.10) S'Jij ——0.
From (3.1b) one finds

(3.5)

(2.1 1)

By taking the trace of Eq. (2.10) we obtain Try
=4~6 TrS, which can be substituted back into Eq. (2.10)
to give

T" =[p. o K~—S'~+(TrK)S""]5(g)

where

(3.6)

(3.7)
y'J = 87rG—(S'~ ——,5'J TrS) . (2.12)

A discussion of the meaning of this equation will be
postponed until the properties of S" are analyzed in the
next section.

In this case the ambiguity does not disappear, but it will
be shown in Appendix A that it can be resolved exactly as
in the electrostatic example, with the result which is
shown above. One can then deduce that

III. SURFACE STRESS ENERGY
OF A DOMAIN %'ALL

S""=0
and that

(3.8)

In this section we will use symmetry arguments and
energy-momentum conservation to determine the form of
the surface stress energy defined by Eq. (2.9). For con-
venience we will use the Gaussian normal coordinate sys-
tem described in the previous section.

The thin-wall approximation assumes that the thickness
of the domain wall is much less than any other length
scale in the problem. On scales much larger than the
thickness, the energy-momentum tensor of the wall can be
accurately approximated by an expression proportional to
a 5 function on the wall, 5(g), as in Eq. (2.9). Implicit in
this description is the assumption that the domain wall
has settled into an equilibrium configuration —otherwise
it would radiate energy as it approached its equilibrium
form, and the energy-momentum distribution would not
remain confined to a thin wall.

Using Eq. (2.7), one can easily write down the equations
for energy-momentum conservation in Gaussian normal
coordinates:

T'".„=T'~ &+T'" &+2K'JTJ"+(TrK)T'"=0, (3.1a)

T"' =T"'
~; + T"".„K;~T"+(T«—) T""=0 . (3.1b)

E;~S'~=po . (3.9)

Combining the orthogonality conditions (3.4) and (3.8)
with rotational invariance, one concludes that S" can be
written as

S" =o(r)U" U g(r)(h" +—U"U ),
where

(3.10)

pv g pv gpgv (3.11)

is the metric projected into the hypersurface of the wall,
and

U" = (1,0,0,0) (3.12)

ds = —dr +r (r)dQ (3.13)

where dQ2—=d8~+sin~Odp . Equation (3.5) then reduces
to

is the four-velocity of the domain wall. Here o. is the sur-
face energy density of the domain wall, and g is the sur-
face tension. Rotational invariance also implies that the
metric on the domain wall can be written as

For the case of interest, T" can be written as

T""(x)=S""(x')o(rI)—po0( —g)g"" .

Combining (3.2) with (3.1a), one finds

T' „=[S'
~

+2K' S +(T. K)S'"]5(7J)

(3.2)
ro.= —2(o —g)—,
r

(3.14)

where the overdot denotes a derivative with respect to ~.
By introducing the area 3 =4mr of the sphere, the above
equation can be rewritten as

+S'"5'(rI) =0, (3.3)

where the prime denotes differentiation with respect to g.
Note that Eq. (3.3) appears to contain an ambiguity, since
K,J must be evaluated at g=0 where it is discontinuous.
The problem arises because we are computing the gravita-
tional force on a sheet of mass, a situation which is com-
pletely analogous to the elementary problem of evaluating
the electrostatic force on a sheet of charge. However, by
setting the coefficient of 6'(rl) in Eq. (3.3) to zero, one
learns that

(Ao. ) =gd dA
d7- d~

(3.15)

T a yaP g [ a yang-+V(y)] (3.16)

a formula which is easily identified as the conservation of
energy.

The values of cr and g are further restricted by the
underlying dynamics of the scalar field which comprises
the domain wall, which has an energy-momentum tensor

S'"=0, (3.4) Note that the thin-wall approximation assumes that any
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variation of P along the wall occurs only on length scales
much larger than the wall thickness, and so B&P

ccrc„

to a
high degree of accuracy. Thus T„can only have terms
proportional to g„g„or to g„„, and it follows that g=cr.
It then follows from (3.14) that o =0, and so finally

S""(x')= —o.h""(x', il =0) . (3.17)

where DU" /Dv=dU" .Idr+r~~ U U is the covariant
acceleration of the wall. Thus E is the component of
the covariant acceleration in the normal direction, which
is in fact the only nonzero component. The discontinuity
of K [proportional to (o.—2g)] implied by (2.12) there-
fore represents a discontinuity in the acceleration of local-
ly inertial frames. One has also

ECpp
Egg —— ———,0„

sin 0
(3.19)

so the discontinuity in the angular components of the ex-
trinsic curvature (proportional to o.) measures the discon-
tinuity of geometric distortion.

Finally, Eq. (3.9) can be written as

0 p
= — 8 r —p (3.20)

where the angular brackets mean that the indicated quan-
tity is to be averaged over the values it has on either side
of the discontinuity at i) =0. The above equation is easily
identified as the equation of motion for a spherical mem-
brane with surface tension g and a constant pressure
difference po pointing inward.

IV. EQUATIONS OF MOTION
FOR A DOMAIN WALL

In this section we will discuss the solutions to the Ein-
stein equations in the true- and false-vacuum regions, and
we will then combine these results with those of the previ-
ous two sections to obtain the equations of motion for the
domain wall.

The most general O(3)-symmetric solution to the Ein-
stein equations for a region of spacetime with vanishing
cosmological constant and matter energy-momentum ten-
sor is given by Birkhoff's theorem as

Before closing this section we would like to discuss the
intuitive meaning of Eqs. (2.12) and (3.9). Note that

E„=g~,= U"U"gq „.g„——U—"U" ,= .gq— , (3.18)
DU"

the proper time ~ measured along the domain-wall trajec-
tory. The value of r(r) has a meaning that can be
described in a coordinate-invariant way: it is the proper
length of an arc on the domain wall subtending an angle
da, divided by the angle da. One therefore calls r(~) the
proper circumferential radius of the domain wall.

The standard Schwarzschild metric displayed in Eq.
(4.1) has a singularity at the horizon, R =26M, but this is
an unphysical singularity caused by a poor choice of coor-
dinates. In the problem under consideration much of the
interesting physics happens inside the horizon, so it is im-
portant that we use a coordinate system which behaves
smoothly as the horizon is crossed. For this reason we
will work with the Kruskal-Szekeres coordinate system
( V, U, O, Q), which for R~2GM is related to the usual
coordinates by

t ' 1/2
R —1

2GM

1/2

4GM 4GM

(4.2a)
R

2GM
—I

R . T
exp sinh

4GM 4GM

while the coordinates 0 and P retain their original mean-
ings. Equations (4.2a) define what we will call region I of
the Schwarzschild space. For R & 2GM the Kruskal-
Szekeres coordinates are related by

1/2 T

R
exp

4GM
sinh

T
4GM2GM

U= 1—

RV= 1—
2GM

1/2
R T

exp cosh
4GM 4GM

(4.2b)

V

which define region II. These relationships are illustrated
in Fig. 1. The values of the coordinates U and V at the
domain wall will be called u and U, respectively.

The coordinate singularity has now been eliminated,
and the line element (4.1) becomes

2GM dT + 1
2GM

R R
dR

+R 2d Q2 (4.1)

where M is an as yet undetermined parameter. Equation
(4.1) presents the Schwarzschild line element, which de-
scribes the true-vacuum side of the domain wall. We will
let the lower-case letters r and t denote the values of the
corresponding Schwarzschild coordinates at the domain
wall, and we will think of these quantities as functions of

2 3

FKs. 1. A diagram of the Kruskal-Szekeres coordinate sys-
tem. The four regions are labeled I, II, III, and IV, and lines of
constant R and T are shown. The lines are labeled in units of
GM.
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332(GM) —
( d VP d UP)

R

d—H=ds = —(1—X R )dT +(1—X R ) 'dR

+R dQ (4.6)

+R 2dQ2 (4.3)

where R is a function of U and V given by

(4.4)

R T
exp cosh

4GM 46M
R

2GM
—1

V= — —1
R

2GM

' 1/2"'
4GM

"""
4GM

(4.5a)

in the region U& 0,
~

V
~

&
~

U
~

(region 111),and
1/2

RU= — 1—
4GM 4GM

(4.5b)

2GM 4GM 4GM

R R—1 exp =U —V
2GM 2GM

The metric is defined only for the region U —V & —1,
and the boundary at U —V = —1 corresponds to the
physical singularity at R=O. Note that the line element
(4.3) implies that lightlike trajectories lie at 45 relative to
the Uand Vaxes.

The Schwarzschild coordinate system has thus been
mapped entirely into the half-space U+ V& 0. The boun-
dary at U+ V=O can be reached by (past directed) time-
like trajectories in a finite proper time; therefore it must
be viewed as a physical boundary of the manifold covered
by the Schwarzschild coordinates. Since physical boun-
daries are generally considered unacceptable, it is standard
practice to extend the manifold to include all values of U
and V satisfying U —V & —1. We will henceforth refer
to this extended manifold as Schwarzschild space. It is
often useful to introduce Schwarzschild coordinates R
and T in the two new quadrants, with the relations

1/2 t

1/2

sinh(+T) .1+JR

(4.7)

The static coordinate system thus covers one quadrant
of the U- V plane, which we call region I. These relation-
ships are illustrated in Fig. 2. The new line element is
given by

—dH=ds =7 (1+SR) ( dV +dU )—

+A dA (4.8)

where R is a function of U and Vgiven by

1 —XR
1+JR (4.9)

It is straightforward to extend the metric (4.8) over the

provides a close parallel to the static Schwarzschild metric
of Eq. (4.1). (We are using the same symbols for the coor-
dinates, trusting that the context will make it clear which
spacetime is being described. ) Like the Schwarzschild
coordinate system, the de Sitter static coordinate system
suffers from three defects: lightlike lines are difficult to
identify, the coordinate system does not cover the entire
manifold, and there appears to be a singularity at the hor-
izon. These defects can be remedied in a number of ways,
but we choose to maintain a close parallel with the
Kruskal-Szekeres construction by using the Gibbons-
Hawking coordinate system for de Sitter space. The re-
lation between the Gibbons-Hawking coordinates and
several better-known de Sitter-space coordinate systems is
given in Appendix B. The Gibbons-Hawking coordinates
( U, V, 8,$) are related to the static coordinates for
R (7 'by

1/2

cosh(XT),
1 —gR
1+JR

in the region V&0,
~

U
I

&
~

V
~

(region IV). The line ele-
ment maintains the usual form (4.1) when expressed in
terms of R and T. These new regions are also shown in
Fig. 1.

The full manifold for our problem contains a region of
Schwarzschild space, a region of de Sitter space, and a
boundary which separates them. Since the Schwarzschild
spacetime has the symmetry U~ —U, we can always
choose a coordinate system so that the Schwarzschild re-
gion lies to the right of the boundary in th U- V plane [i.e.,
so that the Schwarzschild region can be described by
U ~ u (r)]. Since the normal vector field P(x) is defined
to point from the de Sitter to the Schwarzschild space-
time, it follows that P(x) points to increasing values of
the coordinate U.

There are a number of different coordinate systems
which are frequently used to describe de Sitter space, and
the choice is determined entirely by convenience. The
static coordinate system, with its line element

FIG. 2. A diagram of the Gibbons-Hawking coordinate sys-
tem of de Sitter space, which is a close analog of the Kruskal-
Szekeres coordinate system of Schwarzschild space. The four
regions are labeled I, II, III, and IV, and lines of constant R and
T are shown. The labeling is in units of g
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entire U-Vplane, subject to the restriction
~

U —V
~

&1.
The coordinate system then covers the entire de Sitter
manifold.

It is useful to introduce coordinates R and T into the
other three quadrants, with the relation

' 1/2
gR —1

U = sinhQ'T),
gR +1

(4.12)

we can see that the key step is to evaluate the normal vec-
tor g"(x) on the domain wall.

We begin by calculating the normal vector as seen by a
Schwarzschild observer. Because the domain wall is
spherically symmetric, the four-velocity of any point on
the wall assumes the form

1/2

cosh(XT),
gR +1

in the region V) 0,
i

U
~

& V (region II),
1/2

(4.10a)
Ups ——(v, u, 0,0) (4.13)

Ug = (t, r', 0,0) (4.14)

in Kruskal-Szekeres coordinates, with an overdot signify-
ing differentiation with respect to proper time, and

1 —7R
1+JR

1 —gR
1+JR

cosh(XT),

sinh(XT),

(4.10b)

in the standard Schwarzschild coordinates. We choose
the flow of proper time so that future directed world lines

satisfy V) 0.
Since the unit normal P is orthogonal to U" and points

to increasing values of U, it follows that
in the region U&0,

~

V
i &

~

U
~

(region III), and
1/2

U = — sinh(XT),gR —1

gR +1
(4.10c)

(4.15)

in Kruskal-Szekeres coordinates. Transforming to the
standard Schwarzschild coordinates one finds

1/2

cosh(XT),
gR +1

k)s =(As 'r', Ps, 0,0),
where

(4.16)

in the region V& 0,
~

U
~

&
~

V
~

(region IV). These new
regions are also shown in Fig. 2.

Like the Schwarzschild spacetime, the de Sitter space-
time has the symmetry U~ —U. This time we will use
the symmetry to choose our coordinates so that the de
Sitter region lies to the left of the boundary in the U- V
plane [i.e., so that the de Sitter region is described by
U &u(r)]. The normal vector P(x) will again point to
increasing values of U.

Our goal is to use the junction condition (2.12) to derive
a dynamical equation for the proper circumferential ra-
dius of the domain wall. The Schwarzschild and de Sitter
line elements along with the behavior of r(r) specify com-
pletely the system parametrized by the mass M.

By combining (2.12) with the expression (3.17) for the
surface stress-energy 5",one finds

and

26M
S 1

(4.17)

Ps =Ast(s)

8( GM) „gpGMe " u() —uu) .

(4.18a)

(4.18b)

The subscript (S) appears in Eq. (4.18a) to emphasize that
t in this equation represents the Schwarzschild time vari-
able. One can relate t~z) to i by using the normalization
of the velocity four-vector Ug, with the result that

Ps =+(As+r ')'" . (4.18c)

By applying Eq. (4.12) in the Schwarzschild system, one
has immediately that

y'z =K'~(Schwarzschild) I(.'z(de Sitter)— K()e(Schwarzschild) =rPs . (4.19)

= —4n.o 65'~ . (4.1 1)

It is now straightforward to calculate the components of
the extrinsic curvature as seen by Schwarzschild and de
Sitter observers, and to then use Eq. (4.11) to ascertain the
dynamics of the bubble wall. The calculation is facilitated
by using Gaussian normal coordinates, so that the extrin-
sic curvature is given by Eq. (2.6).

Spherical symmetry guarantees that the off-diagonal
components of the extrinsic curvature vanish, and that the
angular components are related by K&~

——sin OK~~. Thus
the dynamics of the domain wa11 are completely specified
by the 80 and rr components of Eq. (4.11).

We may evaluate the 88 component of Eq. (4.11) by
starting with Eq. (3.19). From U"„„=(t,r, 0,0) (4.21)

The form (4.18c) for Ps will prove to be the most useful,
since it is expressed in terms of the quantity i, which has
a coordinate invariant interpretation. The sign ambiguity
is resolved by using the form (4.18b), which leads to a
simple geometric prescription: ps is positive if the polar
angle arctan( u /u ) increases as one moves along the
domain-wall trajectory, and it is negative if the angle de-
creases.

One now repeats these steps for the normal vector as
seen by a de Sitter observer. One finds

U~oH ((),u, 0,0)——
in the Gibbons-Hawking coordinates, and that
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in the de Sitter static coordinates. The normal vector is
then given by

1 1 1+
2 ps PD

~ ~o.r =—(PD+Ps)k GMo. og r
2p ' 2PD

and

AD ——1 —g r

pD AD r(D)

'(1+Xr) (uU —u' u ),

g~~H ——(u, U, O, O),

which can then be transformed to give

C~.i=(~D 'r»D 0o»
where

(4.22)

(4.23)

(4.24)

(4.25a)

(4.25b)

(4.29)

and one can verify that this equation is equivalent to the
rr component of Eq. (4.11). In the nonrelativistic limit
the terms on the right-hand side of (4.29) can be identified
as the surface tension, the gravitational attraction, the de
Sitter repulsion, and the pressure difference. Recall that
in the case of interest (=o..

Equation (4.27) allows one to express the mass M of the
bubble wall in terms of r and r as

2
p

3

M = +4~or(1 Xr. —+r' )'~ sgnPD26
where the subscript (D) has been added to emphasize that
here t refers to the de Sitter static time coordinate.

By normalizing the velocity four-vector, one finds
gO. 2r (4.30)

p +(g + ' 2)1/2

Finally,

Ese(de Sitter) =rPD .

(4.25c)

(4.26)

It is instructive to consider the limiting case g r, r &~1,
sgnpD ——+ 1. Then

X2 3

M= +4vror (1+r )'~ 2moX r"—
26

The most useful form for PD will be (4.25c), with the sign
ambiguity resolved by (4.25b). Again there is a simple
geometric prescription for the sign„but it is the opposite
of the Schwarzschild case; pD is positive if the polar angle
arctan(U/u) decreases as one moves along the domain-
wall trajectory, and it is negative if the angle increases.

The 88 component of Eq. (4.11) may now be written

PD —Ps 4mGar, —— . (4.27)

with pD and ps defined in Eqs. (4.25) and (4.18), respec-
tively. In the next section we will use this equation to
determine the properties of the solution to our problem.
However, there are a few points which we would first like
to discuss.

The rr component of Eq. (4.11) is linearly independent
from the angular components, so it is worthwhile to check
its implication. With the help of Eq. (3.18) one calculates
K to be

8m26O2r (4.31)

V. SOLUTION OF THE EQUATIONS
OF MOTION

We recognize the four terms of Eq. (4.31) in order as the
volume energy of the bubble, the surface energy of the
bubble, with lowest-order relativistic correction, the
Newtonian surface-volume binding energy, and the
Newtonian surface-surface binding energy. Curiously,
there is no volume-volume interaction term.

Equation (4.30) agrees with Eq. (6) of Berezin, Kuzmin,
and Tkachev, ' except that these authors allow the true-
vacuum energy density to be nonzero, and that they do
not draw the connection between sgnpD and the rate of
change of the polar angle in the de Sitter diagram. Auri-
lia, Denardo, Legovini, and Spallucci' have a similar
equation, which appears as Eq. (18) of the first paper cited
and as Eq. (4.5) of the second paper. Some of their signs,
however, are in disagreement with ours.

1 .. GMf'+
S r2

Schwarzschild case,

(4.28)
(r Xr) de Sitter case—.

One then finds that the rr component of Eq. (4.11) is sim-
ply the proper-time derivative of Eq. (4.27). Indeed, it is
not surprising that there should be a functional relation-
ship between the time and angular components of (4.11);
such a relationship is guaranteed by the fact that the Ein-
stein equations imply conservation of Tz, but the T„
used in this calculation is manifestly conserved.

An equation for r can also be obtained by substituting
the expressions for KJ. into (3.20), which was derived
directly from the conservation of T& . One finds

We will now discuss the solutions of the equations of
motion derived in the previous section.

The key equation is (4.27), where pD and ps are defined
by Eqs. (4.25) and (4.18), respectively. We write Eq. (4.27)
by bringing Ps to the right-hand side and then squaring,
with the result

2GM =X+ r +2xr Ps,
where

and

X X+&
We now introduce the dimensionless variables

(5.1)

(5.2)

(5.3)
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Z3= r3
2GM

=x+'2

2K

Equation (5.1) can then be rewritten as
2

2
1/2

1=z +z, — —Edz
d7.' Z

(5.4)

(5.5)

(5.6)

physically plausible values of y are very small, the graph
is drawn for y=1.3 in order that the interesting features
be large enough to see.

The important qualitative features of V(z) hold for all
values of y. In particular, V(z) ——1/z for small z,
V(z) ——z for large z, V(z) & 0 for all z, and
d V/dz &0 for all z. V(z) has one maximum at z
where

(5.12)

where

and

—4K2

(2GM)2/3y 8/3 (5.7)

(5.13)V =V(z )=—
4

m

Figure 4 shows z as a function of y. It can be seen (and
it can be shown analytically) that z &1 for any y &0.
The maximum value of the potential is given by

3(z —1)

2Kr=
X+

Note that 0 &
~ y ~

& 2. From (5.6) one has

12
dz + V(z) =E,
d~'

where

(5.8)

(5.9) y3 6(1 & y2)1/2

6 3/23v' 3(z —1)
(5.14)

where the equation which determines z has been used to
simplify the right-hand side.

There is critical mass defined by E(M„)=V, given

3
1 —z

z

y'
z

(5.10)

where

4~ 3 1M:— 7 pp ——
3 2Gy

(5.15)

The equation of motion of the domain wall is thus identi-
cal to that of a particle moving in one dimension under
the influence of a potential. A formal solution is then
given by

z dz'

3/E —V(z')
(5.1 1)

While it is clear that any solution to Eq. (4.27) is also a
solution to Eq. (5.9), a small discussion is required to jus-
tify the converse. In obtaining Eq. (5.1) from (4.27), we
have squared both sides of an equation of the form
pD ——. . This operation can potentially introduce
spurious solutions, but one can easily see that in this ease
it does not. The reason is that Eq. (4.27) provides a valid
solution to our problem for either sign of the square-root
function which defines pD in Eq. (4.25c). As discussed in
Sec. IV, the two values of the sign correspond to two dif-
ferent (but equally acceptable) trajectories in spacetime. A
similar argument applies to the derivation of Eq. (5.9)
from Eq. (5.6). Note that the square root in Eq. (5.6) is
proportional to ps, and the absence of spurious solutions
follows from the fact that Eq. (4.27) provides a valid solu-
tion for either sign of pz. Thus, the solutions to our prob-
lem are precisely the solutions to Eq. (5.9).

Note that the mass M occurs only in the variable E,
and thus E (for E &0) characterizes the different solutions
to the problem. The parameters of the underlying physics
appear in the dimensionless parameter y. If one assumes
that the energy density of the false vacuum pp is of order
MGUT, and that the surface energy density o is of order
M~UT, then taking MGUT —10' CxeV gives y = 10

A graph of V(z) is shown in Fig. 3. Although the

Note that M can be thought of as a characteristic mass
for the problem, and is equal to pp times the volume of a
Euclidean sphere with radius X '. For po ——(10' CxeV),
one has M=3. 1&10 GeV=56 kg. The factor which
multiplies M in Eq. (5.14) approaches unity as y~O, and
the ratio M,„/M is shown as a function of y in Fig. 5.

For M &M,„(or equivalently, E & V ), we distinguish
two types of solutions. First, there are "bounded" solu-
tions for which z starts at zero, grows to a maximum
value for which E=V(z), and then returns to z=O.
Second, there are "bounce" solutions for which z ap-
proaches infinity in the asymptotic past, falls to a
minimum value given by E = V(z), and again approaches
infinity in the asymptotic future. For M &M„ the solu-

V(z)

-8'
0

FIG. 3. A graph of the potential-energy function V(z), for
y =1.3.
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(4.27) one can show that

1 —(1 ——,y )z
(5.18)

So if y &2 (or equivalently if A. &X ), then /3D changes
sign when z =zD, where

ZD
]

( 1
& y2)1/3

(5.19)

0
0

FIG. 4. Special values of z as a function of y. The value of z
which maximizes the potential energy is denoted by z, and the
value at which PD changes sign is denoted by zD. The variable z
has been defined so that Ps changes sign at z= l.

tions will be called "monotonic. " The value of z starts at
zero and then increases without bound. The time reversal
of a monotonic solution is a distinct solution, while the
time reversal of either a bounded or a bounce solution is
indistinguishable from the original solution.

As a prelude of constructing spacetime diagrams for
the bubble solutions, we will add some extra landmarks to
Fig. 3. We will discuss these landmarks one at a time,
and will show them on Fig. 6.

We begin by locating the values of z for which /3s and
/3D change sign. Assuming that rr &0 we rewrite Eq. (5.1)
as

2
1 ——,y

MD ——M
] y2

(5.20)

a result which is plotted in Fig. 5. It can be seen (or
shown analytically) that MD & Ms for 0 & y & 2.

Figure 6 also indicates the location of the horizon

(a)
M= Mcr

M- Ms

Zm
I-

I

zo
1

I g- 2GM

M= MD

If y & 2 (or equivalently if ir &X ) then PD is always pos-
itive. Figure 4 shows zD as a function of y, and one can
see (and it can be shown analytically) that zD &z for
0&@ &2. The mass MD defined by E(MD)= V(zD) is
given by

3

(5.16)z'v'iE
/

Thus, Ps ——0 for z= 1, Ps &0 for z& 1, and Ps &0 for
z&1. The mass Ms defined by E(Ms)=V(z =1) is
given by

—8
0

A /

Ms ——M(1 ——,y )' (5.17)

This formula is illustrated in Fig. 5. Similarly, using Eq.

M/M

0.5—

V(z)

—1.65—

—1.70—

—1.75

Mc„

M= Ms

A

&hi N

+

/'
4/

~

/
I

I

I

I

I

I

— — — (- ——
I

I

I ~m
I

I

I

0
0

FIG. 5. Special values of the bubble mass M as a function of
y, shown in units of M = 1/2G+. Here M,„denotes the
minimum mass necessary for the solution to cross the maximum
of the potential. The minimum mass necessary in order to cross
the line Ps =0 is denoted by Ms, and the mmimum mass neces-
sary to cross the line pD ——0 is denoted by MD.

FIG. 6. Graph of the potential-energy function V(z), for

y = 1.3, shown with important landmarks. Part (a) shows a
wide range of the variables, while part (b) shows a blow-up of
the region around the peak of the potential. The figure shows
the line z= 1 at which Ps changes sign, and the line z =zD at
which PD changes sign. Broken horizontal lines indicate the
values of E corresponding to M„, Mq, and MD. The
Schwarzschild horizon (r =2GM) and the de Sitter horizon
(r =g ') are shown as broken lines. The solutions discussed in

the text are shown, and are labeled by the letters A —E.
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crossings. The Schwarzschild horizon r =rsH ——2GM cor-
responds to

= y'
zSH

I

E
I

(5.21)

In order to understand the behavior of this curve on Fig.
6, one may invert the relationship to obtain

3 2y'= 1 ZSHE = — = V«Hs)+
ZSH zSH

(5.22)

Thus the curve is tangent to the curve for V(z) at z= l.
Similarly, the de Sitter horizon r =7 ' corresponds to

ZDH
y( I

i y2)1/2
(5.23)

[( I ——,
'

y')zDH I]= V(zDH)+
zDH

(5.24)

This curve is tangent to the curve for V(z) at z =zD.
While Fig. 6 is quite complicated, it has the virtue that

essentially all of the qualitative properties of the different
types of solutions can be read directly from the diagram.
Trajectories corresponding to each type of solution are
marked with the letters A —E, and we will now discuss
these solutions one at a time.

A. This is a bounded solution, corresponding to a small
mass M ~Ms. The variable r starts from zero and in-
creases to a maximum value which is larger than the
Schwarzschild radius, and then reverses its motion and re-
turns to zero. During the entire trajectory both ps and p~
are positive, which indicates that the polar angle in the
Schwarzschild space coordinates is increasing, while the
corresponding angle in the de Sitter space is decreasing.
A diagram showing the behavior in each of these space-
times is displayed as Fig. 7. The scale of the
Schwarzschild diagram is small, because M is small and

The appearance of this function in Fig. 6 can also be
better understood by inverting it, giving

E= rzD—H (I —4)' )
2 2 & 2

the line element for that spacetime has the form
ds =(26M) f(U, V)( —dV +dU ) .The value of the
coordinate t at which the trajectory materializes is arbi-
trary, since the Schwarzschild manifold possesses the glo-
bal symmetry T~T+const. We have drawn the dia-
gram with an initial t chosen to make it manifestly time-
reversal ( V~ —V) symmetric. The initial value of the de
Sitter coordinate t can also be shifted by the symmetry
operation T~ T +const, and again we have chosen con-
ventions to display the time-reversal symmetry. These
configurations are the black-hole solutions of Ipser and
Sikivie' and Berezin, Kuzmin, and Tkachev. '

B. This is also a bounded solution, but lies in the nar-
row mass range Mq & M g M„. Again r increases from
zero to a maximum value beyond the Schwarzschild ra-
dius, and then returns to zero. However, in this case the
sign of ps is negative while the trajectory is outside the
Schwarzschild horizon, which means that the polar angle
is decreasing. This implies that the trajectory goes
through region III, rather than region I. A diagram of
the spacetime behavior is shown in Fig. 8. In this figure
and also the next two, the T~T+const symmetry has
been used to achieve a manifest time-reversal symmetry.
Note that this configuration allows the possibility of
Schwarzschild observers in either region I or region III,
both of whom are viewing the bubble from outside the
Schwarzschild horizon. The observer in region I can see
only the early stages of the evolution of the bubble, losing
contact when the bubble-wall trajectory enters region III.
A Schwarzschild observer in region III can follow the
bubble wall through its history, but such an observer is
doomed to collide with the future r=0 singularity. These
configurations are the worm-hole solutions discussed by
Berezin, Kuzmin, and Tkachev. '

C. This is a bounce solution, corresponding to a small
mass M &MD. These solutions will not exist at all if
y & 2 (or equivalently if ~ & X ), in which case all bounce
solutions will be of type D. In these solutions r starts at
arbitrarily large values, decreases to a minimum which is
inside the de Sitter horizon but outside the Schwarzschild
horizon, and then increases again. The values of Ps and

pD are both negative, indicating that the Schwarzschild
polar angle is decreasing, while the de Sitter polar angle is
increasing. A spacetime diagram is shown in Fig. 9.

FIG. 7. Spacetime diagrams for a trajectory of type A. The
trajectory in de Sitter space is shown in {a), and the trajectory in
Schwarzschild space is shown in {b). The actual spacetime con-
sists of the trajectory, those points in {a) to the left of it, and
those points in {b) to the right of it. These are the bounded solu-
tions for low values of the mass M, and they are called black-
hole solutions.

(a)

FICi. 8. Spacetime diagrams for a trajectory of type 8, using
the same conventions as in Fig. 7. These are called worm-hole
solutions, and they are the bounded solutions for values of the
mass which are larger than those of Fig. 7. Note that the bubble
wall never enters region I of Schwarzschild space.
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(a) (b)

FIG. 9. Spacetime diagrams for a trajectory of type C.
These are bounce solutions of low mass, and they exist provided
that ~ &g . These solutions, as well as those illustrated in Figs.
10 and 11, have the possibility of producing an inflationary
scenario.

Note that the trajectory enters both regions II and IV of
the de Sitter diagram, and since it is timelike it must
therefore reach both the lower and the upper boundaries.
However, one must remember that these boundaries are
not physical. They correspond to r = ao, and an infinite
proper time is required to reach them. Note also that the
upper left-hand corner of the de Sitter space diagram de-
scribes a region of inflating de Sitter space which has all
the properties of an inflationary universe. The diagram is
drawn for an absolutely stable de Sitter space, but in ap-
propriate particle theory models the false vacuum which
permeates the de Sitter region would decay after an enor-
mous amount of expansion. The latent heat released by
this decay would reheat the region, producing a huge re-
gion of spacetime which would be indistinguishable by lo-
cal measurements from a flat Friedmann-Robertson-
Walker universe. Thus, if an initial configuration resem-
bling a spacelike hypersurface in Fig. 9 could somehow be
produced, then an acceptable inflationary scenario would
result.

D. This is again a bounce solution, but this time in the
mass range MD &M &M„. In this case the sign of 13D

becomes positive before the trajectory crosses the de Sitter
horizon, which indicates that it passes through region III
rather than region I of the de Sitter diagram. A diagram
of this spacetime appears in Fig. 10.

E. These are the monotonic solutions, for which r be-

gins at zero and grows without bound. These trajectories
occur only for M &M„. The spacetime picture is shown

in Fig. 11. Here we have used the symmetry
T~T +const to ensure that the bubble materializes at
t=O in both the Schwarzschild and de Sitter coordinates.
The initial value of Ps is positive, indicating that the tra-
jectory in the Schwarzschild diagram must initially move
toward the right. The sign of Ps reverses at the point
marked Q in the diagram. The radius then grows beyond
the Schwarzschild horizon with Iiis negative, which im-
plies that it enters region III. In the de Sitter diagram the
configuration begins with PD positive and r=O, which
implies that it is in the region III. The sign of PD changes
at the point marked P, after the radius has surpassed the
de Sitter horizon. Like the worm-hole configuration of
type B, these configurations allow the possibility of
Schwarzschild observers in either region I or region III.
The observer in region I again sees only the earliest stages
of the evolution of the bubble. The observer in region III
finds himself between a Schwarzschild horizon at
R =2GM and a receding bubble wall at large values of R.
He can in principle remain at a constant value of R if he
chooses, he can catch up with the receding bubble wall
and enter the de Sitter region, or he can allow himself to
into the black hole. The inflationary region is in the
upper left-hand corner of the de Sitter diagram. As dis-
cussed in the case of trajectories of type C, the decay of
the false vacuum in this region can give rise to an accept-
able inflationary scenario. However, we will see in Ap-
pendix D that solutions of this type exist even if X=O,
and thus one cannot assume that these solutions are neces-
sarily inflationary.

Since the monotonic solutions of type E seem the most
interesting, we include several additional diagrams to help
illustrate the nature of these configurations. Figure 12
shows a single spacetime diagram for the entire manifold,
with several spacelike hypersurfaces indicated by the
letters a —d. One can choose the coordinates of such a di-
agram to be the usual Kruskal-Szekeres coordinates in the
Schwarzschild region, but one must then make a coordi-
nate transformation on the Gibbons-Hawking coordi-
nates of the de Sitter space in order for the two halves of
the diagram to fit smoothly together. Figure 13 is an at-
tempt to picture this succession of spacelike hypersur-
faces. We have suppressed one dimension, and have then
embedded the resulting two-dimensional surface into a
three-dimensional space in order to display its curvature.
Note that hypersurface d corresponds to two disjoint
spaces: one is a Schwarzschild space with a black-hole

(a)

FIG. 10. Spacetime diagrams for a trajectory of type D.
These are bounce solutions for values of the mass larger than
those in Fig. 9. For ~ ~g, all bounce solutions have this form.

(a)

FIG. 11. Spacetime diagrams for a trajectory of type E.
These are the monotonic solutions.
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r= 0 singular

i wL

f=o
non singu

r=o
sing ulor

FIG. 12. The entire spacetime for the case of a monotonic
bubble solution. Several constant V hypersurfaces are indicated
for future reference by the letters a —d.

singularity at r=0, while the other is a closed universe
which contains both de Sitter and Schwarzschild regions.
It is the de Sitter region of the closed universe which in-
flates and which might ultimately produce the
Friedmann-Robertson-Walker universe observed today.

In Fig. 13 one sees plainly how the two paradoxes dis-
cussed in the Introduction are avoided. The first paradox,
concerning the volume of the false-vacuum region, is
resolved when we consider the unusual geometric struc-
ture. The false-vacuum region inflates as expected, but it
does not move outward into the true-vacuum region. In
fact the domain wall is constantly accelerating in the
direction of the false-vacuum region, but the false-vacuum
region is inflating so quickly that the motion of the wall
does not prevent its volume from increasing exponentially.
The solution to the second paradox, concerning the radius
of curvature of the domain wall, is also apparent in the

V

figure. Observers next to the wall on either side would see
its radius of curvature increase. The observer in the de
Sitter region attributes this growth to the general inflation
of his space; the observer in the Schwarzschild region, on
the other hand, attributes it to the higher pressure of the
true vacuum forcing the wall into the false-vacuum re-
gion, which lies at larger values of R.

Our method of derivation guarantees that the solutions
of types A E fo—rm an exhaustive set of solutions to the
false-vacuum bubble equations of motion. On this point
we are apparently in disagreement with Berezin, Kuzmin,
and Tkachev, ' who show a diagram (the second part of
their Fig. 3) which does not resemble any of ours, and
which we believe illustrates an impossible geometry.

For completeness we give in Appendix C the equations
which determine the trajectories of the domain wall as
seen in both the Kruskal-Szekeres and Gibbons-Hawking
coordinates. This appendix also contains a discussion of
the asymptotic behavior of those trajectories for which
r ~ oo as r~ oo (i.e., trajectories of types C, D, and E).

There are also some interesting special cases of these
solutions, which are discussed in detail in Appendix D.
First we examine the limit in which the surface energy
density o ~0, and find that in this limit the domain-wall
velocity approaches that of light, except at certain turn-
around points. We then investigate a bounce solution
which survives in the limit M~O, and we find it to be
identical to the bounce solution found by Coleman and De
Luccia. The special case 7=0 is not relevant to infla-
tion, but it is interesting because it illustrates the gravita-
tional repulsion of domain walls which was emphasized
by Ipser and Sikivie. ' For +=0 and M=O there is a cu-
rious solution, found earlier by Ipser and Sikivie, which
can be described as an inhomogeneous closed universe in
which all of the energy density is concentrated in a
domain wall which divides the universe in two. The
repulsive gravity of the domain wall causes this universe
to expand indefinitely.

VI. DISCUSSION AND CONCLUSIONS

FIG. 13. The evolution of type E solutions. The three-
dimensional spacelike hypersurface indicated in Fig. 12 are de-
picted by suppressing one dimension and embedding the result-
ing two-dimensional surface in a three-dimensional space. The
de Sitter region is indicated by shading. In d one sees that the
nascent inflationary universe (i.e., the de Sitter region) has de-
tached from the original spacetirne, and is now contained in an
isolated closed universe which also contains a Schwarzschild re-
gion.

In this paper we have analyzed the behavior of a spheri-
cally symmetric region of false vacuum which is separated
from an infinite region of true vacuum by a domain wall.
Several issues of cosmological interest may be viewed in a
new light because of these results.

First there are the implications for the early universe.
While some theories ' predict an early universe which is
very homogeneous, other approaches describe an early
universe which is highly chaotic. An important feature of
the inflationary mechanism is that it allows for the possi-
bility of such highly chaotic initial conditions. In a
chaotic theory it is plausible that a region which inflates
might be surrounded by regions that do not inflate, and
one would like to understand the evolution of such a sys-
tem. Assuming that our idealized spherically symmetric
problem is indicative, one would expect that the inflating
region would appear from the "outside" (i.e., from region
I of the Schwarzschild manifold) as a black hole, and
essentially all of the inflation would take place in the
causally disconnected region III. The inflating region
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would then detach completely from the manifold which
spawned it, forming an isolated closed universe. Sato,
Kodama, Sasaki, and Maeda" have previously pointed
out that such isolated closed universes can be produced,
and they have called them "child universes. " We have il-
lustrated several snapshots of the evolving system in Fig.
13, where we have used the Kruskal-Szekeres coordinate
V as the time variable. The isolated closed universe seen
in the final snapshot consists of two regions, as may be
seen in Fig. 13, hypersurface d. The first consists of false
vacuum which soon decays into thermal radiation, pro-
ducing a huge region which behaves as a standard
Friedmann-Robertson-Walker universe. The other region
is an essentially empty Minkowski space, with a
Schwarzschild black hole in the center. The black hole
evaporates by emitting Hawking radiation. The evapora-
tion rate depends inversely on the cube of the black-hole
mass, so that a sufficiently light black hole can evaporate
very quickly.

Since the detachment of an isolated closed universe is a
significant feature of the solution, it is important to con-
sider the extent to which this description depends on the
choice of spacetime slicing. Let us for the moment ignore
the possibility of black-hole evaporation. The future
singularity of Schwarzschild space lies on a spacelike hy-
persurface, and it is therefore possible to choose equal-
time slices which approach the singularity without ever
reaching it—in such a coordinate system, the manifold
would remain connected at all times. Thus, the connect-
edness of the equal-time hypersurfaces depends on the
choice of slicing. This situation is different from that in
Minkowski space, in which the equal-time hypersurfaces
are always connected, but it is similar to that in de Sitter
space or in Schwarzschild space. In any case, the closed
universe is "detached" in the sense that it is causally
disconnected. An observer living in the closed universe
will never be able to travel to, or send messages to, the ex-
terior Schwarzschild space (region I).

If, on the other hand, we assume that black-hole eva-
poration takes place and proceeds to completion, then the
detachment of the child universe can be stated unequivo-
cally, as has been pointed out by Sato, Kodama, Sasaki,
and Maeda. " From region I (exterior Schwarzschild
space) one sees a black hole in empty space, and its eva-
poration would cause the line of singularity to terminate
at a spacetime point which is shown as P in Fig. 14. At
this point the spacelike, singular r=O line becomes non-
singular and continues in a future timelike direction. The
fate of the black hole as seen from region III (interior of
the false-vacuum bubble) is more complicated, since this
black hole is exposed to the Gibbons-Hawking radiation
of the de Sitter space. For solutions with M =M [see Eq.
(5.15)], the Gibbons-Hawking temperature ToH ——X/2n of
the de Sitter space is twice as high as the Hawking tem-
perature TH ——1/8mGM of the black hole, and thus the
black hole would be expected to accrete rather than evapo-
rate. However, in an inAationary scenario the false vacu-
um is not absolutely stable, and will eventually decay. At
that time the region enters a Friedmann-Robertson-
Walker phase, cooling as the expansion continues. Soon
the black hole will find itself in a relatively cold environ-

& = 0 non singulor

non

singul a r

FIG. 14. Spacetime diagram for a monotonic bubble solution,
including black-hole evaporation. Under these assumptions the
detachment of the false-vacuum bubble becomes unequivocal.

ment, and then evaporation will take place. The space-
time point at which the evaporation is completed is shown
in Fig. 14 as P. We further let R denote the interior of
the future light of P, and R denote the interior of the fu-
ture light cone of P. In this case one can say unambigu-
ously that the space has disconnected, in the following
sense: any path from a point in R to a point in R must
include segments traveling in both the past timelike and
future timelike directions. This implies that there exists
no possible slicing of spacetime which allows the mani-
fold to remain connected. (Note, by the way, that we
must make use of both evaporation events P and P in con-
structing the above argument. If, for example, the eva-

poration at P is assumed not to take place, then the space-
time diagram can be compactified as shown in Fig. 15. In
this case one can choose a slicing in which the space
remains connected, but in which the interior of the false-
vacuum bubble has ceased to exist by the time of event
P. )

r = 0 nonsingular

r=o
non singuto

r =0 singular

FIG. 15. Compactified spacetime diagram for monotonic
bubble solution, including black-hole evaporation in the
Schwarzschild region only. In this case one can choose a slicing
in which the space remains connected.
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Work is currently in progress to determine whether or
not it is possible in principle ' to produce an inflationary
universe in the laboratory (i.e., by man-made processes).
Each of the exact solutions for inflationary bubbles
described in Sec. V begins with an initial singularity, a
feature which has to be avoided if one is to produce such
an object in the laboratory. Thus, one must ask whether
some method of intervention can be used to produce the
same final state from a different initial state. It seems
to us that an arbitrarily low initial mass density is one cri-
terion that an acceptable "laboratory" state must satisfy.
The extraordinary mass densities involved in the inflation-
ary solutions should be developed by concentrating low
density matter from a much larger region. The difficulty
stems from the fact that the standard picture of the gravi-
tational collapse of ordinary matter produces the situation
shown in Fig. 16, which is quite different from the infla-
tionary solution shown in Fig. 12. In particular, the stan-
dard picture of gravitational collapse does not lead to the
full future singularity as seen in the inflationary solution.

The challenge, then, is to determine whether it is possi-
ble to set up as an initial condition the configuration cor-
responding to a nonsingular spacelike hypersurface of the
exact solution, such as the hypersurfaces marked b or c in
Fig. 12. Note that there is no topological barrier to con-
structing such an initial condition, since Fig. 13 shows
clearly that these hypersurfaces are topologically
equivalent to Euclidean three-space. However, it can be
shown, at least in the case of exact spherical symmetry,
that the initial singularity cannot be avoided. The proof
makes use of the Penrose theorem, which relies on the as-
sumption that the energy-momentum tensor obeys the
weak energy condition (i.e., that T„rI"r)")0 for any
timelike or null vector q"). Intuitively, the result indi-
cates that the outward velocity required for the monotonic
solutions is so large that it can emerge only from an initial
singularity.

Our results suggest the possibility that an inflationary
universe could be created by quantum-mechanical tunnel-
ing from a Minkowski space. To see how this might
occur, note that Minkowski space is not an eigenstate of
the energy density operator. Although the total energy of
the Minkowski space is zero, the mean energy density in
any given region is constantly fluctuating between positive
and negative values, with the average at zero. Thus, the
weak energy condition is violated at the quantum level,
and the theorem described in the previous paragraph does

not apply. It is conceivable that a local region could fluc-
tuate into a high-energy false-vacuum state, producing a
situation similar to that shown as hypersurface b or c in
Fig. 13. The region could then evolve temporarily accord-
ing to the classical evolution shown in Fig. 13, resulting in
a closed inflationary universe which disconnects from the
original Minkowski space. The Minkowski space is then
left with a virtual black hole, which soon disappears by
Hawking evaporation. For a black hole with a mass of
order M = 10 GeV as expected for this kind of process,
the time scale for Hawking evaporation is given by
M /Mp -10 ' sec. Thus, the net result is an initial
Minkowski space which tunnels to become a final Min-
kowski space plus a closed inflationary universe. It seems
clear that no conservation laws are violated in this hy-
pothetical process. The possibility of such tunneling
remains for now a matter of speculation, but perhaps fur-
ther work can clarify the situation.

If an inflationary universe can be created by tunneling
from Minkowski space, then the process may be a key
step in a solution to the cosmological constant problem.
Abbott has recently proposed a model which, given
some assumptions about the underlying particle physics,
explains how the universe could evolve into a huge region
of very nearly Minkowskian spacetime. The idea of
remaining for a long time in a Minkowski space seems to
be an attractive feature for any scheme which solves the
cosmological constant problem by dynamical relaxation,
since it is hard to see how the delicate cancellations re-
quired to fix the cosmological constant could be the result
of processes which take place at high energy. However, in
order to make such a scenario workable, one must have a
mechanism for producing an acceptable universe from a
Minkowski space. The tunneling process described above
may provide such a possibility.

Finally, the results obtained here are possibly relevant
to the question of whether or not information is irretriev-
ably lost in a black hole. At the classical level it is clear
that the loss of information is irreversible, but some au-
thors have argued that this information might be re-
turned to the external spacetime during the process of
black-hole evaporation. If, however, a repository for in-
formation is created by the detachment of a false-vacuum
bubble, then the argument for the irretrievable loss of in-
formation would be strengthened. Note, however, that for
the exact solutions described by Fig. 12, all of the infor-
mation in the false-vacuum bubble originates in the
initial singularity, and none comes for the external
Schwarzschild region. Thus, while the notion of a detach-
ing false-vacuum bubble may prove relevant in considera-
tions of information loss, the exact spherically symmetric
solutions that have been studied so far do not show any
evidence for this effect.

r=o
( non

singular�

)
imum radius
ollapsing rnatter
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FICi. 16. Spacetime diagram illustrating the collapse of ordi-
nary matter.
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dinates u, where a= 1, . . . , 5 and the metric is given by

rj ~——diag[1, 1, 1, 1, —1] . (Bl)

where

gu gu
1+Jr 1+Jr ' (B2)

(B3)

de Sitter space is given by the subspace satisfying
u = 1/g, with the line element ds =g~pdu du ~. The
Gibbons-Hawking coordinates can be related to these by

APPENDIX A: THE FORCE ON A THIN WALL

In Sec. III we applied energy-momentum conservation
to the singular expression for T""which is applicable to
the thin-wall approximation, and we found an ambiguous
expression in Eq. (3.6). As was pointed out in the text, the
problem arose because we were computing the gravitation-
al force on a sheet of mass, a situation which is complete-
ly analogous to the elementary problem of evaluating the
electrostatic force on a sheet of charge. In this appendix
we will show that the ambiguity can be resolved by
methods very similar to those used in the electrostatics
case, with a result which is also very similar.

. The problem arises when one evaluates the integral

I= dqK', T'; (Al)

which appears when one tries to extract the consequences
of Eq. (3.1b) for the behavior of the wall. When evaluated
naively with the 5-function expression (3.2) for T"", the
expression is ambiguous because, according to Eq. (2.12),
K'1 is discontinuous at the bubble wall ( =0). Equation
(Al) is analogous to the expression drI E„p which
expresses the normal component of the electrostatic force
on a charged sheet.

To evaluate (Al), one needs information about how K'J
varies as one crosses the domain wall, and this informa-
tion is contained in Eq. (2.8c). Only the singular terms
are important at the wall, so

The coordinates 8 and P are simply the usual polar angles
associated with the three-vector u.

Another well-known choice is the Robertson-Walker
flat coordinate system ( t, x), with line element

s 2 dt 2+e 2xtd x2 (B4)

ds = —dT +X cosh Xt(d+ +sin +d0 ) . (B7)

These coordinates are related to the five-dimensional sys-
tem by

t =X 'In[X(u +u )],
(B5)

u
X X(u'+u')

In terms of the Robertson-Walker flat coordinates, the
Gibbons-Hawking coordinates can be expressed as

coshXt ——,X x e

1+X [x f

e~'

sinhXt+ —,X x e

1+X
/

x
/

e~'

The coordinates 8 and P are the polar angles of the three-
vector x.

Finally we consider the Robertson-Walker closed coor-
dinate system ( T, +,8,$), with line element

Bz(K'z —5'~ TrK) = —8m GT'J (singular), (A2) These coordinates are related to the five-dimensional sys-
tem by

which is analogous to BzEz ——4~p in electrostatics.
Thus

f dgK'JB„(KJ; P;TrK) . — (A3)

Straightforward manipulations then lead to the result

I =K'~ fdq T.J;,
where K'J is defined by Eq. (3.7).

(A4)

APPENDIX 8: COORDINATE SYSTEMS
FOR DE SITTER SPACE

This appendix shows the relationship between the
Gibbons-Hawking coordinate system for de Sitter space
and several better-known coordinate systems.

Probably the most transparent way to think of de Sitter
space is to embed it in a five-dimensional space with coor-

T =X 'arcsinh(Xu ),
%=arctan(

~

u
~

/u ) .
(B8)

In terms of these coordinates, the Gibbons-Hawking coor-
dinates can be written as

U= cosset cos%
1+coshXt sin%

sinhXt
1+coshXt sin%

'

(B9)

and the angles 8 and P are the same in the two systems.

APPENDIX C: THE SPACETIME TRAJECTORY
OF THE DOMAIN WALL

In this appendix we give the equations which define the
spacetime trajectory of the domain wall as seen in either
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Kruskal-Szekeres or Gibbons-Hawking coordinates. We
assume that the trajectory function r(r) has already been
found by solving Eq. (5.9). The spacetime trajectory will
of course not be unique, since both the Schwarzschild
space and the de Sitter space possess symmetries of the
form T~T+const.

Beginning with the Kruskal-Szekeres coordinates, one
has from Eq. (4.4) the relation

Q —V
2 2= r /2GM

2GM
(Cl)

1 2GM
4GM r (up, +vr),

To construct the spacetime trajectory, choose any initial
proper time rp. Then choose initial coordinates u (rp) and
v (rp) consistent with Eq. (Cl), and chosen in the proper
quadrant. Differentiation of Eq. (Cl) provides an equa-
tion involving u and v, and Eq. (4.18b) provides another.
The solution to these two simultaneous equations is given
by

trinsic curvature component K „which can be expressed
in terms of r(r) by using Eq. (4.28). One finds that
asymptotically the domain wall approaches a uniform
proper acceleration

X 2

(C6}
2K

as~—

and

1 —Xr
Q —V 1+Jr (C7)

where the subscript S has been appended to indicate that
we are discussing the proper acceleration as measured by
an observer in the Schwarzschild region. We have defined

g„ to point from the de Sitter region to the Schwarzschild
region, so the minus sign in Eq. (C6) indicates that the ac-
tual proper acceleration is toward the de Sitter region.

The procedure for obtaining the equations in Gibbons-
Hawking coordinates is identical to that used for the
Kruskal-Szekeres coordinates. Equations (Cl) and (C2)
are replaced by

1 2GM
4GM r (vp, +ur) .

(C2)
v = —X(1 Xr—) '(u pD+ vr ),
u= —X(1 Xr ) '(vPD—+ur) .

(C8)

Although the equations contain an apparent singularity at
r =26M, it can be seen by careful inspection that this
singularity is canceled by the vanishing of the factors
( u ps+ v )rand ( v ps+ ur ). Thus, the spacetime trajectory
of the domain wall in Kruskal-Szekeres coordinates can
be obtained by integrating Eqs. (C2).

From these equations one can understand the asymptot-
ic behavior of those trajectories for which r~ oo as r~ oo
(i.e., trajectories of types C, D, and E). From Eq. (5.9)
one can see that V(z)= —z for large z, which implies

g+ 2v/2x
that z(r') oce for large r'. Thus, r(r) oce + . Using
Eq. (4.18c) one then has

1
ps r . +-—

2r
(C3)

where the overall sign was determined in Sec. V. If we
define w = u +v, then Eqs. (C2) imply that asymptotically

8GMr
(C4)

DU"
Ds (C5)

According to Eq. (3.18) this is just the negative of the ex-

Since the integral of the right-hand side approaches a con-
stant as r~ oo, it follows that ln( —w) approaches a finite
nonzero constant. This implies that, on the Kruskal-
Szekeres diagram, the trajectory asymptotically ap-
proaches a line which is parallel to the horizon
(R =2GM) line. Thus the trajectory of the domain wall,
as seen by an observer in the true-vacuum region, is
asymptotically lightlike.

The asymptotic behavior of the trajectory can also be
described in terms of the proper acceleration of the
domain wall, defined by

From these equations one can determine the asymptotic
form of the domain-wall trajectory as seen by an observer
in the de Sitter region, and the results are quite a bit dif-
ferent from the previous case. Using Eq. (4.25c) one finds
that

—K2 2

2K
(C9)

where again the sign has been determined in Sec. V. It
follows that

v ~ [(X'+~')v —(X' —~')u],
2K+r

u~ [(X +x. )u —(X —~ )v] .
2K+r

(C10}

Figures 9—11 show that these trajectories asymptotically
approach finite values of u and v (satisfying the relation
v —u = 1), and thus the asymptotic value of the slope
dv/du =v/u can approach any value between —1 and l.

The de Sitter observer also concludes that the domain
wall approaches a uniform proper acceleration, which is
found to be

—K

2K
(C 1 1)

Again the acceleration points into the de Sitter region
(provided that X & v ). However, in de Sitter space a uni-
form proper acceleration does not imply that the trajecto-
ry is asymptotically lightlike. In fact, in any Robertson-
Walker coordinate system the trajectory approaches a lim-
iting velocity which is less than that of light. (This claim
may at first seem bizarre, since each corn oving
Robertson-Walker observer must see the domain wall ac-
celerate as it passes. However, the observer would also see
his fellow comoving observers accelerate away from him-
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self, and the domain wall would maintain a uniform velo-
city relative to the comoving observers that it passes. ) To
derive the asymptotic velocity, we write the general
Robertson-Walker line element for de Sitter space as

ds = dt —+a (t)[dp +r (p)dQ ]j,
where

(C12)

X 'coshXt if k =1,
a (t) = —,X 'e~' if k =0,

X 'sinhXt if k = —1,
(C13)

and

sin1( if k =1,
r(i(j)= g if k =0,

sinhP if k = —1 .
(C14)

We are using here an unconventional normalization for
a (t) in the k=0 case, but is is convenient for our pur-
poses that the behavior of a (t) for large t be independent
of k. After some algebra we find that the proper accelera-
tion of a trajectory in the radial direction is given in these
coordinates by

1 d aP'
( 1 2y&2)1/2

(C15)

velocity =a it '~
(X2+ 2)i j2 (C16)

With the proper acceleration given by Eq. (Cl 1), the
asymptotic velocity of the domain wall is found to be

where the prime denotes a derivative with respect to t.
Since aP'= I for a lightlike trajectory, its value for any
other trajectory is interpreted as the velocity in units of
the speed of light. Using the asymptotic relation
a(t)~ —,'X 'e ' which holds for any k, one can show that
a/' asymptotically approaches a constant:

First, we consider the limit in which the surface energy
density o.~O, in which case y~O also. As discussed at
the beginning of Sec. V, typical grand unified theories
give values of y which are near to this limit (y =10 ).

In this limit the maximum of the potential V(z) moves
to z =1, with V =0. For any fixed value of M, E will
approach zero in the limit. Equation (5.9) is then easily
solved, giving

z = 1+ce —+ (Dl)

where the two sign choices can be made independently,
and c is an arbitrary constant. According to Eq. (5.5) the
relation between ~ and w becomes singular in this limit,
which means that r =dr/dw approaches infinity, except
in the vicinity of z=1 ~ Thus, the domain-wall velocity
approaches that of light.

Figure 5 shows that in this limit M„, Mz, and Mz all
approach M. Solutions of type A or C are then possible if
M &M, and a solution of type E is possible if M &M.
The spacetime diagrams for these solutions can be con-
structed from Figs. 7, 9, and 11 by replacing the curved
line segments by straight lines at 45' to the vertical. (A
formal proof that the lines must approach 45' for z&1
can be constructed from the equations of Appendix C.)

The line segments are then joined by sharp bends of 90',
which are located at points corresponding to z= 1.

The limit cr~O has also been investigated by Aurilia,
Denardo, Legovini, and Spallucci, ' but we disagree with
their results. They found only the static solution which
corresponds in our language to z(r')=1, and they failed
to notice that this solution is unstable. The error in their
analysis, in our opinion, is that they ignored the possibili-
ty that r could diverge in the limit o.~O.

Next, we consider the limit M~O. It can be seen from
Fig. 6 that in this limit the only solutions will have very
small or very large values of z.

For the case of small values of z, the solutions are of
type A and V(z) can be approximated by —1/z . These
solutions have a maximum radius, and it is easy to show
that it is given by

—K2 2

velocity
2 2g +K

(C17) r,„~V'GM /Ir (D2)

The asymptotic velocity of the domain wall has also
been studied by Berezin, Kuzmin, and Tkachev, ' who
considered the more general case in which the true-
vacuum energy density might be nonzero. Their formula
for the asymptotic velocity reduces to Eq. (C17) for the
appropriate special case, but the words which accompany
their formula are not sufficiently detailed for us to tell if
we are in complete agreement. In our analysis this
asymptotic velocity applies only to observers in the de
Sitter region who use a Robertson-Walker coordinate sys-
tem, but Berezin, Kuzmin, and Tkachev, do not state
these limitations.

APPENDIX D: SOLUTIONS
FOR SPECIAL CASES

In this appendix we discuss some interesting special
cases of the general class of solutions described in Sec. V.

as M~0. Thus, these solutions become trivial in the lim-
it.

For the case of large values of z, the solutions will be of
type C or D depending on whether K is less than or
greater than 7, respectively. In either case one can ap-
proximate V(z) by —z, and one finds the exact solution

ZK ++2

r (r) = cosh
2K

(D3)

To understand the spacetime structure, note that regions
II and IV of the Schwarzschild space disappear as M~O.
In this limit regions I and III become Minkowski spaces,
and the bridge which normally connects them disappears.
Thus in the M~O limit either of the regions I or III of
the Schwarzschild space constitutes a complete solution to
the Einstein equations. In our case, the nontrivial solu-
tion is obtained by deleting region I of Schwarzschild
space, and one then has a closed space consisting of a
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Minkowski region and a de Sitter region. This closed
space is precisely the thin-wall solution found by Coleman
and De Luccia, and Eq. (D3) above is equivalent to their
result.

The special case X=0 is of course not relevant to infla-
tion, but it does serve to illustrate the repulsive gravita-
tional properties of domain walls which were emphasized
by Ipser and Sikivie. ' As X~O, one can see from Eqs.
(5.14) and (5.17) that both M„and Ms have finite limits,
given by 16/(27G~) and I/(2G~), respectively. In this
limit one has y=2, so Pn is positive for all values of z.
Thus, solutions exist of types A, 8, D, and E. For types
D and E the radius variable r will grow without bound at
large times. The behavior of type D or E solutions at
large times can be illustrated by Fig. 17, which is similar
to hypersurface d of Fig. 13 except that the de Sitter re-
gion has been replaced by a section of flat space. The iso-
lated closed space at the lower part of the picture will
grow indefinitely, driven by the repulsion of the domain
wall. The limit M~0 (keeping X=0) has also been inves-
tigated by Ipser and Sikivie. In this case the only non-
trivial solutions are of type D, and Eq. (D3) reduces to
r(r) =(2/a)cosh(~~/2). The spacetime geometry can be
thought of as a limiting case of the Coleman —De Luccia
bubble discussed above. Again there is a Minkowski re-
gion (region I of Schwarzschild space) which becomes
disconnected as M~O, and this region can be deleted
from the solution. One then has a closed space composed
of two compact spherical regions of flat space, joined to-
gether at the domain wall. This is the "class-I" solution
of Ipser and Sikivie, and can be described as an inhomo-
geneous closed universe in which all the energy density is
concentrated in a domain wall at the operator. While the
positive-energy theorem often implies that Minkowski
space is the only solution for M=O, the theorem is evaded
by this case because the manifold is not asymptotically
flat.

"Vacuum shells" with M=O were discussed by Berezin,

FIG. 17. The large-time behavior of solutions of types D or
E, for the special case +=0.

Kuzmin, and Tkachev, ' but their conclusions do not
completely coincide with ours. We agree with their state-
ment that these bubbles have a point of rest and expand
infinitely, and the formula which they give for the
minimum radius reduces to ours for the case in which the
true-vacuum energy density is set equal to zero. However,
they conclude that such domains could exist in our
universe until now without conflicting with observational
data, due to M=O. From our point of view, the discus-
sion of this situation would depend on where "our
universe" was assumed to lie. Our universe could lie in
region III of the Schwarzschild space diagrams of Figs. 9
or 10, in which case we would be surrounded by a single
domain wall which would be accelerating away from us.
Alternatively, our universe could be in region I, but then
the domain wall would lie in a completely disconnected
region of spacetime. The region of the domain wall
would be topologically connected to our region if M were
small but nonzero, but the region would still be causally
disconnected.
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